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Abstract 
Efficient, established techniques exist for enforcing sys- 
tems of linear inequalities on the state vectors of dis- 
crete event systems modeled as Petri nets. This paper 
presents methods for extending the convenience of these 
state-based techniques to supervisory constraints that 
are expressed in terms of allowable plant events rather 
than just allowable plant states. Two interpretations of 
event-based constraints are described. The direct inter- 
pretation assumes that the controller will actively dis- 
able events that would directly violate the constraints. 
The indirect interpretation indicates that the controller 
should prevent those states that could lead to the vi- 
olation of the constraints. Methods for automatically 
synthesizing supervisors that use either of these inter- 
pretations are presented here along with mathematical 
results for integrating these methods with established 
techniques for handling uncontrollable and unobserv- 
able plant transitions. The technique is illustrated with 
a process control example. 

1 Introduction 
Established techniques [I, 71 exist for enforcing linear 
inequalities on the state vectors (or marking behav- 
ior) of Petri nets [SI. These techniques yield efficiently 
computed supervisors and incorporate methods for han- 
dling uncontrollable or unobservable transitions [3-51. 
The constraints themselves have the form 

lTp,, 5 b 
where ccp E Zn,p,, 2 0 is the marking vector of the 
plant, I E Z", b E Z, and Z is the set of integers. 
Supervisory control goals may involve the firing vector 
of the Petri net as well as or opposed to the places. For 
example one might need to insure that two transitions 
do not fire simultaneously or that a certain transition is 
never allowed to fire when a certain place holds a token. 
There are two ways that constraints like these may be 
viewed. For the constraint 

c L ( + q j 5 1  (2) 
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where is an element of the Petri net's marking vec- 
tor and qj is an element of its firing vector, do we mean 
that transition j should be disabled whenever place i 
contains a token, or do we mean that all plant states 
that would allow transition j to be enabled are forbid- 
den whenever place i contains a token? The answer to 
this question lies in the particulars of a given plant and 
its operation. Both means of enforcing the constraint 
can be useful for different problems. 
Uncontrollable and unobservable transitions are han- 
dled by transforming inadmissible constraints into ad- 
missible constraints [5], this concept is reviewed in sec- 
tion 2. The primary contribution of this paper is the ex- 
tension of these results for synthesising controllers that 
enforce constraints on both the marking and the fir- 
ing vector. Section 3 describes rules for enforcing these 
constraints using the Udirectn interpretation, i.e., tran- 
sitions are explicitly disabled in order to satisfy the in- 
equality. Algebraic schemes for handling the "indirect" 
interpretation of firing vector constraints were proposed 
in [7]. A new approach is presented in section 4 that 
uses the concept of uncontrollable transitions to force 
a correct interpretation of each constraint, thus avoid- 
ing the enumeration of separate cases that appeared in 
[7]. Section 5 illustrates the direct approach through a 
process control example involving the management of 
fluid levels in three tanks. Concluding remarks appear 
in section 6. 

2 Admissible and Inadmissible Constraints 

Given a constraint, IT& 5 b, a supervisor must work to 
insure that the constraint is never violated directly and 
may never be violated through the firing of uncontrol- 
lable transitions or through incomplete knowledge due 
to unobservable transitions. In order to avoid expensive 
online searches by the supervisor through the uncon- 
trollably reachable markings of the plant, the approach 
taken in [4,5] is to actually modify the constraints them- 
selves such that the new constraints account for un- 
controllability and unobservability. The following def- 
initions are useful in understanding the motivation for 
the transformation of constraints. Unobservable tran- 
sitions are also assumed to be uncontrollable. See [5] 
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for greater detail on admissible and inadmissible con- 
straints and the proofs for the items below. 
Definition 1. An admissible marking p,, is a mark- 
ing such that 

1. lTp,, 5 b, and 

2. For all markings p; reachable from j+ through 
the firing of uncontrollable transitions, Lpb 5 b. 

If either of these conditions is not met, then the marking 
is inadmissible. 
Definition 2. Given a plant with initial marking 
b ( 0 )  = ho, an admissible constraint satisfies two 
conditions: 

2. For all p,,(N) reachable from p, , (O)  through 
any path of consecutively reachable markings, 
h ( 0 )  + b(l) + -.-  + h ( N ) ,  where 

lTp,,(i) 5 b,forl 5 i 5 N, 

h ( N )  is an admissible marking. 

If a constraint does not satisfy both of these conditions, 
then it is inadmissible. 
Proposition 3. General constraint admissibility. 
A constraint on the marking and/or firing behavior of 
a Petri net is admissible iff 

1. The initial conditions of the plant satisfy the con- 
straint, and 

2. There exists a maximally permissive controller 
(constructed under the assumption that all transi- 
tions are controllable) that enforces the constraint 
and does not inhibit any uncontrollable transi- 
tions that would otherwise be enabled. 

Corollary 4. Place-constraint admissibility. The 
single vector constraint lTb 5 b is admissible iff the 
controller with incidence matrix D, = -lTDp and ini- 
tial marking pCo = b - l*p,,o 2 0 will never attempt to 
disable an uncontrollable transition that would other- 
wise be enabled. 
Corollary 5. Redundant place-constraints are 
admissible. Given the single vector constraint 

lTh 5 b 

on the marking of a plant with incidence matrix Dp 
and initial marking b o ,  if there exits a place invariant 
z such that for all reachable p,,, zTp,, = x T y o  im- 
plies that lTp,, 5 b is also true, then the constraint is 
admissible. 
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3 Direct Realization of Firing Vector 
Constraints 

Assume that the plant must satisfy constraint (2). 
The direct interpretation of this constraint implies that 
transition tj cannot fire if place pi is marked, and, of 
course, place i can never contain more than one to- 
ken. To bring this constraint to a form that contains 
elements of the marking vector only, the plant is trans- 
formed as follows. Transition j is replaced by two tran- 
sitions and a place between them, as shown in Figure 1. 
This transformation is artificial and will not affect the 
Petri net model of the process. Its sole purpose is to 
introduce the place pj', which records the firing of the 
transition tj  . After the controller has been computed 
the plant will be transformed back to its original form. 

Figure 1: Transformation of a Transition. 

The marking p,' of pj' replaces q j  in constraint (2), 
which becomes 

The constraint now contains only p's and a controller 
can now be computed. After the controller structure 
is computed, the two transitions and the place of the 
transformation collapse to the original transition thus 
restoring the original form of the plant while maintain- 
ing the enforcement of the new constraint. The same 
transformation is done to all the transitions that appear 
in the constraints. Constraints that contain only q's, 
i.e., constraints on allowable firing vectors with no con- 
cern for specific markings, are treated the same. Unlike 
standard invariant based controllers, these controllers 
may contain self loops to the transitions indicated in 
the constraints. Separate incidence matrices, D$ and 
D,, must be maintained for input and output halves 
of the controller. 
Formally, given a plant (Dp, h o )  and constraint 

H: +pj' 5 1 (3) 

l T p , , + f T 4 1 b l f  20 (4) 

D$ = D$ + max(0, DTc - D i )  (5) 
D; = max(Dl,,Df,) (6) 

pco = b - l T h 0  (7) 

(8) 

the invariant based controller (D, = D$ - D; , p,o) is 
given by 

where 
D+ = D -  - f c  fc - f T  

and 
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where 
D1, = -lTDp (11) 

and the notation max(a, b)  refers to a vector con- 
structed from the maximum elements in an element- 
by-element comparison of the two argument vectors. 
The remainder of this subsection provides an analysis 
of the admissibility of firing vector constraints using the 
direct interpretation. Similar to Corollary 4, the follow- 
ing corollary defines when a constraint on the firing vec- 
tor of a Petri net is admissible. This corollary assumes 
a more general definition of admissibility that indicates 
a constraint is admissible if its direct, optimal enforce- 
ment would not involve improper interaction with the 
uncontrollable/unobservable transitions of the net. 
Corollary 6. Transition-constraint admissibility. 
The single vector constraint f T q  5 b, where f, b 2 0, 
is admissible under direct transition-constraint imple- 
mentation on a plant with controllable transitions T,, 
if V j  s.t. f j  # 0, t j  E T,. 
Proof. The proof is by Proposition 3 on general con- 
straint controllability. The direct transition-constraint 
enforcement method for the constraint pq 5 b is max- 
imally permissive since it is constructed as an invariant 
based controller. The initial marking of the controller 
p , ~  = b is valid if b 2 0. The incidence matrix of the 
controller D: = D; = p contains input arcs to all 
transitions j such that f ,  # 0. If all of these transitions 
are controllable, then the controller draws no arcs to 
uncontrollable transitions and the constraint is admis- 
sible. U 
The admissibility of combined marking/firing con- 
straints, I T &  + Fq 5 b, will be discussed for the situ- 
ation in which the constraints are uncoupled. 
Definition 7. A constraint of the form (4), where f 2 
0, is called uncoupled if 

ZnTf = 0  

where Tl is the set of transitions that are connected to 
the controller induced by the lT& portion of the con- 
straint (transitions t j  such that & ( j )  # 0 in equation 
(ll)), and T’ is the set of transitions connected to the 
controller induced by the f T q  portion of the constraint 
(transitions t j  such that fj # 0). 
Constraint (4) is uncoupled if the transitions involved 
in the lT& and pq portions of the constraint are mu- 
tually exclusive. 
Proposition 8. Uncoupled place/transition con- 
straints. A vector constraint of form (4) is uncoupled 
iff 

where ei is a zero-vector with a 1 in the ith place. 
Proof. The set of plant transitions that will contain arcs 
to or from the controller is determined from the con- 
troller synthesis equations. This set is the union of the 
transitions connected by arcs induced by the lTcs, and 

V i  8.t. f i  # O,lTDpei = 0 (12) 

f T q  portions of the constraint, i.e., Tf U 3. Equation 
(8) indicates that 

and equations (9) and (10) show 

Z = {t j / lTDpej # 0) (14) 

Combining these with condition (12) implies 

The sets of transitions used by the two portions of the 
controller are mutually exclusive and the constraint is 
uncoupled according to definition 7. 
It is easy to see that if the constraints are uncoupled, 
i.e. 3 n Tf = 0, then (12) must be true by working 
backward through the development above. If (12) were 
not true, then there would exist some ti E Tf and ti E 
3, which would imply through equations (13) and (14) 
that Z n Tf # 0 and the constraints were coupled. 0 
Proposition 9. Place/transition constraint ad- 
missibility. An uncoupled vector constraint of form 
(4) is to be imposed on a plant ( D P , y o )  with un- 
controllable transitions Tu, and controllable transitions 
T,, Tu, n Tc = 0. 
if the constraints 

lTy 5 b (16) 
F q  5 lbl (17) 

are both admissible then lTy + f T q  5 b is admissible. 
Pmof. If the admissibility of constraints (16) and (17) 
imply that (4) is admissible, then the inadmissibility of 
(4) will imply that either (16) or (17) is inadmissible or 
both. For lTcs, +pq 5 b fo be inadmissible, it must lie 
outside the range of the plant’s initial conditions, or a 
maximally permissive controller that enforces the con- 
straint would attempt to inhibit an otherwise enabled 
transition in the set TUC. Because (4) is uncoupled, the 
transitions that are connected to the controller places, 
2) and q, are mutually exclusive. This means that at  
least one of the following three cases must be true for 
lTy + f r q  5 b to be inadmissible. 

The initial conditions of the plant violate the con- 
straint. 

The controller would attempt to inhibit a transi- 
tion t ,  E Tu,, where t j  E T f .  

Or the controller would attempt to inhibit an oth- 
erwise enabled transition t j  E TUC, where t j  E Z. 

Case 1: The initial state of the plant is h o .  The fir- 
ings indicated by the vector q are determined after the 
system commences its run, thus if the initial conditions 
of the plant violate constraint (4), then 

l T y o  > b 
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This condition would also indicate that the constraint 
lTy _< b is inadmissible according to Corollary 4. 
Case 2: According to the construction of the maxi- 
mally permissive controller for direct transition con- 
straints, the transitions in the set Tf are identical to 
the transitions that receive controller arcs in the con- 
straint f T q  _< lbl. If the controller attempts to inhibit 
an uncontrollable transition in this set, then the con- 
straint f T q  <_ Ibl is inadmissible according to Corollary 
6. 
Case 3: The construction of the maximally permis- 
sive controller for the constraint lTy 5 b shows that 
the transitions that receive controller arcs for this con- 
straint are identical to the set q. If the controller for 
constraint (4) attempts to disable an otherwise enabled 
transition in the set 3, then the constraint lTy _< b 
will be inadmissible according to Corollary 4. 
Thus if both lTy 5 b and f T q  <_ Ibl are admissible, 

0 then I T / +  + f T q  5 b is also admissible. 

4 Indirect Realization of Firing Vector 
Constraints 

Firing vector constraints can be realized by preventing 
the states that would allow the undesirable transition 
firing. This situation is analogous to the case when a 
transition is uncontrollable but is involved with regu- 
lar marking constraints. Illegal states are prevented in 
the presence of uncontrollable transitions by preventing 
those states which could lead, through uncontrollable 
transitions, to the explicitly forbidden states. The re- 
sults from [3-51 for handling uncontrollable transitions 
can be applied to constraints involving the firing vector 
through utilization of the graph transformations dis- 
cussed in the previous section. 
The procedure is illustrated in the example below. 

a) b) 

12 t? 

Figure 2: a) A simple net that will have a firing constraint 
enforced. b) The graph-transformed net of the 
net in Figure 2a. 

Example. For the plant of Figure 2a, we wish to enforce 
the constraint 

P2 + q3 I 1 
Because the Petri net is so simple, we can see by in- 
spection that the job can be done by enforcing the con- 
straint p2 + p3 <_ 1. But how can this new constraint 

(18) 

be generated automatically based on (18)? 
Suppose we perform the graph transformation on this 
net as shown in Figure 2b. The transformation changes 
(18) to 

If we continue to follow the procedure described in sec- 
tion 3, we would end up with a controller that directly 
enables and disables transition t 3 .  In order to  prevent 
this from occurring, we will label transition t 3  as un- 
controllable and then continue with the procedure. 
Applying a constraint transformation method that ac- 
counts for uncontrollable transitions (such as those 
found in [3-51) to (19), we obtain the following trans- 
formed constraint: 

P2 + P; I 1 (19) 

p 2 + p 3 + p L <  1 (20) 

The controller that enforces this constraint can be au- 
tomatically generated using the place invariant method 
and is shown in Figure 3a. 

al 

t? t? 

Figure 3: a) The net of Figure 2b with its Petri net con- 
troller. b) The untransformed net of Figure 2a 
with its Petri net Controller. 

The final stage is then to collapse the controlled net 
back to the form it had before the graph transformation 
was performed. The final controlled version of the net 
is shown in Figure 3b. Transition t 3  will not fire when 
place f i  contains a token because the controller only 
allows one token at a time in places p1 and m, which is 
the desired result. 
The procedure used in the example is summarized be- 
low. Given a constraint 

Py + f T s  <_ b 

(where 1 may be zero, indicating a constraint on the fir- 
ing vector alone,) first perform a transformation of the 
plant such that each transition specified by a nonzero 
entry in f includes a dummy place to mark its firing 
as described in section 3. The marking vector p’ is 
associated with the dummy places and the constraint 
becomes 

(22) 
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Next mark all transitions specified by nonzero entries 
in f as uncontrollable. Use established techniques [3-51 
for the handling of uncontrollable transitions to find 
an admissible constraint that enforces the inadmissible 
constraint (22) and construct a supervising controller 
for this constraint. This will have the effect of prevent- 
ing the states that could lead to (22) being violated. 
It will prevent the transitions specified by f from be- 
ing enabled such that constraint (21) could be violated. 
Finally, collapse the net back to its original form by 
removing the dummy places and extra transitions as 
described in section 3. 

5 Example: The Three Tanks Problem 
Consider a plant of three fluid-filled tanks and a pump 
that can add fluid to each of them [2,5]. Tank i drains 
at a constant rate 4. The pump can be moved to fill 
any of the three tanks. It fills tanks at a constant rate 
F. The control goal is to make sure that the fluid level 
in each of the three tanks stays within a safe boundary 
area. The fluid in tank i is not to rise above hi nor is it 
to drain below l i .  Nothing is specifically stated about 
the dynamics of the flowing fluid. The inputs coming 
into the controller are events indicating fluid levels, and 
the control output is one of three discrete commands. 
For these reasons, the problem can be handled with 
DES supervisory control. 
There are three states of interest with regard to any 
tank: 1) Tank fluid level is greater than pseudo over- 
flow, 2) Tank fluid level is OK, 3) Tank fluid level is 
less than pseudo underflow. There are four relevant 
events associated with the evolution of any given tank: 
1) Tank fluid level has raised past pseudo overflow, 2) 
Tank fluid level has lowered below pseudo overflow, 3) 
Tank fluid level has lowered below pseudo underflow, 
4) Tank fluid level has raised above pseudo underflow. 
These events are uncontrollable, they occur upon ob- 
servation of processes in the plant. There are three 
controllable events, ul, u2, and 143, associated with the 
placement of the pump. These states and events are 
combined to form the Petri net model of Figure 4. The 
meaning of each place and transition within the model 
is defined in Table 1. 
Using the base model of the system, we will synthesize 
a controller Petri net such that the control (ul, u ~ ,  or 
us) issued to the plant is equivalent to the firings of tl ,  
t 2 ,  or t3. The first step is to determine the constraints 
on the plant model. The first constraint is induced by 
the physical realities of the plant: only one pump can 
be serviced at a time. 

41+ 42 + 43 5 1 (23) 

Transitions 1, 2, and 3 are all controllable, so the direct 
enforcement (section 3) of constraint (23) is admissible 
by Corollary 6 and may be implemented. 
We need to insure that the tanks will not overflow, this 
means that we can not deliver fluid to tank i when tank 

r 7  - E -  0 -  

Tank 1 Tank 2 Tank 3 

Figure 4: A Petri net model of the relevant events and 
states for the fluid-filled tank problem. 

Controllable transitions 
tl 
t a  
t3 

t4, tar tl2 
t 5 ,  tg, t13 
t 6 ,  tlo, t14 
t7, til, tlS 

Move pump to tank 1 and fill. 
Move pump to tank 2 and fill. 
Move pump to tank 3 and fill. 

Pseudo overflow occurred. 
Pseudo overflow cleared. 
Pseudo underflow occurred. 
Pseudo underflow cleared. 

Uncontrollable transitions 

Places 
pl, p4, p7 Pseudo overflow. 
p1 , p5, pa 
p3,  p6, ps Pseudo underflow. 

Fluid level OK. 

Table 1: Explanation of transitions and places in Figure 4. 

i is experiencing pseudo overflow. 

q 1 + p 1  5 1 (24) 
42+P4 5 1 (25) 
q 3 + p 7  5 1 (26) 

Before implementing these constraints, we must first 
determine that they are admissible. This procedure 
starts by determining if each constraint is uncoupled 
(see Definition 7 and Proposition 8). 
For constraint (24), the set Tf corresponds to the q1 
portion of the constraint and TI corresponds to pl por- 
tion of the constraint. Using the rules for controller con- 
struction and/or Proposition 8 we see that Tj = {tl) 
and n Tj = 0 and the constraint 
is uncoupled. The same can be shown for constraints 
(25) and (26). Proposition 9 indicates that if the two 
constraints <_ 1 and q1 5 1 are admissible, then (24) 
is admissible. Corollary 6 shows that 41 5 1 is admis- 
sible, since the transition it effects (tl) is a controllable 
transition. Next the admissibility of p1 <_ 1 must be 
verified. 
A structural analysis of the plant indicates the presence 
of the following place invariant: 

= ( t 4 ,  ts}, thus 

Pl + P2 + P3 = 1 (27) 
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Since equation (27) is always true throughout the evo- 
lution of the plant, 5 1 is always true, which im- 
plies that p~ 5 1 is admissible according to Corollary 
5. Having determined that q1 5 1 and p1 5 1 are both 
admissible, we have satisfied both conditions in Propo- 
sition 9 and have demonstrated that constraint (24) is 
indeed admissible. The controller associated with this 
constmint will direct an arc to the uncontrollable tmnsi- 
tion t4. However Proposition 9 and Corollary 5 insure 
that this arc will only be used for observation and never 
for inhibition. A similar application of Proposition 9 
indicates that constraints (25) and (26) are also admis- 
sible. 
Finally we need to prevent underflow, which means 
that the pump must shift to the tank that has sent 
a “pseudo-underflow occurred” event. The analysis is 
omitted here, but the final constraints are 

2 q i + P t i + j 4 - 2 P 3  5 2 (28) 
2 q z - k P 3 - k k - 2 P t i  5 2 (29) 
2q3+P3++6-2P9 5 2 (30) 

The admissibility of these constraints can be verified 
using Proposition 9. A controller for enforcing the con- 
straints, (23),(24)-(26),(28)-(30), is automatically gen- 
erated using the rules for direct implementation of firing 
vector constraints (section 3). The controlled plant is 
shown in Figure 5. 

Figure 5: The plant of Figure 4 with added control struc- 
tures. 

6 Conclusions 
A wide variety of supervisory control goals can be han- 
dled by representing them as linear predicates on the set 
of allowed Petri net states and enforcing these inequal- 
ities with invariant based controllers. Inequality (1) is 

not only appropriate for formulating a large range of 
forbidden state problems, generdized mutual exclusion 
constraints [l], and finite resource management prob- 
lems, but it is also appropriate for specifying a num- 
ber of supervision goals that are not normally thought 
of as state-based constraints. This paper extends the 
method to handle constraints written in terms of the fir- 
ing vector as well as the marking, allowing constraints 
dealing with plant events to be specified directly. Tem- 
porary transformations of the graph structure of the 
plant were used to frame the event-based problem in 
terms of ( l), allowing the methods of invariant based 
control to be employed. Two distinct approaches to 
enforcing these event-based constraints were presented 
here and were integrated with the concept of admissible 
constraints in order to handle uncontrollable and unob- 
servable transitions within the plant. Which technique 
to use, direct or indirect, depends on the needs of the 
particular control problem and plant, for example, the 
three-tank process control plant used the direct defini- 
tion, however the automated guided vehicle example in 
[7] uses the indirect definition. 
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