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Abstract  

In the present paper, we study several qualitative 
properties of a class of nonlinear switched systems un- 
der certain switching laws. First, we show that if all 
the subsystems are linear time-invariant and the sys- 
tem matrices are commutative componentwise and sta- 
ble, then the entire switched system is globally expo- 
nentially stable under arbitrary switching laws. Next, 
we study the above linear switched systems with certain 
nonlinear perturbations, which can be either vanishing 
or non-vanishing. Under reasonable assumptions, global 
exponential stability is established for these systems. 
We further study the stability and instability properties, 
under certain switching laws, for switched systems with 
commutative subsystem matrices that may be unstable. 
Results for both continuous-time and discrete-time cases 
are presented. 

I. Introduction 
Switched systems are hybrid systems that consist of sev- 
erals subsystems and are controlled by switching law. 
These switching laws may be either supervised or unsu- 
pervised, and may be time-driven or event-driven. Re- 
cently, there has been increasing interest in the stability 
analysis of such systems ([1]-[SI). 

The methodologies used in studying switched sys- 
tems are very diverse. For example, multiple Lya- 
punov functions were employed to establish certain gen- 
eral Lyapunov-like results for both linear time-invariant 
switched systems [l] and nonlinear switched systems [2], 
and Linear Matrix Inequality (LMI) techniques were for- 
mulated to study stability and robust stability problems 
[5]. In [6], a class of general nonlinear switched systems 
were treated as a special case of sampled-data control 
systems with multiple sampling periods and some sta- 
bility criteria were obtained. A conic switching law was 
proposed in [7], [8] to study second-order linear time- 
invariant switched systems, which was shown to be very 

'Supported in part by a Center of Applied Mathematics Fel- 
lowship, University of Notre Dame. 

2Supported in part by a Center of Applied Mathematics Fel- 
lowship, University of Notre Dame. 

3Corresponding author. Supported in part by an Alexander 
von Humboldt Foundation Senior Research Award, Institut fur 
Nachrichtentechnik, Ruhr-Universitat Bochum, Germany. 

FrMOl  13:20 

efficient. However, this conic switching law does not 
seem to be applicable to higher dimensional problems. 
In [4], recent developments in the study of these issues 
is summarized in detail. 

In the present paper, we propose an approach to 
study the stability properties of a specific class of non- 
linear switched systems which differs significantly from 
the existing works. The switched systems under inves- 
tigation in the present paper consist of dominant linear 
parts, for which the matrices are commutative, and cer- 
tain nonlinear perturbation terms. We demonstrate that 
under reasonable assumptions, the qualitative proper- 
ties of the above linear time-invariant switched systems 
are preserved if the perturbation terms are sufficiently 
"small" . 

The paper is organized as follows. In Section 2, the 
stability analysis for continuous-time switched systems 
is conducted, while in Section 3, similar results are es- 
tablished for discrete-time switched systems. 

11. Continuous-Time Switched System 
We will consider three general cases for the class of 

switched systems considered. 
Case 1: All the dominant subsystems are linear 
time-invariant and Hurwitz stable 

Consider linear switched systems described by equa- 
tions of the form 

k ( t )  = Aiz( t ) ,  i = 1 , 2 , . * - , m ,  (2.1) 

where m 2 2 is an integer and z ( t )  E Rml, Ai E 
p 1  xml.  

In the following, we will always assume that the so- 
lutions of (2.1) are right differentiable. We will use the 
notation {ik}k>O c { 1,2, .  . . , m} to denote the switch- 
ing sequence and we let [tk, &+I) denote the time period 
over which the ik-th subsystem is activated. Assume 
that 
( A l )  limk,, tk = CO; 
(A2) the Ai's are all Hurwitz stable, i.e., for each i, all 
the eigenvalues of matrix Ai lie in the left-half complex 
plane; 
(A3) AiAj = AjAi for all i # j .  

We have the following result. 
Theorem 2.1. Assume that hypotheses (A2)-(A3) are 
true. Then the equilibrium x, = 0 of switched sys- 
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Figure 1: Phase plot of the switched system in Example 
2.1 with initial value zl(0) = zz(0) = 0.2. 

tem (2.1) is globally exponentially stable under arbitrary 
switching laws satisfying (Al). 

Since the Ai’s are Hurwitz stable, it is well- 
known that there exist constants ki, CY > 0, such that for 
each i = 1,2, . . . , m, the following inequality holds: 

Proof : 

Now, for any initial condition (to,zo) (Without loss of 
generality, we assume in the sequel that to  2 0) and 
t E [ t k ,  &+I),  we have 

zo . 2( t )  = eA.k ( t - tk )eAt , - l  ( t k - t b - 1 )  . . . ( tz - t l )eA;o( t l - to)  

If Ti(t0, t), i = 1,2, .  . . , m, denotes the total time that 
the i-th subsystem is activated during the time t o  to t ,  
then we have that Czl Ti(t0, t )  = t - to .  Since the Ai’s 
are commutative pairwise, we rewrite the above expres- 
sion as 

By (2.2), we have 

- - (fly r = l  k , ) e - a ( t - t o ) ( ( x O ( ( ,  ‘ which implies that switched 
system (2.1) is globally exponentially stable under arbi- 

It is natural to ask whether the above result remains 
true if the subsystem matrices of (2.1) do not commute 
pairwise. The answer is in general not true. Counterex- 
amples can be found in [3] and [7]. Using the reversed 
conic switching law as proposed in [7], we know that 
even when every subsystem has stable foci, the entire 
system may still not be asymptotically stable under ar- 
bitrary switching laws. The following example shows 
that there exist certain switching laws which make a 
switched system unstable even though the subsystems 
have stable foci. 

((z(t)(I 5 (nzl ki)e-~(~~(to~t)+~~.+~~(to~t))ll~OI( 
trary switching laws. 0 

Example 2.1. Consider the switched system (2.1) with 
m = 2, and 

A 1 = [  -1 2 -13 -3 1 ,  A 2 = [  l’o I;]. 
For initial point (zl(0), x ~ ( 0 ) ) ~  = (0.2, 0.2)T, we incor- 
porate the following inverse conic switching law: when- 
ever the trajectory is inside the region of subsystem 
i (which is partitioned by two straight lines: 2 2  = 
0.0097~1 and x2 = 3.734~1, as depicted in Figure l ) ,  
subsystem Ai is employed until the trajectory intersects 
the above boundary lines. Then another subsystem will 
be activated. From the phase plot, we know that the 
two subsystems with stable foci are made unstable by 

0 
We may now ask: what happens if all the subsys- 

tems are “almost commutative”? In the following, we 
study the qualitative properties of system (2.1) under 
certain perturbations, which may either be vanishing or 
non-vanishing. Thus, we consider switched nonlinear 
systems described by equations of the form 

the switching law specified above. 

k( t )  = A i ~ ( t )  + fi(t, ~ ( t ) ) ,  i = 1,2,. . * , rn, (2.4) 

where the perturbation term fi are either vanishing in 
the sense that 

Ilfi(tl4t))ll I Y l l 4 t ) l l l  i = . .,m, (2.5) 

or are non-vanishing in the sense that 

Ilfi(t, 4t))ll I rll4t)II + Nt), i = 192,. . (2.6) 

where y is a constant and p(.) is a nonnegative Lebesgue 
integrable function such that s,” eaTp(r)dr  < M, where 
CY is the constant given in (2.2) or will be specified later. 
Theorem 2.2. Assume that there exist constants ki, 
CY, y > 0 and a nonnegative Lebesgue integrable func- 
tion p(.) such that conditions (2.2) and (2.6) hold. If 
hypotheses (A2)-(A3) are true, then for switched sys- 
tem (2.4) with initial condition ( to ,  XO), under arbitrary 
switching law satisfying (Al), it is true that 

Jo  

where KO = flzl ki. Therefore, under the condition 
that y < &, if P ( t )  0, then z, = 0 is an equilibrium 
which is globally exponentially stable. Otherwise, the 
entire system is uniformly bounded and and the solu- 
tions converge to the origin exponentially. 

Proof: For t E [tk,tk+l), we have 

z ( t l )  = eAi,(t l - to)xO + 

x ( t z )  = e A i l ( t z - t l ) x ( t l )  + 

eAio(tl--7) fi, (7,47))dT, 

e A i , ( t 2 - ~ )  fa, (T,Z(T))dT 

I’ 
1: 

- - eAil  ( t z - t ~ ) + A , ~ ( t i - t o )  20 
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Application t o  switched interval systems 

equations of the form 
Consider switched interval systems described by 

A k ( t )  = Biz(t) = (Ai + AAi)z(t), i = 1,2,-.-,m,(2.9) 

where for each i ,  the interval matrix Bi is centered at 
A, entrywise, with radii % (d i  > 0, r$ 2 0, k , l  = 
1,2,. . . , ml), at the ( k ,  Z)-entry. 

In order to guarantee the global exponential stabil- 
ity of interval switched systems (2.9), we need to  add 
some constraints on the radii. Let d = maxlsi lmdi .  
Then by Theorem 2.2, under the condition that 
mai<i<m IlAAiII L d m ~ i < i < m ( C ~ , ~ = 1 ( r k l )  (4 2 ) $ < 
a -  - KO 7 

n 
(Y d < - min ( KO 1<i<m 

(~$))~)-i ,  
k,l=l 

the switched interval system (2.9) is globally exponen- 
tially stable. 

Case 2: All subsystem matrices are unstable, 
but the corresponding negative subsystem 
matrices are Hurwitz  stable 

Rather than (A2),  we now assume that the following 
assumption holds for switched system (2.1): 
(A4) 

that 

-Ai is Hurwitz stable for i = 1,2,. . ' ,  m. 
Suppose that there exist constants k i , a  > 0 such 

l1e-'itll 5 Icie-at, i = 1,2,...m . (2.10) 

We have the following result. 
Theorem 2.3. Assume that there exist constants 
k i , c r , y  > 0 such that conditions (2.5) and (2.10) hold. 
If hypotheses (A3) and (A4) are true, then for switched 
system (2.4) with initial condition (tO,zO), and under 
arbitrary switching law satisfying (Al), it is true that 

1 
KO ~lz(t>ll 2 I I ~ O I I -  (2.11) 

Therefore, if CY > &, then the switched system is expo- 
nentially unbounded. 

The proof can be given by reversing the 
process in the proof of Theorem 2.2. It is omitted due 

Note that in the above theorem, condition (2.5) in- 

Proof : 

to space limitation. 0 

stead of (2.6) is used. 

Case 3: Mixed-type switched systems 
When the switched systems consist of both stable 

and unstable subsystems, their qualitative analysis be- 
comes more difficult. In such cases, the trajectory be- 
havior depends greatly on the switching law. 
Example 2.2. Consider the switched system described 
bY 

It is not difficult to show that under different switching 
laws, the properties of the solutions of this system vary 
significantly. Assume that T > 0 is a constant: 

i) if subsystems A1 and A2 are activated alternatively 
with the same duration T ,  then the entire system is 
exponentially stable; 

ii) if subsystems AI and A2 are activated alterna- 
tively with durations T and 2T, respectively, then the 
entire system is uniformly stable but not asymptoti- 
cally stable; 

iii) if subsystems AI and A2 are activated alterna- 
tively with durations T and 3T, respectively, then the 

From above we conclude that, in order to study the 
qualitative properties of the switched systems of the 
present case, the switching law has to  be specified. De- 
note {Ai : i = 1,2 , . . . ,m} = {Af : i = l , - . . , r l } U  
{A: : i = r1 + 1,--. ,m}, where 1 5 r1 5 m - 1 is an 
integer, the Ai ' s  are Hurwitz stable, while the Af's are 
not. Assume that there exist ki,a1,ag > 0 such that 

entire system is unstable.  0 

IleA-tll 5 kie-@l t ,  i = 1,2,...rl (2.12) 
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In [T, t ] ,  let T-(.r, t )  (resp., T+(T, t ) )  denote the to- 
tal time period that stable subsystems from {A; : i = 
l;- . ,q} (resp., unstable subsystems from {A: : i = 
r 1  + l , . . . , r n } )  are activated. In the next result, we 
assume that 
(A5) the switching law guarantees that for any given 
initial time t o ,  inft2to Ta! = q > 2, where a1 and 
a2 are specified in (2.12) and (2.13). 
Theorem 2.4. Assume that there exist constants 
ICi,a1,02 > 0 and such that conditions (2.12), (2.13) 
hold. If hypothesis (A3) is true, then for switched 
system (2.1) with initial condition (tO,zo), and un- 
der any switching law satisfying (Al) and (A5), then 
Ilz(t)II 5 K,-,e-Q(t--to) with a = v. 

Notice that under assumption (A5), it is 
true that 

Proof : 

-alT-(to, t )  + azT+(to, t )  5 -(ai - y)T-( to ,  t )  
5 -(a1 - y)&(t - t o )  = -a(t - to ) .  

Thus, the inequality in the above theorem can be derived 
directly from (2.8). cl 

In the presence of perturbations, we have similar re- 
sults to Theorem 2.2, yet we need to add more restrictive 
condition (A6) on switchings. 
(A6) Let tl < t; < ti < t! < ... < tt < t; < ... 
(limi+mti = +w) be the time instants such that for 
switched system (2.1) only in intervals [t i ,t;) is one of 
the unstable subsystems A t  activated. Assume that 
infilo !H = q > 2, supi{t? - t t }  = T < 03 and 
ti - t o  5 Tl ,  where TI > 0 is a constant and a1 and a2 
are specified in (2.12) and (2.13). 

We have the following result. 
Theorem 2.5. Assume that there exist constants 
ki,a1,a2 > 0 and a nonnegative Lebesgue integrable 
function p(.) such that conditions (2.12), (2.13) and 
(2.6) (with cy = F) hold. If y < (where 
KO = nzl k i )  and hypothesis (A3) is true, then for 
switched system (2.4) with initial condition ( t o ,  zo), 
there exist constants C ~ , C ~ , C Q  > 0 such that under any 
switching law satisfying (Al)  and (A6), for t E [tt , ti+,,), 
i = 0 , 1 , .  . ., the following estimate holds. 

% ti 

Therefore, if P( t )  E 0, then ze = 0 is an equilibrium 
which is globally exponentially stable. Otherwise, the 
entire system is uniformly bounded and the solutions 
converge to the origin exponentially. 

Proof : We calculate the following three numbered 
inequalities and then combine them together. 

First, for t E [t: + q(t5 - tt),ti++l], let ( t 0 , z o )  = 

where t l ,  . . . , t k  are the time instants (between ti and t )  
at which certain subsystem is enabled. Under assump- 
tion (A6), for T E [ t j - l ,  t j ]  (j = 0 , 1 , .  . . , I C ) ,  we must 
have 
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(2.16) 

(If for some i, ti+l - t; = q(t; - t i ) ,  the above inequality 
still holds for t = ti+l. We can simply derive this by 
allowing the last activated stable subsystem (before t = 
tt+l) to be held until t > 

Next, for t E [to, ti), only the stable subsystems are 
activated, similar to the above arguments, we obtain 
that 

Using Granwall inequality, we have 

Therefore, 

For t E [ti& + q(t5 - t i ) ) ,  let to  = t: in (2.8), we 
have the following estimate 

which implies that 

where I, E2 > 0 are two constants. 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 8, 2009 at 15:16 from IEEE Xplore.  Restrictions apply. 



Combining inequalities (2.16), (2.17) and (2.18), we 
0 

Similar inequality results can be established as The- 
know that inequality (2.14) holds. 

orem 2.3 to Theorem 2.2. 

Remark  2.1. It is always easy to choose a switch- 
ing law that satisfies either (A5) or (A6). For example, 
the switching law can be chosen as follows: beginning 
with a stable subsystem, we alternatively require that 
each stable subsystem be activated for a time period 
between 3azT to 4a2T, while each unstable subsystem 
be activated for a time period between a l T  to 2alT, 
where T > 0 is a given constant. In fact, we do not 
require that all the activating time periods be uniformly 
bounded as time elapses. 0 
Remarks  2.2. Some of the above results can be gen- 
eralized to switched systems that do not possess com- 
mutative properties by using switching laws based on 

0 average dwell time (see, e.g., [lo], [ll]). 

111. Discrete-Time Switched System 

similar problems as was done in Section 2. 

by difference equations of the form 

For discrete-time switched systems, we can study 

Consider discrete-time switched systems described 

z[n+ 11 = Diz[n], i = 1 , 2 , . - - , m  (3.1) 

where m 2 2 is an integer, 4.1 E Rml, Di E 
Rmlxml , i  = 1 , 2 , - - . , m .  As in the continuous-time 
case, we use the notation {ik}k>O c { 1 ,2 , .  . . , m} to de- 
note the switching sequence and we let [ n k ,  nk+l) n N = 
{nk, nk + 1, .  . * ,  nk+l - 1) denote the discrete-time in- 
stants when the ik-th subsystem is activated. Without 
loss of generality, we assume that in the subsequent dis- 
cussion no 2 0. Assume that 
(Bl) the Di's are Schur stable, i.e., there exist constants 
k, 2 1, 0 < T < 1 such that 

(B2) DiDj = DjDi for all i # j .  
We have the following result. 

Theorem 3.1. Assume that (Bl) and (B2) are true. 
Then the equilibrium z, = 0 of switched system (3.1) 
is globally exponentially stable under arbitrary switching 
law. 

Proof : Similar to the proof of Theorem 2.1. Omit- 
ted. 0 

Next, we endow system (3.1) with perturbation 
terms. Thus, we consider perturbed switched systems 
described by equations of the form 

z[n + 11 = Diz[n] + gi(n, z[n]) ,  i = 1,2, .  . . , m, (3.3) 

with either vanishing perturbations described by 

llgi(n,z[n])lI I~IIz[n] l l ,  i = 1 , 2 , * . . , m  (3.4) 

or non-vanishing perturbations described by 

Ilgi(n, .[.])I1 L PIIZ[.lII + 4.1, i = 192,. . ., m, (3.5) 

where p > 0 is a constant and (q[n]},>o is a nonnegative 
sequence satisfying the condition E,"=, ~ - j q [ j ' ]  < 00, 

where T is either the constant in (3.2) or will be specified 
later. 
Theorem 3.2. Under hypotheses (Bl) and (B2), as- 
sume that (3.5) holds. Then for switched system (3.3) 
with initial value (no, ZO), and under arbitrary switching 
law, it is true that 

II4nIII L KO((1 + ~ ) l l z o l l  
05 

+ r - j - ' q [ j ] ) ( ~ ~ o  + r ) n - n o  (3.6) 
j = O  

where KO = n E l .  Therefore, under the condition that 
p < e, if q[n] = o for n 2 no, 2, = o is an equi- 
librium of switched system (3.3) and is globally expo- 
nentially stable. Otherwise, the entire system is uni- 
formly bounded and the solution satisfies the condition 
limn--tcro 4.1 = 0. 

Proof: By induction, for nk 5 n < nk+l, we have 

z[no + 11 = Dioz[noI + gio(no, z[noI), 
4710 + 21 = Di, z[n11 + si1 bl, Z[.ll) 

= D;oz[no] + Diogio(no, .[no]) + Sil (721, z[niI), 
... 
2[721] = Dt-no~[nO] + Dz-no-lgio(no,  no]) + ~ n l  -no-z 

a. + 1,4710 + 11) + . . . 
+gio(nl  - l,z[n1 - 111, ... 

z[n] = Dn-nkDnk-nk-l . . . Dz-noZ[nO] 
a k  ak -1  

+Dn-nkDn*-nk-l . . . Dnl-nO 
+Dn-nkDnk-nk-l . I .  Dn2-n' 
+D?-nkDfk-nk-l ~ n 2 - n l - 1  ' 

,o gio (no, z[nol) + . . 
Zk %E-1 

l k  zk-1 z1 gio(n1 - 1, Z b l  - 11) 
2 1  9 io(nl ,z[~l l )  ... 

l k  Ik-1  
+ . . . + DL-"k . . . Dn3-n2 12 

+.. .+Dr-nkgik-l(nk - l,z[nk - 11) 

9ilb2 - 1,z[nz - 11) 
+ . . . + Dn-nkDnk-"k-1-1 zk 

+D""*-$ir. ak (nk, Z[nk]) 

gik-1 (nk-1, z[nk-ll) 

+ . . * + gi* (n - 1, z[n - 11). 
(3-7) 

IIz[n]II 5 Ko(rn-"OIlz[no]ll + Tn-no-l (PII~[~OIII + q b o l )  

By (3.2) and (3.7), we have that 

(PII.[.o + 1111 + q[no + 11) + . . . +Tn-no-2 

+(PII4n - 1111 + 4 b  - 11)). 

~ - " l I ~ [ ~ l I I  I KOr-no(l + :>llz[~olll 
Therefore, 

++ c;:;, r-j-lq[j] + *(r-(n-')IIz[n - 1111 
+r-(n-2) IIz[n - 2111 + * . . d n 0 - 1 )  Ilz[no + 1111) 

(3.8) 
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We require the following intermediate lemma to pro- 
ceed. 
Lemma 3.1. If for a nonnegative sequence (y[n]},>o, 
there exist two constants ho, hi > 0 such that for every 
n 2 no (no fixed) the inequality: y[n] 5 ho + hl(y[n - 
11 + y[n - 21 +.  . . + y[no + 11) holds, then y[n] I ho(l+ 
hl)n-no--l for n 1 no + 1; If there exist two constants 
ho,hl > 0 such that for every 0 I no < n (n fixed) the 
inequality: y[no] 5 ho+hl(y[no+l]+y[n0+2]+. . .+y[n- 
11) holds, then y[no] I ho(1 + hl)n-no-l for no 2 
n - 1 .  

Proof: By induction. Omitted due to space limita- 
tion. 0 

By the first part of the above lemma and the inequal- 
ity (3.8), we obtain that 

j =O 

which implies that 

00 

+ 1 r-+k])(r + Ko,>n-no. 
j=O 

Thus, Theorem 3.2 follows. 0 
When all the eigenvalues of D; lie outside the unit 

disc, we have the following result. 
Theorem 3.3. Assume that there exist constants 
lci 1 1, 0 < T < 1, p > 0 such that IlD;"ll 5 k;rn 
for i = 1 , 2 , .  . . , m and (3.4) holds. If hypothesis (B2) is 
true and Kopr < 1, then for switched system (3.3) with 
initial value (no, ZO), the inequality 

~ " o l I ~ [ ~ ~ l l I  2 (1 - ~ O P ~ ) - ' ~ O ( ~ " ~ ) ~ [ ~ ] I ~ )  + (1 - Kopr)-l 
x K0pr(rno+' Ilz[no + 1111 + ... + rn-lIIz[n - 1111). 
By the second part of Lemma 3.1 (fix n), we have that 

l l"[no~o; (1 - ~ 0 ~ ~ ~ - ' ~ 0 ~ ~ * l l ~ ~ ~ 1 I 0  
(1 + I-KpOpr Thus, 

IIZ~nolII 1 &( Y-0 Il~Inolll. 0 
For discret-time switched systems consisting of both 

stable and unstable subsystems, we can establish similar 
results as in Theorems 2.5 and 2.6. 
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