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THE CANONICAL DIOPHANTINE EQUATIONS WITH APPLICATIONS*

W. A. WOLOVICH’f AND P. J. ANTSAKLISt

Abstract. A fundamental relationship between appropriate pairs of polynomial matrices is presented.
This relationship, termed canonical Diophantine equations, can be used to resolve a number of standard
polynomial matrix problems. Here, the general Diophantine equation is constructively resolved in a unique
minimal way; in addition, prime canonical factorizations of a system transfer matrix are derived from
knowledge of any dual factorization.
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1. Introduction. Polynomial matrices play an important role in many different
aspects of linear system theory, especially when one describes the dynamical behavior
of a given system in terms of either a right or left polynomial matrix factorization of
the transfer matrix which defines the system; i.e. T(s)=R(s)pl(s)=pl(s)Q(s).
Questions such as obtaining state-space realizations of T(s), or state observers associ-
ated with T(s), or stabilizing compensators, which perform one or several simultaneous
control functions, have been constructively resolved through the manipulation of
polynomial matrices, and such results are cited in various texts and papers too numerous
to delineate.

Generally speaking, there are certain "standard problems" (SP) involving poly-
nomial matrix pairs, such as {R(s),PR(S)} or {PL(S), Q(s)}, which underlie most of
the polynomial matrix manipulations required to obtain solutions to questions such as
those posed above. Some of these are the following:

(SP1) Solve the general Diophantine equation, H(s)R(s)+K(s)PR(s)=F(s),
for an appropriate polynomial matrix pair, {H(s), K(s)} given any arbitrary F(s).
The Bezout equation, when F(s)= I, would represent a special case of the general
Diophantine equation.

(SP2) Obtain a dual, prime factorization, Pl(s)Q(s), of T(s) fromany given
(not necessarily prime) factorization, R (s)P(s).

(SP3) Divide one polynomial matrix by another nonsingular one to obtain the
unique strictly proper part and quotient.

(SP4) Determine a greatest common right or left divisor of a given pair of
polynomial matrices.

Clearly, all of these "standard problems" are interrelated, and various solutions
to all of them have been documented in numerous references, and this report will not
even attempt to judge the merits of one solution relative to another.

It is important to note however that there is a fundamental, underlying relationship
common to all of these standard polynomial matrix problems, which can be used to
solve them all. In this paper, we will develop such a relationship which we-will term
"canonical Diophantine equations" because the solutions to such equations can be
uniquely determined from canonical state-space representations.
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In 2, we formally establish both types of canonical Diophantine equations. The
general Diophantine equation (SP1) is then constructively resolved in 3 in a unique,
minimal way. In 4, we again employ the canonical Diophantine equation, along with
the algorithm of 3, to solve (SP2); i.e. to obtain canonical, dual prime factorizations
of a given transfer matrix from knowledge of any matrix fraction description, and we
conclude with some final remarks in 5. It might be noted that solutions to (SP3) and
(SP4), as well as other "standard polynomial matrix problems," will be addressed in
subsequent reports using the canonical Diophantine formulation developed here.

2. The canonical Diophantine equations. Consider a pair {R (s), PR (s)} of poly-
nomial matrices in the Laplace operator s with R(s) p m and PR(s) rn m and
column proper; i.e. the m m constant matrix, Fc[P(s)], consisting of the coefficients
of the highest degree terms in each column of P (s) is nonsingular. If1/zi denotes the
degree of each (ith) column of PR(S), a relation we denote as

() o,[P,(s)] m,

it follows [1] that IPn (s)l, the determinant of PR (S), will be a polynomial of degree n,
where

(2) n Z txi.

If the pair {R(s), P(s)} is used to denote a right transfer matrix factorization of
some multivariable system, so that the transfer matrix of the system

(3) T(s) R(s)pl(s),

then a state-space realization {A,B, C, E(s)} of T(s) can readily be determined by
the well-known "structure theorem" for linear multivariable systems [1], [2]. In par-
ticular, if we apply the polynomial matrix division algorithm to (3) to separate T(s)
into its strictly proper part, (s)P-RI(S), and quotient, E(s), i.e.

(4) T(s) (s)Pl(s) + E(s),

then a real triple {A, B, C} of dimensions n x n, n x rn, and p x n, respectively, can be
found such that

(5) C(sI-A)-IB (s)P’(s).
More specifically, following the development in [1], if the (n x m) polynomial

matrix S(s) is defined by the relation

1

(6)
S(s) block diagonal

s

Si

then there exists a real pair of matrices {A, B} in multi-input controllable companion
form [1] such that

(7) (sI-A)S(s) BPR(S).

1We will assume throughout for convenience, and without much loss of generality, that each txi-->
and, later, that each uj >-1.
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Furthermore, the/x defined by (1) will represent the controllability indices of {A, B}
in the sense that the following n n "column ordered controllability matrix" associated
with the pair, namely

(8) [ba, Aba," Au-lbl, b2, Ab2," Atz-1 b2," A"-b.],

will be nonsingular. In (8), b denotes the ith column of B..
Since (s)Pl(s) is strictly proper, it can be shown [1] that

(9) R(s)=CS(s)

for some constant (p n) matrix C, so that (7) and (9) together imply that

(10) CS(s)Pl(s) (s)P(s) C(sI-A)-B,

thus verifying (5).
Now consider the "total observability matrix", , associated with the pair { C, A},

i.e., the np x n real matrix

(11)

C

y= CA

Let a denote the rank of , a relation we represent as

(12) p[’] t <-- n,

and select from top to bottom the first ri linearly independent rows of . If these r
rows are then reordered so that all rows containing the kth row of C, Ck, precede
those containing Ck+, in increasing powers of A, we will obtain a set of observability
indices,_u., associated with the pair { C, A) as well as an a n real matrix M, analogous
to the L of (8), which we will call a "row ordered observability matrix" of {C, A}. In
particular,

(13) M=

a real matrix of full rank , where

(14)
p
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In view of this observation, a (axp) polynomial matrix, S,(s), can be defined

by the relation

(15) S,(s) block diagonal

1

S-1

In view of these preliminaries, we can now state the main result of this section.
THEOREM 1. Consider a polynomial matrix pair, {R(s), PR(S)}, with R(S) p X m

and PR(S) m rn and column proper. Let S(s) be given by (6), ]r by (13), and SR(S)
by (15). There exists another u’nique (fi m) polynomial matrix, 21(s), such that

SR(S)R s) II( s)PR S) ]lS(s).

Proof. Using the results in [1], we first note that the given polynomial matrix pair
{R (s), PR (s)} directly defines a Laplace transformed differential operator representa-
tion of a system which is equivalent to the state-space realization of the T(s) given
by (3), namely

(16a) PR S) Z( S) U( S),

(16b) y(s) R(s)z(s),

where the relationship between the partial state, z(s), of (16) and the state, x(s), of
the state-space realization is given by

(17) S(s)z(s) x(s).

By repeated "differentiation" of the (Laplace transformed) state-space output
equation

(18a) y(s) Cx( s) + E s) u( s),

while substituting the state equation,

(18b) sx( s) Ax( s) + Bu( s),

we obtain the relation

(19)

y(s) -] c

s,-y(s)J ,-

E(s) o o

CiB E s) O sI
x(s)+ u(s).

CA -2B CA"-3B i. E s s" "--l I

We next observe that the M of (13) can be directly obtained from the of (11) by
premultiplying t9 by a real (a np) "row selector matrix" which contains only O’s and
(a)l’s. If we now premultiply (19) by exactly the same row selector matrix, we obtain
the relation

(20) SR( S) y( s) 2(IX(S)+ ]I( s) u( s),
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where

(21)

with each

(22)
L_CjA-2B Ej s) s J-IA

In (22), Ei(s) and C denote the jth rows of E(s) and C, respectively.
If we now use (16) and (17) to substitute into (20), we obtain

(23) SR(S)R (s)z(s) f4S(s)z(s) + f4(s)Pn(s)z(s),
or since (23) must hold for arbitrary z(s), that (*). must hold.

Finally, by right dividing (*) by PR(S), we note that

(24) SR(S)R(s)el(s)=JS(s)P’(s)+f-l(s).
Since f/IS(s)P(s) is strictly proper, it thus follows that the polynomial matrix 2/(s)
re,presents the unique quotient of S(s)R(s)P(s); i.e. given the pair {R(s), PR(S)},
M(s) is uniquely specified via (24) by the choice for SR(S). Theorem 1 is therefore
established. We call (*) a right canonical Diophantine equation of the pair {R s), Pn s)}.

As we have now shown, (*) can be solved by first determining S(s) by inspection
of the column degrees of the column proper Pn(s). The structure theorem of [1] can
then be used to determine a state-space realization {A,B, C,E(s)} of T(s)=
R(s)P(s). The pair {C, A} then defines the total observability matrix via (11), from
which M and Sn(s) are derived. Finally, M(s) can be obtained directly via (21) and
(22).

We next note that nothing has been said, thus far, regarding the "primeness" of
lack thereof of R (s) and PR (s). In particular, (*) holds whether or not R(s) and P (s)
are relatively right prime (rrp). We observe, moreover, that in light of the results given
in [1], the zeros of the determinant of any greatest common right divisor, Gn(s), of
R (s) and PR (S) will represent all of the unobservable modes of the system defined by
(10). In view of this observation, it follows that

(25) pie]= n-oIdl(S)[,
and, as a result, that gt n if and only if R s) and PR S) are rrp. In such cases, the M
given by (13) will be n x n and nonsingular.

It is of interest to note that once the full rank matrix M has been determined,
premultiplication of R(s)Pl(s) by any polynomial matrix H(s), followed by a separ-
ation of the resulting rational matrix into its spp and quotient, will .always yield a
constant premultiplier of S(s)P(s) in the span of 2, i.e. for any q x tn polynomial
matrix, H(s),

(26) H(s)R(s)P’(s) HMS(s)P;’(s)+ l(s)
for some constant matrix H. If this were not true, M would not represent the full rank
row ordered observability matrix it is. The relationship represented by (26) is a useful
one, as we will later show.
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A dual result, analogous to (*), can now be readily established by considering any
left matrix factorization Pl(s)O(s) of a (s); i.e. consider a pair of polynomial
matrices {PL(s), O(s)}, with PL(s) p p and row proper, and O(s) p m, which define
the (p m) rational transfer matrix,

p

(29) d Y

and the (p d) polynomial matrix

(30) S[(s) block diagonal [1 s s5-1].
Let i denote an ordered set of controllability indices of any minimal state-space
realization of the system defined by (27). Define

(31)

and the (m d) polynomial matrix

(32) S(s) =block diagonal [1 s

In view of (30) and (32), a left canonical Diophantine equation of the polynomial matrix
pair {PL(S), Q(s)} could then be written as

(. T) O(s)S( s) PL(S)(s)

where (s) is the quotient of P(s)O(s)S(s) and (d d) is a real, full rank (d),
column ordered controllability matrix of the system defined by (27).

It is of interest to note that if T(s) given by (27) is equal to the T(s) given by
(3), then R(s)pl(s) and Pa(s)O(s) will represent "dual factorizations" of the same
transfer matrix which thus satisfy the relation:

(33) O(S)PR(S) PL(S)R(s).

Furthermore, if the Tj given by (28) correspond to the , defined by (13), so that

p p

(34) d=Y ff=E ’= /,

then PL(S) and O(s) will be relatively left prime, and Pc(s)O(s) will represent a
minimal order, left prime factorization of T(s) R (s)P(s). It is well known [3] that
such a factorization of T(s) can always be found such that PL(S) is both row proper
and column proper with

(35) Or[P,(s)] Oo[Pc(s) ,,
and

(36) F[P,.(s)]= Iz
A new constructive procedure for obtaining such canonical, dual, prime factorizations
of T(s) via (*) will be presented in 4.

(27) (s) PI s) O( s).

Define

(28) i 0ri[P(s)]
for ]= 1, 2,...p,
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3. General Diophantine equations. Polynomial matrix Diophantine equations of
the form

(37) H(s)R(s) + K(s)PR(s) F(s)

play an important role in many aspects of linear system theory, and numerous references
can be cited to substantiate this observation; e.g. see [4]-[12], a nonexhaustive list. It
is well known that if, in general, R (s), PR (s), and F(s) are of dimensions p x m, k x m,
and q x m, respectively, and if the rank (over the field of rational functions in s) of
the composite (p + k) x m matrix

L.(]) J
is m, i.e. if

(38)
Le(s)J

=m,

then (37) has a solution {H( s), K s)} if and only if any gcrd, (R(s), of R(s) and
PR(s) is a right divisor of F(s). A variety of different techniques have been devised
to solve (37) when solutions do exist. In this section, a new constructive proof of
sufficiency will be given, based on (*), which directly yields a unique, solution
{H(s),K(s)} to (37) with H(s) of minimum column degree modulo the choice for
S,(s).

To obtain this general result, first consider (37) when PR (s) is m m and column
proper, so that (*) holds, and right divide F(s) by P(s), i.e.,

(39) F(s)Pl( s) S(s)PI( s) +(s)

to obtainthe (q n) real matrix ff and the polynomial matrix quotient, (s).
TI-IZOrtZM 2. Consider the Diophantine equation (37) with P(s) mm and

column proper. If (37) is solvable, there exists a real (q gt) matrix 171 such that

(40) /-Aqt j

where F is given by (39). Furthermore, the polynomial matrix pair

(41) H(s) HS(s)

and

(42) K (s) j6(s) //(s)
solves (37) with H(s), as given by (41), a unique (q p) polynomial matrix of minimum
column degree in the sense that

(43) 0cj[H(s)] < uj

forj=l,2,. ..p.
Proof. First, recall that (26) holds for any polynomial matrix, H(s); i.e.

(44) H(s)R s) ISIlS( s) + 1 S)PR S)

for some real matrix, H. Since

(45) F( s) PSi(s)+(S)PR S)

in light of (39), the solvability of (37) now implies that

(46) [/Q-]S(s)=[ff’(s)--K(s)--I(s)]PR(S).
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or that

(47) [tTtf4-]S(s)Pl(s) =(s)-K(s)-l(s).
Since the left side of (47) is either a strictly proper rational matrix or zero, while the
right side is either a polynomial matrix or zero, both sides must be zero, thus establishing
(4O).

If the right canonical Diophantine equation (*) is now premultiplied by H and
F(s)--(S)PR(S) is substituted for ISIfIS(s)=.S(s) in light of (45), the general
Diophantine equation, (37), is satisfied with H(s) given by (41) and K(s) given by (42).

To establish Theorem 2, we must finally show that the particular H(s) given by
(41) uniquely satisfies (43). To do this, consider any dual, relatively left prime factoriz-
ation, P(s)O(s), of T(s)=’R(s)P;(s), such that (33) through (35) hold. The
composite p (p + m) matrix

[P,(s) O(s)]

represents a prime basis for the null space of the composite (p+ m) m matrix [4]

R(s)]

Therefore, if {H(s), K (s)} represents any particular solution to (37), any other solution
to (37), {(s),/(s)}, can be written as

(48) /-(s) H(s)+ J(S)PL(S)

and

(49) K(s) K(s)-J(s)O(s),

for some polynomial matrix J(s). In particular,

[H s) + J(s)PL(S)]R (s) + [K (s) J(s) O(s)]P (s)
(50)

H(s)R(s)+ K(S)PR(S)+ J(s)[PL(s)R(s)- O(S)PR(S)] F(s)

in light of (33). In light of (41), (35), and (36), however,

(:51) Ocj[H( s)] < ,j Oci[PL( S)],

with F[PL(S)]= Ip. It therefore follows from (48) that the unique

(52) spp{IY-I(s)pl(s)} H(s)pl(s),

or that the H(s) given by (41) represents a unique solution to (37) of minimum column
degree ,, for ] 1, 2,. p. Theorem 2 is thus established.

It might be noted that if PR(S) of (37) is nonsingular but not column proper, (37)
can be postmultiplied by any unimodular matrix, UR (s), which reduces PR (S) UR (S)
to column proper form. The results of this section can then be directly employed to
obtain the unique solution {H(s), K(s)} to (37) with It(s) of minimum column degree
in the sense of (43).

We finally note that PR(S) need not be square or nonsingular in order to utilize
(*) to solve (37). In particular, note that (37) can be written in composite form as

(53) [H(s)’ K(S)]kP(s)j
Therefore, if (38) holds, (37) has a solution if and only if any gcrd, (s), of (the
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rows of)

(s)j

is a right divisor of F(s). If this condition holds, a new "P(s)" can be defined as any
m linearly independent rows of

with the new "R(s)" given by the remaining rows. With these new definitions, (53)
can then be solved for "H(s)" and "K(s)" using the results presented in this section.
Finally, the actual H(s) and K(s), consistent with their original definitions, can be
obtained by repositioning the columns of "H(s)" and "K(s)".

4. Canonical dual prime actorizations. At the conclusion of 2, we noted that
given a right matrix factorization, R (s)Pl(s), of T($), a dual, left matrix factorization,
PE(s)O(s), can always be found which satisfies properties (35) and (36). In this
section, we will present a new algorithm for obtaining such dual, canonical factorizations
via the right canonical Diophantine equation (*), of 2. In particular we will now
constructively establish the following known result [3] in a new, direct way using (*).

THEOREM 3. Consider any polynomial matrix pair {R(s), PR(S)} with R(s) p x m
and PR(S) m X m and column proper. There exists a "dual" relatively left prime pair
{P/(s), Q(s)} of polynomial matrices with

(54) a[P(s)] Oi{PL(S)] ,,
forj=l,2,. .,p,

(55) r[e(s)]= i.,

and F[PL(S)] nonsingular with l’s along the diagonal such that T(s)= R(s)pl(s)=
PI(s)Q(s), or

(56) PL(S)R(s) Q(S)PR(S).

Proof. In light of (*) define the p p diagonal polynomial matrix

(57) D (s) diagonal s ],

and set

(58) Fc(s) D(s)R(s)

in the general Diophantine equation (37), so that (39) implies that

(59) FL(S)=D(s)R(s)=PLS(s)+PL(S)PR(S).
Equation (37) is clearly solvable in that any gcrd of R(s) and PR(S) will be a right
divisor of the particular Ft(s)=D(s)R(s) given by (59). In light of Theorem 2,
therefore, a constant HE exists such that

(60) HEM FL.
It thus follows that the polynomial matrix pair

(61) HL(S)=HSR(S),
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and

(62) KL( S) PL( S) IL/I(s)

solves (37) i.e., that

(63) IYlLS(s)R(s) +[Pc(s)--tTIL4(s)]PR(s) D(s)R(s),

or that

(64) [D(s)-tTtcS(s)]R(s) =[L(s)--tYlcI(s)]PR(s),
SO that (56) holds with

(65) O(s) Pc( s) IZlcf/l( s)
and

(66) Pc(s) D(s)-H,S(s).

Note that the P(s) thus defined will be both column proper and row proper. In
particular, in light of (66), it is clear that

(67) Ocj[Pc(s)]= r,j

for ] 1, 2,. , p, and that

(68) Fc[Pc(s)]=Iz
Since the ,j represent an appropriately ordered set of observability indices of the
system, Pc(s) will be row proper as well [3] with l’s along the diagonal of Fr[Pc(s)].
We finally observe that since a P u represents the order of a minimal realization
of T(s) R(s)Pl(s) Pl(s)Q(s), and OlPc(s)] t, Pc(s) and O(s) will be relatively
left prime. Theorem 3 is thus established.

5. Concluding remarks. A new, fundamental relationship between appropriate
pairs of polynomial matrices has now been presented and employed_ to resolve some
"standard (polynomial matrix) problems" in a new and direct manner. In particular,
the utility of the dual, canonical Diophantine equations (*) and (*"), has now been
thoroughly demonstrated with respect to (SP1) obtaining unique minimal degree
solutions to general Diophantine equations, and (SP2) determining canonical, prime,
transfer matrix factorizations of a given system from knowledge of any dual factoriz-
ation.

It is of interest to note that the dimension of the largest matrix, M, which need
be inverted in order to solve a general matrix Diophantine equation of the form (3)
is n, the system order, unlike earlier algorithms which require the inversion of a matrix
of generic dimension 2n. This could significantly reduce the computations necessary
to implement a variety of adaptive control algorithms.

Finally, it should be noted that additional implications of (*) and (*’) do exist
with respect to other polynomial matrix problems, and that some of these will be
addressed in subsequent reports.
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