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Abstract  
For a class of second-order switched systems consisting 

of two linear time-invariant (LTI) subsystems, we show that 
the so-called conzc switching law proposed previously by the 
present authors is robust, not only in the sense that the con- 
trol law is fIezible (to be explained further), but also in the 
sense that the Lyapunov stability (resp., Lagrange stability) 
properties of the switched system are preserved in the pres- 
ence of certain kinds of vanishing perturbations (resp., non- 
vanishing perturbations). The analysis is possible since the 
conic switching laws always possess certain kinds of “quasi- 
periodic switching operations”. 

We also propose for a class of nonlinear second-order 
switched systems with time-invariant subsystems a switching 
control law which locally exponentially stabilizes the entire 
nonlinear switched system, provided that the conic switching 
law exponentially stabilizes the linearized switched systems 
(consisting of the linearization of each nonlinear subsystem). 
This switched control law is robust in the sense mentioned 
above. 

1. Introduction 
Switched systems are hybrid systems that consist of two 

or more subsystems and are controlled by switching laws. 
These switching laws may be either supervised or unsuper- 
vised, time-driven or event-driven, and may be (logically) 
constrained or unconstrained. Many real-world processes 
and systems can be modeled as switched systems, including 
chemical processes, computer controlled systems, switched 
circuits, and so forth. 

Recently, there has been increasing interest in the stabil- 
ity analysis of systems of this type (see, e.g., [l -[4], [SI-[lo]). 

erties of switched systems are very diverse. In [I] and [2], 
multiple Lyapunov functions are introduced and a result for 
the stability of a switched system is established. In [8 , Lin- 

stability analysis of switched s stems consisting of linear sub- 
systems. The LMI approach gee, e.g.,. [3] and [8]) proves to 
be a very good way to determine su cient conditions for the 
stability of switched systems with affine subsystems. Other 
related topics can be found in the survey paper [4] and the 
references therein. 

Another important issue is the synthesis problem on how 
to  derive stabilizing switching laws. Thus far, such results 
are quite rare, especially for high-order switched systems. In 
[8], a “region partition” procedure is mentioned, which is rel- 
evant in this regard. Actually, this problem was formulated 
in [8] as an LMI problem. The partitioning is possible if a 
solution to the LMI problem can be obtained. In many cases, 
however, the LMI problem turns out to  be quite complicated 
and the existence of a solution can not be guaranteed. In [9], 
conic switching laws were proposed to study second-order 

’Supported in part by a Center of Applied Mathematics Fel- 
lowship, University of Notre Dame. 

*Corresponding author. Supported in part by an Alexander 
von Humboldt Foundation Senior Research Award, Institut fur 
Nachrichtentechnik, Ruhr-Universitat Bochum, Germany. 

The methodologies used in studying the qu a itative prop- 

ear Matrix Inequality (LMI) problems are formulated 1 or the 

linear time-invariant switched systems, and for switched sys- 
tems whose subsystems have unstable foci, both necessary 
and sufficient conditions for stabilizability were established. 
This method can also be extended to  study switched systems 
consisting of LTI subsystems not necessarily with foci (see, 
[lo]). We point out that  by following the procedure in [SI, 
it can be shown that for a given second-order switched sys- 
tem consisting of two linear time-invariant subsystems with 
unstable foci, the system still may or may not be stabiliz- 
able if the LMI problem has no solution. This reinforces the 
fact that the approach involving LMI yields only sufficient 
conditions. Clearly, necessary and sufficient conditions for 
second order LTI switched systems have advantages over the 
existing results in the literature. 

In the present paper, we study the robustness properties 
of the conic switchin control laws. For LTI switched sys- 
tems, we know from [ j  (refer also to  Section 2) that the conic 
switching control laws rely heavily on the switching informa- 
tion at  the boundaries of certain conic regions. It has not 
been shown rigorously whether conic control laws can still 
stabilize an entire switched system if the switching bound- 
aries are not precisely reached when switching occurs. Also 
not answered is the question whether or not the stabilizing 
properties will be preserved in the presence of perturbations, 
either vanishing or nonvanishing. The answers to the above 
questions are affirmative and are given below. We show in 
Section 3 that  for LTI switched systems the conic switching 
laws are endowed with a certain kind of robustness property, 
either in the sense that these event-driven control laws have 
certain flexibility on switching regions, or in the presence of 
vanishing/nonvanishing perturbations, or a combination of 
both. 

In addition to  the above, in a more interesting problem 
we ask whether or not we can determine conic switching laws 
for nonlinear switched systems and whether or not the conic 
switching laws are still robust. We will show that the answer 
to this question is also affirmative. For a class of second-order 
time-invariant nonlinear switched systems whose linearized 
subsystems have unstable foci, we propose a conic switch- 
ing law in Section 4 and show that this switching law not 
only locally stabilizes the entire system, but also possesses 
robustness properties similar to those discussed in Section 3. 

To demonstrate our results, we present some numerical 
examples along with simulations in Section 5. 

For clarity of presentation, we will primarily address in 
the present paper switched systems consisting of two sub- 
systems. We point out, however, that similar results can 
also be established for systems consisting of more than two 
subsystems. 

Due to space limitations, all proofs are omitted. Read- 
ers interested in such technical details, should refer to the 
following web site: 

http://uuv.nd.edu/-bhul/papers.html 

2. Conic Switching Laws for LTI 
Switched Systems 

In the interests of completeness and clarity, we summa- 
rize in the present section the conic switching laws proposed 
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in [9]. For simplicity, we consider here only second-order 
switched systems consisting of two LTI subsystems with foci, 
even though the method is also applicable to the case of sev- 
eral subsystems that are not necessarily with foci. As in 
[lo], we say that a subsystem is of clockwise (counter- 
clockwise) direction if starting from any nonzero initial 
condition in the phase plane its trajectory is a spiral around 
the origin in the clockwise (counterclockwise) direction. 

Consider two switched systems, 

k ( t )  = A i ~ ( t ) ,  k ( t )  = Azz( t ) ,  (2.1) 

whose subsystems are both assumed to have unstable foci. 
Let z = ( 2 1 , ~ ~ ) ~  be a nonzero point in the W2 plane, and 
denote f i ( z )  = Alz = ( u I , u ~ ) ~ ,  f i ( z )  = A2z = ( ~ 3 , a 4 ) ~ .  

Ex, Fig. 1 The angle 0;. 

We view z, f1 and f 2  as vectors in W2 and define the an- 
gle & ,  i = 1 , 2  to be the angle between 3: and f i  mea- 
sured counterclockwise with respect to 3: (& is confined to 
- A  5 Oi < A) .  Thus, Bi is positive (negative) if f;, as a 
vector, is to the counterclockwise (clockwise) side of x (see 
Fig. 1). Also as in [9], we define the regions 

Clearly, the interior of Ei, (E;,,) is the set of all points in the 
W2 plane where the trajectory of the ith subsystem would be 
driven closer to (farther from) the origin if the subsystem 
evolves for sufficiently small amount of time starting from 
the point. 

To design stabilizing switching control laws, we identify 
the following two different cases. 

V V 
01 

- 
)U 

(0) @) 

Fig. 2 (a) Figure for Case 1. (b) Figure for Case 2. 

Case 1. Two Subsystems of the Same  Direction 
Without loss of generality, we assume that both subsys- 

tems of (2.1) are of clockwise direction. 
We now consider a switching law that asymptotically sta- 

bilizes the switched system. In other words, with our switch- 
ing law, we desire to drive the trajectory closer and closer 
to the origin, i.e., Ilz(t)ll2 + 0 as t 3 00. It is intuitive 
that we may want to try to associate with each point z E W2 
a subsystem such that the absolute value of angle B of the 
subsystem is greater than 101 of another subsystem (Fig.2 (a) 
shows the case 1011 2 l&l). This basic idea is formalized in 
the following. 

We define the following conic regions: 

R i  = Els nE2,,, R2 = E l ,  n E2=, 
Q3 

0 5  

026 

= EIS n Ez, n ( 2 1 U z a 3  - ala4 5 0 } ,  

El,, r) Ez,, 0 {Z)azas  - ala4 I 0 } ,  
Elu n Ez, n { z I u ~ u ~  - a l a 4  2 0). 

R4 = El, n E2, n { Z I U ~ U ~  - ala4 2 o}, 
= 
= 

It can be shown that in RI ,  0 3 ,  0 5  we have 101 1 2 1821 while 
in Rz, 0 4 ,  R6, 101 5 1021. Using the basic idea described 

Conic switching law: switch to subsystem 1 whenever the 
system state enters 0 1 ,  R3, 0 5  and switch to subsystem 2 
whenever the system state enters a2, 0 4 ,  0 6 .  

The advantage of the conic switching law is shown in the 
following theorem which concerns the stabilizability of the 
switched system. Note that this result constitutes a nec- 
essary and sufficient condition as opposed to other results 
given in the literature. 

Theorem 2.1. Let 11 be a ray that goes through the origin. 
Let z o  # 0 be on 11. Let z* be the point on 11 where the tra- 
jectory intersects 11 for the first time after leaving zo, when 
the switched system evolves according to the conic switch- 
ing law. The switched system (2.1) with subsystems of the 
same direction is asymptotically stabilizable if and only if 
11zf112 < 1)zo112 is realized by the conic switching law. 0 

Case 2. Two Subsystems of Opposite Directions 
Assume that subsystem 1 is of clockwise direction while 

subsystem 2 is of counterclockwise direction. 
The basic idea for determining an asymptotically stabi- 

lizing switching law is motivated by the following. Observe 
that in any conic region where 101 I + 102 I 2 'IF (see Fig.3 (b)), 
the following trajectory will be bounded, where the trajec- 
tory starts from zo in the conic region and evolves following 
subsystem 1 and then switches to another subsystem upon 
intersecting the boundaries of the conic region. This basic 
idea is formalized below. 

We introduce the following conic regions: 

above, we obtain t b e conic switching law proposed in [9]. 

o1 = E ~ ,  n E ~ , ,  oz = El,, n 

0 4  = Els n E2, n {zla~m - a l a 4  I 0}, 
R5 = El,, n Ez, n ( z l a z a 3  - a l a 4  1 O}, 

0 3  = E18 n Eau n ( ~ 1 ~ 2 ~ 3  - 0104 2 0}, 

0 6  = El,, f l  E28 fl (z1aza3 - a l a 4  5 0). 

The next result concerns the stabilizability of the 
switched system. 

Theorem 2.2. The switched system (2.1) with two subsys- 
tems of opposite directions is asymptoticall stabilizable if 
and only if I n t ( R 1 )  U 1 7 4 0 3 )  U I n t ( R 5 )  # where Int(S-2) 
denotes the interior of set R. 0 

Conic switching law: first, by following subsystem 1, force 
the trajectory into the interior of one of the conic regions 
0 1 ,  R3, &(there must be one available), and then switch 
to another subsystem upon intersecting the boundary of the 
region so as to keep the trajectory inside the conic region. 

3. Robustness Analysis of Conic Switch- 
ing Laws for LTI Switched Systems 

In the present section we investigate the robustness prob- 
lem of the previous proposed switching control law for LTI 
switched systems. We focus our attention on switched sys- 
tems consisting of two subsystems of opposite directions. 
Similar arguments can be applied to switched systems con- 
sisting of two subsystems of the same directions. 

We call the conic regions in Section 2, RI ,  523, 0 5 ,  safe 
regions, since the existence of the interior of such regions 
guarantees the existence of a stabilizing switching control 
law. 

The reason that the conic switching law applies lies in 
the fact that there exists a safe region R (see Fig. 3) such 
that for every point X I  E 11 C 80, by following an appropri- 
ate subsystem (for example, we assume subsystem A1 in the 
subsequent discussion), the trajectory will intersect another 
boundary at 1 2  E 12 C 8R; then switch to another subsys- 
tem A2 until it intersects 11 again at  2 3  E 11. From [SI, we 
know that if there exists a switching control law which stabi- 
lizes the entire switched system then the following condition 
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is satisfied: z 3  = qzl  for some constant 0 < q < 1. From 
this, we know that if such a switching control law exists, it 
exponentially stabilizes the entire switched system. 

x1 
Fig. 3 Switching happens on the boundary 

of the safe region R: 11 and I z .  
In the present section, we first study switched 

described by 

k ( t )  = A;z( t ) ,  i = 1,2 ,  

systems 

(3.1) 

where A1 and AZ are of opposite directions. Without loss 
of generality, we assume the following conic switching law: 
for any zo  E Rz, subsystem A2 is first activated until the 
trajectory intersects 1 1 ,  and then proceeds following the conic 
switching law described above. 

Before going further, we introduce three lemmas. These 
preliminary results are frequently resorted to in the subse- 
quent qualitative analysis. 

Lemma 3.1. Let k ( t )  = Az( t )  be a LTI system with focus, . .  

where A = 1 :p t. 1. The solution with z(to) = zo # 0 

has the following properties: If a < 0 and ,f3 > 0, then 
the solution z(t)  = eA(t-tO)zo is a logarithmic spiral that 
converges to the origin clockwise; If LY < 0 and p < 0, then 
the solution z(t) = eA(t-tO)zO is a logarithmic spiral that 
converges to the origin counterclockwise; If a > 0 and > 0, 
then the solution z( t )  = eA(t-*o)zo is a logarithmic spiral 
that diverges to 00 clockwise; If a > 0 and p < 0, then 
the solution z( t )  = eA('-'0)z0 is a logarithmic spiral that 
diverges to m counterclockwise. 0 

Lemma 3.2. Consider an autonomous system 

k ( t )  = Az( t )  + g(z( t ) )  (3.2) 

where g E C, i.e., g is continuous, and g(0 )  = 0. For an initial 
value %(to)  = zo # 0, Iet T > 0 denote the time required for 
the solution of system k ( t )  = Az( t )  to move between two 
rays I1 and 12 once (see, e.g., Fig. 1) and let T + AT > 0 
denote the time period the solution of k ( t )  = Az( t )  + g ( z ( t  ) 
takes to move between two rays 11 and 12 once (if possible]. 
We have the following properties: 

(i) There exists a constant vo > 0 such that when 0 < 
Y < YO, then for every E 2 0, whenever 11g(z)11 5 ~ 1 1 ~ 1 1  + 
e is satisfied, there exists a constant K > 0 so that when 
the trajectory is outside the disc BK,, it proceeds alon a 
spiral-like curve similarly to the solution of k( t )  = Azrt).  
Furthermore, if E 5 1, for a trajectory outside the disc BK& 
there exist two constants C1, C2 > 0 (independent of v) such 
that lAT( 5 C1v + CzG. 

= 0, then there exists a constant 
TO > 0 such that when 0 < T < TO,  each solution starting 
inside B, e {z E R2 : llzll < T }  goes towards the outside of 
B, (or converges to 0) along a spiral-like curve similar to the 

0 

Lemma 3.3. For systems described by k ( t )  = A z ( t )  + 
g ( z ( t ) )  and initial condition ( t o , z o ) ,  if 11g(z)11 5 vllzll + E ,  
then it is true that 

(ii) If lim,+o 

solution of k ( t )  = Az(t) .  

3.1. Robustness for switchings only 
Robustness Question 1: In view of the previous discus- 
sion, it is required that switchings occur exactly at  times 
when a trajectory intersects 11 or Z2. Can this requirement be 
made more flexible? This gives rise to the following question: 
are there any marginal conic regions RI and R2 that include 
11 and 1 2 ,  respectively (see Fig. 4), so that any switching 
happening inside these two regions will lead to exponential 
stability? 

X; 
Fig. 4 Switching occur within the conic regions 

RI and R2. 
It  is clear from Fig. 4 that such marginal regions are 

characterized by angles B;j > 0, i, j = 1,2 ,  and in fact for 

4 2 , O  < T < m}. We need to establish the existence of O i j  
that guarantees the robustness of the switching control law. 

To answer the above questions, for solutions beginning 
from any initial condition (to, zo), we assume that the trajec- 
tory follows subsystem A2 for ti - t o  time until it switches 
at xi = eAZ(tl-to)zo E R I .  Then it follows subsystem A1 
for t2 - tl time until it switches at  xi = eA1( tz - t l ) z ;  E R?. 
Next, it switches back to subsystem A2 for t3 - t i  time until 
it arrives at  z$ = eAz(t3-tZ)z; E R I ,  and so forth. 

Assume that from any point z1 E Z I ,  it takes TI time 
to arrive at 2 2  = eAIT1zl E 12 while following subsystem 
A and it takes T2 time to return to 11 at  2 3  = eAZTZz2 = 
eAZTZeAiT1z1 E I I .  Clearly, TI and T2 are independent of 
the choice of 2 1 .  As before, we assume that z 3  = qz l  for 
some constant 0 < q < 1. That is, eAZTZeAIT1zl  = qz l ,  
which implies that q is an eigenvalue of matrix eAzT2eAlT1.  

It is also clear that there exist quantities At,, At21, At22, 
At3, which might be negative, and points 5 2 1 , 6 2 2  E 12 and 
z 1 , 2 3  E 11 such that z1 = eAlAtlz; E Zl, z; = eAiAtz1z21, 
z22 = eAzAtzz x 2  E 12,  2 3  = eAz(Tz+At3)z22 E 11, 213 = 
eAZAt3x3 ,  where t 2  - t i  = At1 + T I  + At, , ,  t3 - t z  = 
At22 + TZ + At3. Denoting 0 = (811,012,021,022) (see Fig. 
4), we have the following 

Observation: There exists a nonnegative continuous func- 
tion c(e) 2 0 satisfying lime+o c(0) = c(0) = 0 such that 

i = 1,2,  R, = {z E w21z = (Tcose,Tsine)T,-eil < e < 

A 

max(lAt11, ( A t ~ l ,  (At221, lAt3l) 5 c(0). (3.3) 
This observation follows intuitively from the idea given in 
the proof of Lemma 3.2. 

Now due to the quasi-periodicity of the switching law 
(i.e., it switches back and forth for almost the same periods 
of time 2'1 and T2, respectively), it suffices to show that there 
exist switching regions RI, RZ (i.e., 811, 012, 8?1,.021 i 0 )  
such that no matter when the switchings occur within regions 
RI and R2, it is true that 

11zL11 5 q111z:Il with a constant 0 < q1 < 1. (3.4) 

To see this, we compute 
z$ = e A z ( t 3 - t z ) e A ~ ( t z - t i ) ~ ;  
= eAz(Atzz+Tz+Ats)eAi (At i+Ti+Atz i )  
- e A z ( A t z z + A t 3 ) e A z T z e A ~ ~ i  e A i ( A t i + A t z i )  
- - e A ~ ( A t z z + A t 3 ) e A ~ T z e A ~ T i  
+ e A z ( A t ~ ~ + A t 3 ) e A ~ T ~ e A ~ T l  ( , A l ( A t i + A t z ~ )  - I)~. 
- - eAz ( A t z z + A h )  e A ~ T ~  eAi TI z1 
+ e A ~ ( A t ~ ~ + A t 3 ) e A ~ T ~ e A ~ T l  

2 1  

z 1  - 

( I  - eAIAt l  >X. 
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+ eAz(Atzz+Ats)eA~T2eA1T1 (eA1(At1+At21) - 1) xi - - qeAz(Atzz+At~)eAiAti 2 1  ' 
+ , A z ( A ~ z z + A ~ ~ ) ~ A z T z ~ A ~ T ~  (1 - e A i A ' - ~  

+eAz(Atzz+At3)eA2Tz eAITl ( e A l  (At1 +AtZ1) - I)~. , )xi 
where I denotes the identity matrix. It is now not difficult 
to see that there exists E > 0 such that when 
max{(Atll, (Atz l I ,  (AtzzI, lAt3(}  5 E ,  we have 
1 l ~ A z ( A t z 2 + A t ~ ) e ~ ~ ~ ~ ~  11 5 1 + 2, 
~ ~ , A Z ( A ~ Z Z + A ~ ~ ) ~ A Z T Z ~ A ~ T ~  (1 - e A i A t i  

Therefore, Ilzill 5 (q+ 2 + 2 + ~ ) ~ ~ z ~ ~ ~  = y l l z ~ l l .  If 
we let q1 = *, then since 0 < q1 < 1, relation (3.4) holds. 

Now by the last expression of zb and the observation 
above we know that there exist constants 0:' , &., e&, e& > 
0 such that whenever 0 5 e;, I e$, i ,  j = 1,2,  c(0)  5 E .  

Therefore, (3.4) holds. 
By induction, whenever switchings occur within these 

conic regions, we always have that llzhk+llj 5 ~ ] l z 4 k - l l ] ,  

for k E N = {1,2;. .} .  Therefore, zkk+' + 0 as k + oc). 
Since the trajectory between zik-' and zik+' for k 2 0 
is uniformly bounded by llz;k-lll (denote zL1 = 20) and 
since the traveling time periods are uniformly bounded as 
well (for example, we can pick a bound like max{To,2(T1 + 
2'2)) for small &j, i , j  = 1,2), we conclude that IIz(t)ll 5 
c ~ ( ~ ) ~ - ~ ' J l l z ~ l l  for some constant CO > 0 (which depends 
on 6;j, i ,  j = 1,2).  Therefore the entire switched system is 
exponentially stable. This proves that the conic switching 

0 

)I1 5 9, 
jl,Az(Atzz+At~),AzTz~AiTi ( e A  i (At1 + A h )  - 411 I ?. 

A 

law is robust in the sense of Question 1. 

Fig. 5 Switching happens inside the strip regions 
R3 and R4. 

Robustness Question 2: If switchings happen inside 
the strip regions R3 and R4 (see Fig. 5 ) ,  the best we can 
hope for is that the switching control law would drive the 
trajectory to the vicinity of the origin exponentially, but not 
to the origin. Since once the trajectory enters into the dark 
shaded region (see Fig. 5 ) ,  either subsystems can be chosen, 
and clearly the arbitrary choice of switching may force the 
trajectory to go outwards. 

The reason that we can force the trajectory to move to 
the vicinity of the origin is simple. From the answer to Ques- 
tion 1, we know that there exists Bij  > 0, i ,  j = 1,2,  such that 
when switching happens inside conic regions R1 and R z ,  the 
trajectory converges to the origin exponentially. Now pick 
dij > 0, i , j  = 1,2, sufficiently small (the choice depends on 
how close to the origin we require). From Fig. 5, we know 
that there exist intersecting points E, F, G ,  H .  Clearly, 
the trajectory will finally move into the polygonal region 
O E F G H  since the strips beyond this region are all inside 

0 
Once the trajectory enters the polygon O E F G H ,  it may 

leave this region if we still employ the strip switching control 
law. For this reason, the robustness property of the first case 
is of much greater interest to us. In the following, we will 
mainly discuss the robustness problem of the first kind. 
3.2. Robustness for perturbations only 

the conic regions RI and R z ,  respectively. 

In this subsection, we will study the stability properties 

of the switched systems in the presence of perturbations, 
including both vanishing and nonvanishing perturbations. 

Theorem 3.1. For the switched system described by 

k( t )  = Aiz( t ) ,  i = 1 ,2  (3.5) 
where the A', Az have unstable foci with opposite directions, 
suppose that there exists the aforementioned conic switch- 
ing law that makes (3.9) exponentially stable. Then for the 
perturbed switched system described by 

i ( t )  = Aiz(t)  + g ; ( z ( t ) ) ,  i = 1 , 2  (3.6) 

and the switching law given below, we have: 
Switching Law (event-driven): for any $0 E W2, follow A2 
until the trajectory intersects 11 on 21 at t l ,  then alternatively 
switch on subsystems 1 and 2 when the trajectory crosses I 1  
and 12, respectively. 
We have the following conclusion: 

(a) There exists a constant vo > 0 such that whenever 
0 < v < vo,.if 11g;(z)II I vllzll (vanishing perturbations) is 
satisfied for z = 1,2,  then the switchin law stabilizes expo- 
nentially the entire switching system t3.9) with the follow- 
ing robust property: there exist two conic regions in which 
switchings are allowed as discussed in Subsection 3.1. 

(b There exists a constant 0 < EO I 1, such that when- 
ever ig;(z) l l  < E < eo (nonvanishing perturbations), the 
switching law will exponentially drive the trajectory to an 
open disc of radius K I E  for some constant K1 > 0. 

For g ; ( z ) ,  as in (a) and (b), the switching law is robust 
in the sense of Robustness Question 1 in Subsection 3.1. 0 

Remark  3.1. For more general perturbations satisfying 
llgi.(z)!l I vllzll + E ,  we can establish similar results for the 

0 

Remark 3.2. Another switching law which is event-driven 
plus time-driven might also be worth mentioning here. This 
law is stated as follows: for any zo E W2, follow Az until the 
trajectory intersects 11, and then follow alternatively A1 and 
Az for time periods 2'1 and 2'2, respectively (Ti and Tz are 
known a priori from the precise conic switching law). Un- 
fortunately, this switching law does not stabilize the entire 
switched system because of the occurrence of accumulation of 
errors in switchings. Example 5.3 in Section 5 demonstrates 
this phenomenon, which also implies that a time-driven con- 
trol law may eventually cause trouble to the entire switched 
system due to the accumulation of switching inaccuracy. 

switching law as was stated in Theorem 3.1. 

4. Stabilizing Switching Control Law for 
Nonlinear Switched Systems 

In this section, we study the stabilization problem of non- 
linear switched systems. To accomplish this, we will use 
linearization. The problem of interest is that if each subsys- 
tem is locally exponentially unstable, then is it still possible 
to determine switching laws to stabilize the entire switched 
system? If affirmative, are these laws robust in the sense 
discussed in Section 3? In the present section, we study only 
local exponential stability. 

As before, we will study only the following sample prob- 
lem. For the remaining cases, similar approaches may be 
pursued. Consider the second-order nonlinear switched sys- 
tem described by 

& ( t )  = f ; ( z ( t ) )  = A;z ( t )  + g ; ( z ( t ) ) ,  i = 1,2,  (4.1) 

where fi E C', i.e., f; is continuously differentiable, f i ( 0 )  = 0 
and Ai is the Jacobian of f i  at the origin, i.e., [ V ] = = o .  
Clearly, gi E C', g;(O) = 0 and lim,-+o 

Lemma 4.1. For the system described by ?( t )  = A z ( t )  + 
g(z ( t ) ) ,  where g E C' and lim,,o = 0, for every E > 0 
there exists 6 = 6 ( c )  > 0 such that for any initial condition 

= 0. 
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( t o , z o )  and constant T > 0, whenever llzoll 5 8e-(llAll+')T 
holds for some constant 8 5 6, it is true for t E [to,  t o  + T ]  

0 
Using Lemma 4.1, we can obtain the following result. 

Theorem 4.1. For the switched system described by (4.1), 
where A1 and A2 have unstable foci with opposite directions, 
suppose that there exists a conic switching law that renders 
the linearized system, X(t )  = A i z ( t ) ,  i = 1 , 2  exponentially 
stable. Then the switching law proposed in Theorem 3.1 will 
locally exponentially stabilize the nonlinear switched system 
(4.1). Furthermore, the robustness properties in the sense of 

0 

that Il?(t)ll 5 e ( ~ ~ A ~ ~ + ' ) * ~ ~ z o ~ ~  5 8. 

Theorem 3.1 and Remark 3.1 are preserved. 

5. Numerical Examples and Simulations 
Example 5.1. Consider the switched system consisting of 
two unstable subsystems with foci and of opposite directions, 
given by 

After some calculations, we can determine that the interior 
of Rg is nonempty and R5 is bounded by the two lines 11 : 
xz = 0.9087~1 with angle 42.261' and /Z : xz = -20.9087~1 
with angle 92.738O. The trajectory of the system under the 
conic switching law is shown in Fig. 6(a). 

We determine that 11~311 = g ) ( z 1 ( 1 ,  q = 0.786, 2'1 = 0.293, 
and TZ = 0.2269. Now if we let 

max{lAt l l ,  IAtzlI, IAtzzl, lAt3l) L 0.0022, 

we find that I)eA2(At22+At3))1 _< 1.0244 5 1.0340 = 1 + 
h, lleAz(Atzz+At3),AzTzeAiTi (1 - eAiAt i ) ) I  5 0.0263 5 
0.0267 < k~ ( leAz(Atzz+At3) ,AzTz .a lT ,  (,Ai(Ati+Atzi) - 
I)ll 5 0.0526 5 0.0535 = y. Corresponding to the above 
result, we find that if we choose conic regions R I  and Rz 
with 811 = 812 = 821 = OZz = 0.2269', then according to the 
discussion in Subsection 3.1, the switched system is robust 
with respect to variations in switchings. The trajectory of 
the system in this case is shown in Fig. 6(b). 

&, 

- 8 '  

(4 (b) (c) 
Fig. 6 Trajectories for Example 5.1. 

Since the estimates in Subsection 3.1 are very conser- 
vative, we may try larger disturbances than the one given 
above. If we choose conic regions RI and RZ with 811 = 
812 = 821 = 8 2 2  = 3.0°, then we will find that the system is 
still exponentially stable under the conic switching law. The 
trajectory of the system is shown in Fig. 6 ( c ) .  

Example 5.2. Consider the nonlinear switched system 
whose linearizations are the switched systems in Example 
5.1. Subsystems 1, 2 are described, respectively, by 

= 521 - 8x2 + X; { Xz = -321 -k Sz 4- S z ( 2 :  -I- 2;) { Xz = 421 - 322 4- Z i z z  
In the above two subsystems, the nonlinear terms can be 
viewed as vanishing perturbations to their corresponding 
linearized systems. Using the switching law proposed in 
Subsection 3.2, we find that the switched system is locally 
exponentially stable (Fig. 7 (a) shows the trajectory starting 
from SO = [0.05, 0.08IT). 

X i  = S i  -I- 3x2 + Xi(2: -k 2;) 

Example 5.3. To show that the switching law stated in 
Remark 3.2 in Section 3 may not exponentially stabilize a 
switched system, we consider the same nonlinear switched 
system as in Example 5.2. Fig. 7 (b) shows the trajectory 
starting from SO = (0.02, 0.04]*. We find that the switched 
system is not locally exponentially stable. 

(4 (b) (c) 
Fig. 7 Trajectories for Examples 5.2-5.4. 

Example 5.4. Consider the nonlinear switched system 
whose subsystems are subsystems in Example 5.1 with 

X i  = 2 1  + 3x2 + 0.0071 
Xz = -321 + 1 2  + 0.0071 ' nonvanishing perturbations, 

ing the switching law proposed in Subsection 3.2, we can 
determine that the system trajectory can be driven exponen- 
tially into the open disc of radius 0.0198 (Fig. 7 (c) shows 
the trajectory starting from SO = [0.05, 0.08IT). 
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