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Abstract 
In this paper, the reachability problem for a class of 

second-order LTI switched systems is solved. The reachabil- 
ity problem is first explored for switched systems consisting 
of two subsystems and switching control laws are proposed 
that can drive the system state from an initial point to a 
target point via finitely many switches. The method is then 
extended to the case of several subsystems. The relationship 
between stabilizability and reachability is also addressed. 

1 Introduction 
A switched system is a system that consists of several 

subsystems and a switching law that specifies which subsys- 
tem dynamics will be followed by the system trajectory at 
each instant of time. Recently, there has been increasing 
interest in the stability analysis and design of such systems 
(see, e.g., [I, 2, 3, 6,.7, 8, 91). 5l.provides a survey of recent 

In this paper, we are interested in switched systems con- 
sisting of second-order L T I  subsystems with foci at the origin. 
(A second-order system x = Ax is with focus at the origin if 
A has eigenvalues ai f ,&j, pi # 0 ,  see [4] Chapter 1.) 
Definition 1.1 A switched system consistang of second-order 
L T I  subsystems with foci at the origin is a system described 
b y  system equations: 

development of stability and d esign of switched systems. 

x =  Ai@)" (1) 

where x E R2, i(t) E I = {1,2,..- , N }  and Ai E Rzxz  with 
foci at the origin. + : Rz x I x W + I describes the switching 
law. I t  is assumed that the switching law can only generate 
a finite number of switches in any finite t ime period. 

The switching law in Definition 1.1 is to be designed in 
control synthesis. Based on our earlier results on stabiliza- 
tion of switched systems [8, 91, we consider the system (1) 
and design the switching control law (2) for the reachability 
of the switched system. For the above class of switched sys- 
tems, we define a switched system to be reachable as follows. 
Definition 1.2 (Reachability) The switched system (1) is 
said to  be reachable if for any non-equilibrium initial point 
xi # 0 and target point x t  # 0, there exists a switching 
control law that can generate a finite switching sequence to 
drive the system state f rom x; t o  x t  in finite amount of time. 

The outline of this paper is as follows. In Section 2, we re- 
view some results from [8] and then, based on those results, 
design switching control laws for the reachability problem 
of switched systems with two unstable subsystems. Section 
3 and 4 discuss the reachability problem for switched sys- 
tems with two stable subsystems, and switched systems with 
one stable and one unstable subsystems, respectively. The 
switching control laws are extended to switched systems with 
several subsystems in Section 5. Section 6 addresses the re- 
lationship between stabilizability and reachability. Section 7 
contains concluding remarks. 

2 Reachability of Switched Systems with 
Two Unstable Subsystems 

In this section, we consider the reachability problem for 
the switched system (1) consisting of two subsystems with 
unstable foci w d  derive switching control laws. 
2.1 Unstable Subsystems 

We first review some stability results from [8]. We shall 
say that a subsystem is of clockwise (counterclockwise) di- 
rection if starting from any nonzero initial condition in the 
phase plane its trajectory is a spiral around the origin in the 
clockwise (counterclockwise) direction. 

Let x = ( ~ 1 ~ x 2 ) ~  be a nonzero point on W2 plane, and 
denote fi = Alx = ( a l , a ~ ) ~ ,  fz = AZX = ( ~ 3 ~ ~ 4 ) ~ .  We 
view x ,  fl and fz as vectors in Wz and define B i ,  i = 1,2 to 
be the angle between x and fi measured counterclockwise 
with respect to x (Si is confined to -n 5 Si < n). So Bi 
is positive (negative) if vector fi is to the counterclockwise 
(clockwise) side of x .  Also as in [8] we define the regions 

{ X I  - 'IT 5 B; ( f ; )  5 -5 or 5 5 B i ( f i )  < n} 
A n  Eis = 

= 
= 

{ x l x T f i ( z )  = xTAix 5 0 } ,  i = 1 ,2  

{ X I  - 5 5 S ; ( f i )  5 0 or 0 5 O i ( f i )  5 2) 'IT A 
E;, 

= { x l x T f i ( x )  = X ~ A ~ X  2 01, i = 1,2.  

To design stabilizing switching control laws, we identify 
the following two distinct cases. 
Case 1. Two Subsystems of the Same Direction 

Without loss of generality, assume that both subsystems 
of (1) are of clockwise direction. We define the following 
conic regions. 

Ri = Ei, n E2u, Rz = Eiu n Ezs, 

R4 

Re 

o3 = E l ,  n Ez, n (21aza3 - 0 1 0 4  I o}, 

0 5  = El,  n Ez, n {zlazas - ala4 5 0},  
= E18 n Ezs n (XIaza3 - ala4 2 0 } ,  

El ,  n Ez, n {X1a20,3 - ala4 2 0). = 

The conic switching law proposed in [8] is as follows: 
switch the switched system to subsystem 1 whenever the 
system state enters RI,  R3, Rg and switch to subsystem 2 
whenever the system state enters R2, 0 4 ,  as. 

The following theorem concerns the stabilizability of the 
switched system (see [SI). Note that this is a necessary and 
sufficient condition as opposed to other literature results. 
Theorem 2.1 Let 11 be a ray that goes through the origin. 
Let x o  # 0 be on 11. Let x* be the point on 11 where the tra- 
jectory intersects 11 for the first tame after leaving 20, when 
the switched system evolves according to  the conic switching 
law. The switched system (1) with subsystems with unstable 
foci and of the same direction is asymptotically stabilizable i f  
and only i f  11x*11z < 11x0112 by the conic switching law. 

Example 2.1 illustrates how the conic switching law 
works. 
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Figure 1: A simple circuit system consisting of two depen- 
dent sub-circuits for Example 2.1. 

Example 2.1 Figure 1 shows a simple circuit system con- 
sisting of two dependent sub-circuits. For every sub-circuit, 
there is  a switch to  connect the sub-circuit to  one of the two 
voltage dependent current source circuits. so there are four 
possible switch combinations which would provide us  with 
four subsystems. Here we assume that the switches for  both 
sub-circuits can only be both at position 1 or both at position 
2 simultaneously. This reduces the number of possible switch 
combinations to  two. I t  i s  not di f icul t  t o  derive the following 
differential equations for the circuit (V = [Vel, VealT) .  
Both switches are at position 1: V = [ :2 '3" ] V. 
Both switches are at position 2: V = [ -lo -1 2 j .  :Dl 

, --.. 

. ' . Y r * ,  yc' 

i .. .. ... . .. . .. . 

Figure 2: The 
system 

trajectory of the switched circuit 
by using the conic switching law 

live* (01, K2(0>IT = 12, 2IT>. 

The switched system consists of two unstable subsystems with 
foci at the origin and is asymptotically stabilizable by the 
conic switching law. Figure 2 shows the system trajectory 

Case 2. Two Subsystems of Opposite Directions 
Assume that subsystem 1 is of clockwise direction while 

subsystem 2 is of counterclockwise direction. 
We introduce the following conic regions. 

f rom initial point [(v,, (o), V , 2 ( ~ ) ] T  = [2,2]'. 0 

521 = E18 nEzs, 522 = Eiu flEz,, 
0 3  = El, n Ez, n (xIaza3 - m a 4  2 0},  
Q4 = E,, n EZu n (d(az(33 - (31(34 I o} ,  
as = El, n Ezs n (xIaza3 - (3104 2 0} ,  
526 = El, fl E z S  n ( 2 ] ( 3 2 ( 3 3  - 5 0). 

Theorem 2.2 concerns the stabilizability of the switched 
system (see [8]). 
Theorem 2.2 The switched system (1) with two subsystems 
with unstable foci and of opposite directions is asymptotically 
stabilizable i f  and only i f I n t ( R 1 )  U Int(523) U Int(R5) # 0. 

If the switched system is asymptotically stabilizable, 
then the conic switching law can also be obtained as in [8] 

which makes the system asymptotically stable. The conic 
switching law is as follows: first, by following subsystem 1, 
force the trajectory into one of the conic regions 521, Q 3 ,  525, 
and then switch to another subsystem upon intersecting the 
boundary of the region so as to keep the trajectory inside 
the region. 
Remark: The conic switching laws can also be extended to 
switched systems consisting of second-order LTI subsystems 

2.2 Reachability Results 
In the following discussion, we assume that the switched 

system consists of unstable subsystems but is asymptotically 
stabilizable. Assume that xi # 0 and xt  # 0 are given non- 
equilibrium initial and target points on Rz plane, respec- 
tively. We want to find a switching control law so as to 
drive the state of the system from x ;  to x t .  We consider the 
following two cases. 
Case 1. Two Subsystems of the Same Direction 

Without loss of generality, assume both subsystems are of 
clockwise direction. It is known that the conic switching law 
will make the system asymptotically stable. Now consider 
the trajectory starting from x t  with time going backwards, 
i.e., consider the trajectory C- for -t, t 2 0 by following the 
conic switching law. It is clear that this trajectory would be 
away from the origin in a counterclockwise fashion. Let 1; 
be the ray that goes through the origin and x i .  Let It be the 
ray that goes through the origin and q. Let x* = z(-t') be 
the point on C- that satisfies the following conditions. 

1. The trajectory E = { x ( - t )  E C-10 < t 5 t ' }  inter- 
sects It at least once. 

2. t' is the minimum possible t such that condition 1 is 
satisfied and x(- t ' )  is  on 1; and l l ~ ( - t * ) l l 2  2 l l ~ i112 .  

To obtain a switching control sequence, we let the system 
start from xi at t = 0 following the trajectory of subsystem 1. 
Since subsystem 1 is unstable, it is clear that if the switched 
system stays at subsystem 1 for sufficiently long time, z(t)  
will be outside the region formed by E and pzut of li(the 
region inside the bold curves in Figure 3(a)). By this we 
conclude that there exists a time instant tl such that the 
trajectory intersects E for the first time, i.e., X I  = x ( t 1 )  E E. 

So by the above discussion, we can adopt the following 
switching control law. 
Switching control law: 
S tep  1. Let the system trajectory start f rom x; at t = 0 
following the trajectory of subsystem 1 until it intersects E 
for  the first t ime at tl o n  x1 = x( t1) .  
Step 2. After  it reaches 2 1  = z( t l ) ,  let the system ewolve 
following the conic switching law. 

The above switching control law can drive the system 
state from xi to xt  via only a finite number of switches. 

which are not necessarily with foci (see [8]).  0 

Figure 3: Switching control law for two unstable subsys- 
tems of (a). the same direction (b). opposite 
directions. 

Example 2.2 Consider the circuit system as in Example 
2.1. The  switched system is reachable since it is  asymptoti- 
cally stabilizable. Figure 4 shows the system trajectory from 
xi = [-2,  -2IT t o  zt = [-0.5, 0.5IT and the corresponding 
switching sequences b y  using the switching control law. 
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shows that the d-stabilizability problem is readily solved by 
some small modification of the aforementioned results. Sim- 
ilarly to Section 2.1, we will discuss the following two cases. 
Case 1. Two Subsystems of the Same Direction 

Assume both subsystems are of clockwise direction. Us- 
ing the same notation as in Case 1 in the Section 2.1, we 
propose the following conic switching law: switch the 
switched system to subsystem 2 whenever the system state 
enters 01, R3, R5 and switch to subsystem 1 whenever the 
system state enters R2, R4, R6. 

The following theorem concerns the d-stabilizability of 
the switched system. 
Theorem 3.1 Let 61 be a ray that goes through the origin. 
Let xo # 0 be on 11. Let x* be the point on 11 where the tra- 
jectory intersects 11 for the first t ime after leaving 20, when 
the switched system evolves according to the conic switching 
law. The switched system (I) with subsystems with stable 
foci and of the same direction is  d-stabilizable i f  and only if 
llx*112 > ( ( ~ 0 1 1 2  by the conic switching law. 

Figure 4: (a). The trajectory of the switched circuit system 
from xi = [-2,-2]* to zt = [-0.5,0.5IT. (b). 
The corresponding switching sequence. 

Case 2. Two Subsystems of Opposite Directions 
Assume subsystem 1 is of clockwise direction and sub- 

system 2 is of counterclockwise direction. Since the switched 
system is as mptotically stabilizable, In t (R l ) .U  Int(R3) U 
Int(R5) # We assume R is one conic region from the 
possible nonempty sets 521, R3 and 0 5  which is between the 
two rays I 1  and h(Figure 3(b)). Consider the following tra- 
jectory C-. Starting from xt, let the system trajectory go 
backwards in time by following subsystem 1 until it intersects 
12 for the first time by z* at -t*, then let the trajectory go- 
ing backwards in time following the conic switching law in 
R. In this way, we can get the trajectory C- as depicted in 
Figure 3(b). 

Now let the system start from xi at t = 0 following the 
trajectory of subsystem 1. Since subsystem 1 is unstable, 
it is clear that if the switched system stays at subsystem 1 
for sufficiently long time, x(t) will intersect C-. By this we 
conclude that there exists a time instant t i  such that the 
trajectory intersects C- for the first time at X I  = x(t1). 

By the above discussion, we can adopt the following 
switching control law. 
Switching control law: 
Step 1. Let the system trajectory start from xi at t = 0 
following the trajectory of subsystem 1 until it intersects C- 
for  the first t ime at tl on XI  = x(t1). 
Step 2. After it reaches 2 1  = x ( t l ) ,  let the system evolve 
following the corresponding subsystems associated with the 
points on the trajectory C- .  

The above switching control law can drive the system 
state from xi to xt via only a finite number of switches. 0 

3 Reachability of Switched Systems with 
Two Stable Subsystems 

In the present section, we consider reachability problem 
for the switched systems (1) consisting of two subsystems 
with stable foci and derive switching control laws. 
3.1 Stable  Subsystems 

If both subsystems are stable, then the stabilizability of 
the switched system can be easily established if we simply 
let the system stay at one subsystem and do not apply any 
switches. Yet we may ask a converse question: can we find a 
control law such that the switched system can be "destabi- 
lized", in other words, the trajectory of the switched system 
can be made unbounded. It is not quite difficult to see that 
such a control law can be found if the switched system with 
two unstable subsystems 

X = -Alx, X = - A ~ x ,  (3) 

is asymptotically stabilizable. Formally, we defined d- 
stabilizability as follows. 
Definition 3.1 An switched system (1) with two stable sub- 
systems is  said to be d-stabilizable i f  and only i f  the corre- 
sponding switched system (3) with two unstable subsystems 
is  asymptotically stabilizable. 

A close look at the result for two unstable subsystems 

2 

I 

Figure 5: A simple circuit system consisting of two depen- 
dent sub-circuits for Example 3.1. 

Example 3.1 shows how the conic switching law works. 
Example 3.1 Figure 5 shows a simple circuit system consdst- 
ing of two dependent sub-circuits with coeficients daflerent t o  
Example 2.1. I t  can be readily obtained that: 

-3 2 [ -13 -1 1. Both switches are at position 1: V = 

Both  switches are at position 2: V = [ 1; :"I.  

Figure 6: The trajectory of the switched circuit 
system by using the conic switching law 
[(K,(O), Ke,(0)IT = [0.2, 0.2IT). 

T h e  switched system consists of two stable subsystems with 
foci at the origin and is  d-stabilizable. Figure 2 shows 
the system trajectory from initial point [(V,,(O), K,(O)lT = 

Case 2. Two Subsystems of Opposite Directions 
Assume subsystem 1 is of clockwise direction and sub- 

system 2 is of counterclockwise direction. With the same 
notation as in Case 2 of Section 2.1, the following theorem 
concerns the d-stabilizability of the switched system. 

[0.2,0.2]*. 0 
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Theorem 3.2 The switched system ( 1 )  with two subsystems 
with stable foci of opposite directions is d-stabilizable if and 
only if I n t ( R z )  U Int (R4)  U I n t ( 0 6 )  # 0 .  

If the switched system is d-stabilizable, then a conic 
switching law can also be obtained. The conic switching 
law is: first, by following subsystem 1, force the trajectory 
into one of the conic regions Rz, 524, 0 6 ,  and then switch 
to another subsystem upon intersecting the boundary of the 
region so as to keep the trajectory inside the region. 0 

3.2 Reachability Results 
Consider the switched system (1) with two stable sub- 

systems. In the following discussion, we assume that the 
switched system is d-stabilizable. The switching control law 
can be obtained by some modifications of the discussion in 
Section 2.2. 
Case 1. Two Subsystems of the Same Direction 

Assume that both subsystems are of the clockwise direc- 
tion. Since the switched system is d-stabilizable, the conic 
switching law will "destabilize" the system asymptotically. 
Therefore, for this switched system, if we consider the trajec- 
tory starting from x;  with time going forward, i.e., consider 
the trajectory C+ for t ,  t 2 0 by following the conic switch- 
ing law. It is clear that this trajectory would be farther and 
farther from the origin in a clockwise fashion. Let 1, be the 
ray that goes through the origin and x i .  Let It be the ray 
that goes through the origin and x t .  Let x* = x ( t * )  be the 
point on C+ that satisfies the following conditions. 

1. The trajectory E = { x ( t )  E C+IO < t _< t'} intersects 
l ;  at least once. 

2. t' is the minimum possible t such that condition 1 is 
satisfied and x ( t * )  is on It and Ilx(t')llz 2 11xt112. 

To obtain a switching control sequence, we let the system 
start from zt and going backwards in time following subsys- 
tem 1, since subsystem 1 is stable, the backward trajectory 
will not be stable. So as the discussion in Case 1 in Section 
2.2, the backward trajectory will intersects E for the first 
time at x1 = x( t1) .  

Switching control law: 
Step 1. Let the system trajectory start from xi at t = 0 
following conic switching law until i t  reaches X I .  
Step  2. After it reaches 21, let the system switch to subsys- 
tem 1 and evolve following Subsystem 1.  

Such a switching control law drives the system state from 
xi to xt via only a finite number of switches (Figure 7(a)). 

So we propose the following switching control law. 

Figure 7: Switching control law for two stable subsystems 
of (a). the same direction (b). opposite direc- 
tions. 

Example 3.2 Consider the circuit system in Example 3.1. 
The switched system is reachable since at is d-stabilizable. 
Figure 4 shows the system trajectory from x;  = [0.2, 0.2IT to 
xt = [4,-4IT and the corresponding switching sequences b y  

Case 2. Two Subsystems of Opposite Directions 
Assume subsystem 1 is of clockwise direction and sub- 

system 2 is of counterclockwise direction. Since the switched 

using the switching control law proposed above. 0 

Figure 8: (a). The trajectory of the switched circuit system 
from x ,  = [0.2, 0.2IT to xt = [4, -4IT. (b). The 
corresponding switching sequence. 

system is d-stabilizable, I n t ( R z ) U l n t ( R 4 ) U I n t ( R s )  # 8. We 
assume R is one conic region from the possible nonempty sets 
0 2 ,  and !& which is between the two rays I 1  and lz(Figure 
7(b)). Consider the following trajectory C-. Starting from 
x t ,  let the system trajectory go backwards in time by fol- 
lowing subsystem 1 until it intersects 12 for the first time by 
x* at - t* ,  then let the trajectory going backwards in time 
following the conic switchieg law in R. In this way, we can 
get the trajectory C- as depicted in Figure 7(b). 

Now let the system start from xi at t = 0 following the 
trajectory of subsystem 1. Since subsystem 1 is stable, it 
is clear that if the switched system stay at subsystem 1 for 
sufficiently long time, x ( t )  will intersect C-. By this we 
conclude that there exists a time instant tl such that the 
trajectory intersects C- for the first time at x1 = x( t1) .  

Switching control law: 
S tep  1. Let the system trajectory start from x;  at t = 0 
following the trajectory of subsystem 1 until it intersects C -  
f o r  the first time at tl on X I  = x ( t 1 ) .  
Step 2. After it reaches x1 = x ( t l ) ,  let the system evolve 
following the corresponding subsystems associated with the 
points on the trajectory C-. 

The switching control law can drive the system state from 
x;  to xt via only a finite number of switches. 0 

4 Reachability of Switched Systems with 
One Stable and One Unstable Subsystems 

If the switched system (1) consists of stable subsystem 1 
and unstable subsystem 2, we note that the switched system 
must be both asymptotically stabilizable (by just following 
subsystem 1) and d-stabilizable (by just following subsystem 
2). For reachability, there are two cases to be discussed, 
where the first case is similar to  Case 1 in Section 2.2 and 
the second case is slightly different from Case 2 in Section 
2.2. 
Case 1. Two Subsystems of the Same  Direction 

Let the trajectory C- be the trajectory starting from xt 
with time going backwards by following subsystem 1. Let 
z* = x ( - t " )  be the point on C-  that satisfies: 

1. The set E = { x ( - t )  E C-10 < t 5 t'} intersects It at 
least once. 

2. t* is the minimum possible t such that condition 1 is 
satisfied and x(- t ' )  is on Z; and ~ ~ x ( - t * ) ~ ~ ~  2 11xi11~. 

Let the system start from 2; at t = 0 and follow subsys- 
tem 2. Since subsystem 2 is unstable, by the similar reason 
as in Case 1 in Section 2.2, the trajectory will intersect E at 
X I  = x( t1)  for the first time. 

Switching control law: 
Step 1. Let the system start from x ;  at t = 0 and follow 
subsystem 2 until it reaches X I .  
Step  2 .  After it reaches 21, let the system switch to subsys- 
tem 1 and evolve following subsystem 1. 

The switching control law requires only one switch to 

So we propose the following switching control law. 

We propose the following switching control law. 
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Figure 9: Switching control law for one stable subsystem 
and one unstable subsystem of the same direc- 
tion. 

solve the reachability problem. I3 
Case 2. Two Subsystems of Opposite Directions 

Assume in ( l ) ,  subsystem 1 is of clockwise direction and 
subsystem 2 is of counterclockwise direction. Then we iden- 
tify the following two sub-cases. 
a. If 3c > 0 such that A1 = -cA2, then CA', = C- Az' 
Ci, = CA', for any initial point 20 # O (See Section 2 of 
[8]). Therefore zt is not reachable from z; if zt is neither on 
Ci, nor on Ci,. 
b. If there does not exist c > 0 such that A1 = -cAz,  then 
there exists at most two lines on which A l z  = k A ~ z  for some 
k # 0 (See Section 2 of [SI). In view of the 0, introduced 
in Section 2.1, we can find a conic region in which either 
1011 + lSzl < r or 1011 + l0zl > T holds for every point. 

Figure 10: Switching control law for one stable subsystem 
and one unstable subsystem of opposite direc- 
tions. 

For (01 I + 102 I < T case, we can obtain a switching control 
law similar to Case 2 in Section 3.2 (Figure lO(a)). 

For 101 I + 10, 1 > T case, we can obtain a switching control 
law similar to Case 2 in Section 2.2 except that we choose 
subsystem 2 between zi and 2 1  (Figure lO(b)). 0 

5 Several Subsystems 
Consider the switched system (1) consisting of several 

second-order LTI subsystems with foci. The reachability re- 
sults in Sections 2, 3 and 4 are readily extended to several 
subsystems as shown in the following. 
Case 1. All Subsystems with Unstable Foci 

We assume that the switched system is asymptotically 
stabilizable. If all subsystems are of the same direction, then 
we adopt the similar method as in Case 1 of Section 2.2 to 
drive z; to zt. 

If K(K > 0) subsystems S;, . . . , S, are of clockwise di- 
rection and M(M > 0) subsystems SF,. . . , SG are of coun- 
terclockwise direction (K+ M = N), then we can use one of 
the following methods . 
1. If Sf,. . . , S- are asymptotically stabilizable, then adopt 
the similar mettod as in Case 1 of Section 2.2. 
2. If S:, . . . , S+ are asymptotically stabilizable, then adopt 
the similar metgod as in Case 1 of Section 2.2. 
3. If there exists Sz: and Sj' such that the switched system 
consisting of S,T and S: is asymptotically stabilizable, then 

adopt the similar method as in Case 2 of Section 2.2. 
Case 2. All Subsystems with Stable Foci 

The discussion is similar to the above case. 
Case 3. K Subsystems with Stable  Foci and M Sub- 
systems with Unstable Foci 

In this case, as long as there is one stable subsystem and 
one unstable subsystem satisfying the condition of Case 1 or 
the condition (b) in Case 2 of Section 4, we can always adopt 
the method therein. 

6 Stabilizability and Reachability 
Now we state the relationship between stabilizability and 

reachability. Without loss of generality, we just consider 
switched systems (1) with two subsystems. 

If a switched system is reachable, then it must be asymp- 
totically stabilizable and d-stabilizable. This is not difficult 
to show. For asymptotic stabilizability, we can start from z, 
and drive the state to zt which are on 1; and 11?t11z I qIIzj!lz, 
q < 1. Continuing this way, we can asymptotically stabilize 
the system. d-stabilizability can be similarly shown. 

Combined with the results in Sections 2, 3 and 4, we can 
readily prove the following theorem which provides us with a 
necessary and sufficient condition for the reachability of the 
switched systems. 
Theorem 6.1 Consider the second-order switched systems 
(1)  consisting of two LTI subsystems with foci. If there does 
not exist c # 0 such that A1 = cA2, then the switched system 
is asymptotically stabilizable and d-stabilizable if and only i f  
i t  is reachable. 

7 Conclusions 
This paper considers the reachability problem for 

switched systems consisting of second-order LTI subsystems 
with foci and it is concerned with switching control laws 
to drive the state from zi # 0 to zt # 0. Necessary and 
sufficient conditions for reachability are also obtained. The 
method to obtain a switching control law is constructive and 
it is based on the conic switching laws proposed in [8, 91. 
Various cases are discussed according to the stability and di- 
rections of subsystems. Additional details can be found at: 
http://vvv.nd.edu/-isis/tech.html. 
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