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A METHOD FOR DEADLOCK PREVENTION IN DISCRETE

EVENT SYSTEMS USING PETRI NETS

Marian V. Iordache∗, John O. Moody†, Panos J. Antsaklis∗

Abstract

Deadlock is the condition of a system that has reached a state in which all of its potential
actions are blocked. This paper introduces a deadlock prevention method for discrete events
systems modeled by Petri nets. Petri nets have a bipartite graph structure and they are particu-
larly well suited to model concurrencies found in manufacturing, communication and computer
systems, among others. Given an arbitrary Petri net structure, the deadlock prevention algo-
rithm in this paper finds linear inequalities in terms of the marking (state vector). When the
Petri net is supervised according to the constraints provided by the algorithm, the supervised
net is proved to be deadlock-free for all initial markings that satisfy the supervision constraints.
Results pertaining to permissivity properties and termination are also proved. The algorithm
is applicable to any Petri net with controllable and observable transitions.

1 Introduction

Deadlock is the state of a system in which no action can take place. This paper intorduces an
algorithm for the prevention of (global) deadlock in systems modeled with Petri nets. The algorithm
is not meant to enforce liveness, i.e. to prevent local deadlock, in which only a part of the system
is deadlocked, although in some cases it might enforce liveness as well. Liveness enforcement is a
stronger requirement than deadlock prevention, because a system might not be in deadlock when
some of its subsystems are deadlocked.

Deadlock usually appears in systems that contain subsystems that run in parallel and share
some form of common resources. Because Petri nets are a formal model of concurrent systems,
they are appropriate for deadlock study.

The deadlock prevention method of this work is described by an iterative algorithm, whose
purpose is to find linear inequalities in terms of the marking vector, the state variable of Petri nets,
such that whenever these inequalities are satisfied, the Petri net is not in deadlock. A Petri net
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supervisor that enforces these linear inequalities is built using an established technique. Some of
the results are concerned with the permissivity of the supervisor and a sufficient condition for the
algorithm to terminate. The most important result guarantees (under appropriate conditions) that
the Petri net supervised according to the linear constraints found by the algorithm is deadlock-free
for all initial markings that satisfy these constraints.

Differences from other deadlock prevention approaches are that the initial marking is not as-
sumed to be known, but rather it is regarded as a parameter. There is a related approach that
does not explicitly require the initial marking to be known [Lautenbach, 1996], but it works for
less general Petri net structures. The only requirement we make on the Petri net structure is that
all transitions are controllable and observable, because the other case was not yet investigated.
Research to generalize the method to still more general Petri nets is in progress.

Researchers have used varied system models depending on the applications they were studying.
Some other models that are not obviously related to Petri nets are the models of finite automaton
type and the resource allocation graph.

A resource allocation graph [Sinha, p.308] is a bipartite graph used to define the state of a set of
processes with common resources. Applications include Operating Systems, in Computer Science.

Finite automata are the models most used in the design of discrete event systems. Their
simplicity allows solving many design problems. However, they are sequential models, and the
number of states in real applications may become too large for computations to be done in a
reasonable amount of time.

Petri nets have a bipartite graph structure. Unlike resource allocation graphs, their structure
is fixed. The change of the Petri net state is described by the marking vector. The Petri net is a
more powerful model than the finite automaton.

There are various methods proposed for deadlock prevention or deadlock avoidance in the
literature. Deadlock avoidance requires little or no off-line computation, relying mostly on on-
line computations. An algorithm is used to check in real time what actions could be performed.
Deadlock prevention on the other hand relies on off-line computation and performs almost no on-
line computation. Deadlock prevention is a true real-time solution, but some researchers regard
deadlock avoidance as less restrictive.

Deadlock avoidance methods are in many cases related to the resource allocation algorithm
of [Dijkstra, 1965] and/or the necessary conditions formulated in [Coffman, 1971]. In [Banszak]
deadlock avoidance is considered in manufacturing systems modeled using a particular form of
ordinary Petri nets. [Fanti] uses digraph models; note that digraphs are less general than Petri nets.
[Reveliotis] considers polynomial complexity policies for sequential resource allocations systems,
where the most general model, not considered there, can be modeled with Petri nets. The method
from [Lewis] considers manufacturing systems which can be modeled with Petri nets and does not
guarantee deadlock-freedom when a type of cyclic structure is included. [Barkaoui, 1995] considers
conservative Petri net models and does not guarantee deadlock-freedom.

Deadlock prevention methods typically use structural properties of the net. Deadlock in Petri
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nets was related to siphons, a set of places with a specific property (section 2). Liveness was also
found to depend on siphons for the class of free-choice Petri nets in [Hack, 1972] and [Commoner,
1972]. More recently a similar relation was found for the more general asymmetric-choice Petri nets
in [Barkaoui, 1996]. Algorithms for siphon computations can be found in [Lautenbach, 1987] and
[Ezpeleta, 1993]. Among deadlock prevention papers we mention [Lautenbach, 1996] and [Ezpeleta,
1995].

Papers which explicitly use control places to restrict the behavior of a Petri net include [Suraj],
[Giua, 1992], [Moody, 1994] and [Yamalidou, 1994]. Control places were also used for siphon control
in [Barkaoui, 1995], [Ezpeleta, 1995] and [Lautenbach, 1996]. In this paper the supervisors are built
using the place invariant methodology from [Yamalidou] and [Moody, 1998].

[Ezpeleta, 1995] also addresses deadlock prevention in flexible manufacturing systems. The
Petri net model that is used is called S3PR, which is ordinary and conservative. The paper finds
a control policy which uses control places to enforce liveness. The advantages of the method are
simplicity and the guarantee success. A disadvantage is that the supervision is relatively restrictive.

[Lautenbach, 1996] is the paper most related to our approach. It has a similar iterative process
in which every new minimal siphon is controlled. Its unique feature among other deadlock papers
is that it works with Petri nets that are not assumed to be ordinary. A transformation to almost
ordinary Petri nets is used. We also use it in a slightly simplified form (section 4.3). The problem
of source places, which is likely to appear for Petri nets that are not repetitive, is not considered
in [Lautenbach, 1996].

The method for deadlock prevention introduced in this paper has the considerable advantage
of having guaranteed performance and being applicable to any Petri net. This is in contrast to
previous approaches, that are either applicable to restricted classes of Petri nets and/or without
proofs. In the approach presented in this paper, when the algorithm terminates, deadlock prevention
is guaranteed under certain conditions. In the common in practice case of structurally bounded
Petri nets, our deadlock prevention algorithm is shown to terminate under certain conditions. The
algorithm generates a set of linear inequality constraints which when implemented via supervision,
guarantee deadlock prevention. In special cases, the supervisor will also enforce liveness, in which
case the liveness enforcing supervisor is maximally permissive.

We begin with a short review of Petri net definitions and properties in section 2. Section
3 presents deadlock properties and in section 3.2 some original deadlock enforcement results are
given. Related work appears in [Sreenivas, 1997], a paper concerned with existence of supervisory
policies for liveness enforcement. Section 4.1 outlines the method of enforcing linear constraints
from [Moody, 1998]. The deadlock prevention algorithm is formulated in section 4 and performance
results are given in section 5.

2 Review of Some Petri Net Basic Properties

In this paper we assume that the reader knows the fundamentals of Petri nets. Good introductions
to Petri nets are for instance [Murata], [David] and [Reisig]. This section is meant mainly to
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introduce our notations.

A Petri net structure is a quadruple N = (P, T, F,W ) where P is the set of places, T the
set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the set of transition arcs and W : F → N \ {0}
is a weight function. A marking µ of the Petri net structure is a map µ : P → N. A Petri net
structure N with initial marking µ0 is called a Petri net, and will be denoted by (N , µ0). For
simplicity, we may denote sometimes by Petri net a Petri net structure.

It is useful to consider a marking both as a map and as a vector. These requirements are
not necessarily conflicting, because there are authors ([Reisig]) that define vectors as maps de-
fined on a set A instead of {1, 2, . . . m}, as is customary. The marking vector is defined to be
[µ(p1), µ(p2), . . . µ(pn)]

T , where p1, p2, . . . pn are the places of the net enumerated in a chosen (but
fixed) order and µ the current marking. The same symbol µ will denote a marking vector. The
marking vector of a Petri net may be regarded as the state variable of the Petri net. An equivalent
way of saying that place p has the marking µ(p) is that p has µ(p) tokens.

Figure 1 could be used to illustrate the graphical representation of Petri nets. A token is
represented by a bullet. The marking vector in figure 1(b) is [0, 1, 1]T . An arc weight is indicated
near the arc when it is not one. For instance, in figure 1(b) W (p3, t1) = 2 and W (t2, p2) = 4.

The preset of a place p is the set of incoming transitions to p: •p = {t ∈ T : (t, p) ∈ F}. The
postset of a place p is the set of outcoming transitions from p: p• = {t ∈ T : (p, t) ∈ F}. p is a
source place if •p = ∅ and a sink place if p• = ∅. Similar definitions apply for transitions. They
are also extended for sets of places or transitions; for instance, if A ⊆ P , •A = ⋃

p∈A
•p, A• = ⋃

p∈A
p•.

We use µ[t to denote that µ enables the transition t and µ[t > µ′ to denote that µ enables t and
if t fires, then the marking becomes µ′. The marking µ′ is reachable from µ if there is a sequence
of markings µ1, . . . µk, µk = µ

′, and a sequence of transitions ti1, . . . tik s.t. µ[ti1 > µ1[. . . tik > µ′.
The set of reachable markings of a Petri net (N , µ) (i.e. the set of markings reachable from the
initial marking µ) will be denoted by R(N , µ).
In a Petri net N = (P, T, F,W ) with m places and n transitions, the incidence matrix is an

m× n matrix defined by D = D+ −D−, where the elements d+ij and d−ij of D+ and D− are

d+ij =W (tj, pi) if (tj, pi) ∈ F and d+ij = 0 otherwise;

d−ij =W (pi, tj) if (pi, tj) ∈ F and d−ij = 0 otherwise.
The incidence matrix allows an algebraic description of the marking change of a Petri net:

µk = µk−1 +D · uk (1)

where uk is called firing vector, and its elements are all zero excepting uk,i = 1, where i corresponds
to the transition ti that fired. We will denote by firing vector also a vector x associated with a
sequence of transitions that have fired, whose entries record how often each transition appears in
the sequence. If x is the firing vector of the transition sequence that led the Petri net from the
marking vector µ0 to µk:

µk = µ0 +D · x (2)
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A vector x is called place invariant if xT ·D = 0. A vector x is called transition invariant
if D · x = 0. The support of a transition invariant x is ||x|| = {tj ∈ T : x(j) 6= 0}.
A Petri net (N , µ0) is said to be deadlock-free if for any reachable marking µ there is an

enabled transition. (N , µ) is in deadlock if no transition is enabled at marking µ.
Let (N , µ0) be a Petri net. A transition t is said to be live if ∀µ ∈ R(N , µ0) ∃µ′ ∈ R(N , µ)

such that t is enabled by µ′. A transition t is dead at marking µ if no marking µ′ ∈ R(N , µ)
enables t. (N , µ0) is said to be live if every transition is live.
A nonempty set of places S ⊆ P is called a siphon if •S ⊆ S• and trap if S• ⊆ •S. An empty

siphon with respect to a Petri net marking µ is a siphon S such that
∑
p∈S
µ(p) = 0. The attribute

“empty” refers to the fact that S has no tokens. A siphon has the property that if for some marking
it is empty, it will be so for all subsequent reachable markings. A trap has the property that if
at some marking it has one token, then for all subsequent reachable markings it will have at least
one token. See figure 1 for siphon examples. In figure 1(a), {p1, p3} and {p2, p4} are traps. S is a
minimal siphon if there is no other siphon S′ (by definition, S′ 6= ∅) such that S′ ⊂ S.

3 Deadlock and Liveness Properties of Petri Nets

This section introduces certain liveness and deadlock properties, focusing on their relation to struc-
tural properties of Petri nets and supervision. All transitions are considered to be controllable and
observable.

3.1 Intrinsic Properties

A Petri net N = (P, T, F,W ) is ordinary if ∀f ∈ F : W (f) = 1. In the specification of our results
we will refer to slightly more general Petri nets in which only the arcs from places to transitions
have weights equal to one. We are going to call such Petri nets PT-ordinary, because all arcs (p, t)
from a place p to a transition t satisfy the requirement of an ordinary Petri net that W (p, t) = 1.

Definition 3.1 Let N = (P, T, F,W ) be a Petri net. We call N PT-ordinary if ∀p ∈ P,∀t ∈
T, if (p, t) ∈ F then W (p, t) = 1.

The basis of the results of this paper comes from a well known necessary condition for deadlock
([Reisig]), namely that a deadlocked ordinary Petri net contains at least one empty siphon. It
can easily be seen that the proof of this result also is valid for PT-ordinary Petri nets and so the
following proposition follows:

Proposition 3.1 A deadlocked PT-ordinary Petri net contains at least one empty siphon.
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An example is shown in figure 1(a). A simple way to generalize this result to more general Petri
nets is given in Proposition 3.2. The proof of Propositions 3.1 and 3.2 are similar.

Proposition 3.1 shows that deadlock might be prevented if it can be ensured in a nonblocking
way that no siphon ever loses all its tokens. The condition in Proposition 3.1 is only necessary. The
example of figure 1(c) illustrates that the condition of Proposition 3.1 is not sufficient and figure
1(b) that the result is not applicable to Petri nets more general than PT-ordinary.

(a) (b) (c)

3p 4

5

p

t t
1

p

p

2

2

3

1

1t 2

3t

4t

2p

p3

t 1

t 2

t 3
p1

p

t

4p3p

p21
t

p

2

2

3

4

Figure 1: (a) A deadlocked PT-ordinary Petri net. An empty siphon is {p1, p4, p5}. (b) A dead-
locked Petri net with no empty siphon which is not PT-ordinary. (c) A deadlock-free Petri net (for
the marking displayed) with an empty siphon – {p1, p3}.

Definition 3.2 (cf. [Barkaoui]) Let N be a Petri net and M a marking. N is said to be well-
marked for M if in every siphon there is at least a token.

Definition 3.3 Let N be a Petri net and MI be a set of initial markings. A siphon S is said to
be controlled with respect toMI if ∀µ0 ∈MI , ∀µ ∈ R(N , µ0):

∑
p∈S
µ(p) ≥ 1.

A controlled siphon contains for all reachable markings at least one token. A trap controlled
siphon is a siphon that includes a trap. Recalling the trap property, for all markings such that
the trap has one token, the siphon is controlled.

We define an invariant controlled siphon as a siphon S of a Petri net N with the property
that N has a place invariant x such that for all i = 1, 2, . . . |P |, if x(i) > 0 then pi ∈ S. It is easy
to show that for all initial markings µ0, such that x

Tµ0 ≥ 1, the siphon S is controlled.
In particular, a siphon which contains a controlled siphon is controlled. Therefore in a Petri

net such that all minimal siphons are controlled, all siphons are controlled. Also, by Proposition
3.1, a PT-ordinary Petri net is deadlock-free if all its siphons are controlled. This is not true for
more general Petri nets. The following result is also in [Barkaoui, 1996].
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Proposition 3.2 A deadlocked Petri net with marking µ has at least one siphon S such that ∀p ∈ S
∃t ∈ p• with W (p, t) > µ(p).

Proof: Let S be the set of all places p such that ∃t ∈ p• : µ(p) < W (p, t). Then, ∀t ∈ T ,
t ∈ S• ⇒ T ⊆ S•. Obviously, •S ⊆ T ⇒ •S ⊆ S•, and so S is a desired siphon. 2

Figure 1(b) shows a deadlocked Petri net. There are two minimal siphons: S1 = {p1, p2} and
S2 = {p2, p3}. The marking of p3 does not prevent t2 from firing but does prevent t1. The marking
of p2 does not prevent t1 but prevents t3. For the current marking [0, 1, 1], both siphons S1 and S2
satisfy the necessary condition of the proposition. For the deadlock the marking [0, 0, 2], only one
of them satisfies it. The requirement of Proposition 3.2 seems difficult to relax. For instance, it is
not true that if in all minimal siphons S, if ∃p ∈ S ∀t ∈ p •∩ •S, µ(p) ≥W (p, t) then the Petri net
is not in deadlock, as it could be checked in figure 1(b).

Loss of liveness is a less severe form of deadlock, where some actions can no longer happen while
others may still be possible. Deadlock implies loss of liveness. An empty siphon is a necessary
and not a sufficient condition for deadlock, while for loss of liveness it is a sufficient but not a
necessary condition. Commoner’s Theorem states that in an ordinary free choice net N , if there
are dead transitions for a marking µ, then there is a reachable marking µ′ ∈ R(N , µ) such that
a siphon is empty ([Reisig, p.103]). Theorem 3.1 is the generalization to asymmetric choice nets.
An asymmetric choice net is a Petri net N = (P, T, F,W ) with the property that ∀p1, p2 ∈ P ,
p1 • ∩p2• 6= ∅ ⇒ p1• ⊆ p2• or p2• ⊆ p1•.

Theorem 3.1 [Barkaoui,1996] An asymmetric choice net (N , µ0) such that ∀p ∈ P ∀t ∈ p•:
W (p, t) = V (p) for some V : P → N, is live if and only if for all siphons S, ∀µ ∈ R(N , µ0) ∃p ∈ S
such that µ(p) ≥ V (p).

3.2 Conditions for Deadlock Prevention and Liveness Enforcement

Definition 3.4 Let N = (P, T, F,W ) be a Petri net,M the set of all markings of N and U ⊆M.
A supervisory policy Ξ is a function Ξ : U → 2T that maps to every marking a set of transitions
that the Petri net is allowed to fire. The markings inM\ U are called forbidden markings.

We denote by R(N , µ0,Ξ) the set of reachable markings when (N , µ0) is supervised with Ξ. It
is known that if (N , µ0) is live, then (N , µ) with µ ≥ µ0 may not be live. The same is true for
deadlock-freedom, as shown in figure 2. The following result shows that if liveness is enforcible at
marking µ or if deadlock can be prevented at µ, then this is also true for all markings µ′ ≥ µ.

Proposition 3.3 If a supervisory policy Ξ which prevents deadlock in (N , µ0) exists, then for
all µ ≥ µ0 there is a supervisory policy which prevents deadlock in (N , µ). The same is true for
liveness enforcement.
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Proof: Let µ1 ≥ µ0. A supervisory policy for (N , µ1) is Ξ1 defined as follows:

Ξ1(µ+ µ1 − µ0) =
{
Ξ(µ) ∩ Tf (µ) for µ ∈ R(N , µ0)
∅ otherwise

where Tf (µ) denotes the transitions enabled by the marking µ, apart from the supervisor. 2

(b)(a)
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t

p 2p p3

p

p 5

t 1

t 2

t 3

t 4

p6

4 p

4

3

3t

2t

1t

5p4p

p

p2

11p

Figure 2: A Petri net that for the initial marking µ0 shown in (a) is live, and for the initial marking
µ ≥ µ0 shown in (b) is not even deadlock-free.

Definition 3.5 [Murata] A Petri net is said to be (partially) repetitive if there is a finite
marking M0 and a firing sequence σ from M0 such that every (some) transition occurs infinitely
often in σ.

Theorem 3.2 [Murata] A Petri net is (partially) repetitive if and only if a vector x of positive
(nonnegative) integers exists, such that D · x ≥ 0, x 6= 0.

Proof: “⇒” (This part of the proof which does not appear in [Murata] is given to help the proofs
of Theorem 3.3 and Corollary 3.3.) In this proof the marking is regarded as the marking vector. Let
U be the set of transitions which appear infinitely often in an infinite firing sequence σ enabled for
some finite marking M0. We are to prove that a vector of nonnegative integers x, x(i) 6= 0 ∀ti ∈ U
exists, such that D ·x ≥ 0. When σ is fired, let M0 be the initial marking, M1 the marking reached
after each transition from U fired at least once, . . . Mk the marking reached after each transition
from U fired at least k times.

Let Vn be a nonempty set of the form Vn = {y ∈ Nn :6 ∃yi ∈ Vn, y 6= yi, y ≥ yi or y ≤ yi}. Next it
is proved by induction that Vn is finite (i.e. it cannot have infinitely many elements). Assume that
any Vn−1 is finite. Then, let ys,n ∈ Vn; Vn ⊆

⋃
k,u

Ck,u, where Ck,u = {y ∈ Nn : y(jk) = u, y(ik) >
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ys,n(ik), 6 ∃yi ∈ Vn, y 6= yi, y ≥ yi or y ≤ yi}, is defined for 0 ≤ u < ys,n(jk) and k = 1, 2 . . . n(n− 1)
corresponds to the possiblities in which ik 6= jk, 0 ≤ ik, jk ≤ n can be chosen. The induction
assumption implies that each Ck,u is finite, because the component jk of the vectors is fixed and
only the remaining n− 1 can be varied. So Vn is finite.
LetM be recursively constructed as follows: initiallyM0 = {M0}; for all i,Mi =Mi−1∪{Mi}

if 6 ∃y ∈M : y ≥Mi or y ≤Mi and elseMi =Mi−1. The previous paragraph showed that ∃n0 ∈ N:
∀k > n0,Mk =Mn0. LetM =Mn0 and M̃ = {y ∈ Nn : ∃yx ∈M, y ≤ yx}. Both are finite sets.
Here it is shown that 6 ∃i, j, 0 ≤ i < j, such that Mi ≤Mj leads to contradiction. Assuming the

contrary, ∀k > 0 ∃yx ∈M such that Mk+n0 ≤ yx and Mk+n0 6= yx. If y ∈ Nn, yx ∈M and yx ≥ y,
then for u such that u 6≥ yx and u 6≤ yx either y ≤ u or both y 6≤ u and y 6≥ u; for u such that u 6≥ y
and u 6≤ y either yx ≥ u or both yx 6≤ u and yx 6≥ u. LetM(1) be constructed in a similar way as

M, but starting fromM(1)
0 = (M∪ {y}) \ {u ∈ M : u ≥ y}, where y = M1+n0 , and using Mn0+i

instead of Mi for M(1)
i . For the same reason the construction ends in finitely many steps. Also,

M(1) ⊆ M̃ and ∃n0,1 such that ∀k > 0 ∃yx ∈M such that Mk+n0,1 ≤ yx and Mk+n0,1 6= yx. So we
can continue in the same way with M(2), . . .M(j), also subsets of M̃. However these operations
cannot be repeated infinitely often: j ≤ N , where N is the cardinality of M̃, becauseM(j) contains

at least one element from M̃ \
j−1⋃
i=1
M(i). (This is so because y ≤ u, y 6= u, u ∈ M(i) ⇒ y /∈ M(i),

also u ∈ M(i) \M(i−1) ⇒ ∃v ∈ M(i−1): v ≥ u, hence ∃u ∈ M(i): y ≤ u implies ∃v ∈ M: y ≤ v.)
So, M(j+1) cannot be constructed for some j, which implies M1+n0,j 6≤ u, ∀u ∈ M(j), which is
contradiction.

Therefore ∃j, k, j < k, such that Mj ≤Mk. Let x = qk − qj. Then Mk −Mj ≥ 0⇒ D · x ≥ 0,
and by construction x ≥ 0 and x(i) > 0 ∀ti ∈ U .
“⇐” [cf. Murata] Now consider the finite firing sequence σ1 in which we fire x(1) times t1,

then x(2) times t2, and so on. Let n be the dimension of x, X =
n∑
i=1
x(i) and qi for i ∈ 1,X the

firing vectors after each transition from σ1 is fired (note that qX = x). Then the initial marking
defined by M0(k) = max{0,− min

i∈1,X
{(D · qi)(k)}}, k = 1, n, enables σ1. Since MX = M0 + D · x,

and so MX ≥M0, MX enables σ1 too. Now it is clear that M0 enables σ = σ1σ1σ1 . . ., which is an
infinite sequence in which each transition tk s.t. x(k) 6= 0 appears infinitely often, and so the net
is (partially) repetitive. 2

In general, it may not be possible to enforce liveness or to prevent deadlock in an arbitrary, given,
Petri net. This may happen because the initial marking is inappropriate or because the structure
of the Petri net is incompatible with the supervision purpose. The next corollary characterizes the
structure of Petri nets that allow supervision for deadlock prevention and liveness enforcement,
respectively. It shows that Petri nets in which liveness is enforcible are repetitive, and Petri nets
in which deadlock is avoidable are partially repetitive.

Corollary 3.1 Let N = (P, T, F,W ) be a Petri net.
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(a) Initial markings µ0 exist such that deadlock can be prevented in (N , µ0) if and only if N is
partially repetitive.

(b) (cf. [Sreenivas, 1997]) Initial markings µ0 exist such that liveness can be enforced in (N , µ0)
if and only if N is repetitive.

Proof: (a) If deadlock can be avoided in (N , µ0) then µ0 enables some infinite firing sequence σ,
and by definition N is partially repetitive.
On the other hand, if N is partially repetitive, then by theorem 3.2 there is a nonnegative

transition invariant x, x 6= 0 such that Dx ≥ 0. Let σx be a firing sequence associated to a firing
vector q = x and let q1 denote the firing vector after the first transition of σx fired, q2 after the
first two fired, and so on to qk = q. If the rows of the incidence matrix D are d

T
1 , d

T
2 , . . ., d

T
|P |, then

a marking which enables σx is

µ0(pi) = −min(0, min
j=1...k

dTi qj) i = 1 . . . |P | (3)

At least one deadlock prevention strategy exists for µ0: to allow only the firing sequence σx, σx, σx, . . .
to fire. This infinite firing sequence is enabled by µ0 because µ0 +Dx ≥ µ0 and µ0 enables σx.
(b) The proof is similar to (a). 2

Corollary 3.2 Let N = (P, T, F,W ) be a Petri net and D its incidence matrix. Let σ1 and σ2 be
firing sequences and (P1), (P2) the two predicates below:

(P1) : (∃σ1 ∃µ′1, µ1 ∈ R(N , µ) s.t. µ1[σ1 > µ′1 and µ′1 ≥ µ1)
(P2) : (∃σ2 ∃µ′2, µ2 ∈ R(N , µ) s.t. µ2[σ2 > µ′2, µ′2 ≥ µ2 and all transitions of T appear in σ2)

(a) Deadlock can be prevented in (N , µ) if and only if (P1) is true.
(b) Liveness can be enforced in (N , µ) if and only if (P2) is true.
(c) (i) Nonzero nonnegative integer vectors x exist such that D · x ≥ 0 and all of them have no

null entries if and only if deadlock prevention enforces liveness.

(ii) Consider an arbitrary initial marking µ0. All supervisory policies which prevent deadlock
in (N , µ0) and which are more permissive than any supervisory policy which enforces
liveness in (N , µ0), enforce liveness as well if and only if for all markings µ ∈ R(N , µ0),
if (P1) is true then (P2) is true.

Proof: (a) If (P1) is true, then a deadlock prevention strategy is to allow only a firing sequence
that leads from µ to µ1, and then only the infinite firing sequence σ1, σ1, σ1, . . .. Furthermore, if
deadlock can be prevented, N is partially repetitive by Corollary 3.1(a), so x ≥ 0 exists such that
x 6= 0 and Dx ≥ 0, and following the proof of Corollary 3.1(a), a marking µ can be chosen as in
equation (3) for the sequence σx. Then (P1) is true by taking µ1 = µ and σ1 = σx.
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(b) The proof is similar to (a).

(c) (i) “⇒” Let µ0 be the initial marking and let Ξ be an arbitrary supervisory policy which
prevents deadlock in (N , µ0). By part (a), (P1) is true for all µ ∈ R(N , µ0,Ξ). Let x1 be the firing
vector associated to the firing sequence σ1 from (P1) for some marking µ that was reached. In (P1),
µ′1 ≥ µ1 implies Dx1 ≥ 0, so x1 does not contain null elements. Hence σ1 includes all transitions
of the net. Because µ was arbitrary, and µ1 reached from µ enables σ1, this shows that for all
reachable markings µ no transition is dead. So Ξ also enforces liveness.

(i) “⇐” Assume the contrary. Then there is a nonnegative integer vector x such that Dx ≥ 0
and x has some of its elements zero. Let Ξ be a deadlock prevention policy for (N , µ0), where µ0
is such that it enables σx, a transition sequence that contains x(i) times each of the transitions ti
of the net. If Ξ is defined to allow only the repeated firing σxσxσx . . ., then deadlock is prevented
but liveness is not enforced, since σx does not include all transitions of the net. Contradiction.

(ii) “⇒” Assume the contrary. Then there is a supervisory policy Ξ which prevents deadlock
and ∃µ ∈ R(N , µ0,Ξ) such that (P1) is true and (P2) is not. Then by part (b), (N , µ) cannot be
made live, so Ξ does not enforce liveness, which is a contradiction.

(ii) “⇐” Let Ξ be a supervisory policy which prevents deadlock in (N , µ0). The proof checks
that for all µ ∈ R(N , µ0,Ξ) there is a transition sequence enabled by µ whose firing is accepted
by Ξ and which includes all transitions. Let µ ∈ R(N , µ0,Ξ). Because deadlock is prevented, (P2)
is true since (P1) is true. Let ΞL be the supervisory policy that enforces liveness in (N , µ0) by
firing σσ′σ2σ2σ2 . . ., where µ0[σ > µ[σ′ > µ2, and σ2 and µ2 are the variables from (P2). Because
Ξ is more permissive than any liveness enforcing policy, Ξ is more permissive than ΞL. Thus Ξ
allows σ′σ2 to fire from µ. Therefore all transitions appear in some firing sequence enabled by µ
and allowed by Ξ. 2

The important part of Corollary 3.2 is part (c), because it gives some insight about the relation
between deadlock prevention and liveness enforcement. Figure 3(a) shows an example for part (c)-
(i), in which all nonnegative vectors x such that Dx ≥ 0 are a linear combination with nonnegative
coefficients of [1, 2, 1, 1]T and [2, 3, 3, 3]T . Figure 3(b) shows an example for part (c)-(ii) of Corollary
3.2. Indeed, all markings µ that enable any of t1, t2 or t4 satisfies (P2). Also, a marking that enables
only t3 either leads to deadlock or enables the sequence t3, t4 and hence satisfies (P2). For instance,
the deadlock prevention policy that repeatedly fires t2, t1 does not enforce liveness because it does
not satisfy the requirement of Corollary 3.2(c)-(ii) to be more permissive than any liveness enforcing
supervisors.

Let Ξ denote a supervisory policy. Let R(N , µ0,Ξ) denote the set of reachable markings from
initial marking µ0, when (N , µ0) is supervised by Ξ.

Corollary 3.3 Consider a Petri net N = (P, T, F,W ) which is not repetitive. Then at least one
transition exists such that for any given finite initial marking it cannot fire infinitely often. Let TD
be the set of all such transitions. There are initial markings µ0 and a supervisory policy Ξ such
that ∀µ ∈ R(N , µ0,Ξ), no transition in T \TD is dead.
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Figure 3: Examples for Corollary 3.2(c): (a) for part (i) and (b) for part (ii)

Proof: There is an integer vector x ≥ 0 with maximum support such that Dx ≥ 0, which means
that for all integer vectors w ≥ 0 such that Dw ≥ 0, ‖w‖ ⊆ ‖x‖. Indeed if y ≥ 0, z ≥ 0 are integer
vectors and Dy ≥ 0, Dz ≥ 0, then D(z + y) ≥ 0 and so y + z ≥ 0 and ‖y‖, ‖z‖ ⊆ ‖y + z‖.
If tj ∈ T can be made live, there is a finite marking that enables an infinite firing sequence σ

such that tj appears infinitely often in σ. Therefore, using the argument from the necessity proof
of Theorem 3.2 there is y ≥ 0 such that Dy ≥ 0 and y(j) > 0. Since x has maximum support,
‖y‖ ⊆ ‖x‖ and so tj ∈ ‖x‖. This proves that all transitions that can be made live are in ‖x‖. Next,
the proof shows that all transitions in ‖x‖ can be made live, which implies that TD is nonempty
and T \ TD = ‖x‖.
Let σx be a firing sequence associated with x, i.e. every ti ∈ T appears x(i) times in σx. Then

there is a marking µ0 given by equation (3) which enables the infinite firing sequence σx, σx, σx, . . ..
Also, we may choose Ξ to restrict all possible firings to the former infinite firing sequence, so all
transitions in ‖x‖ can be made live. 2

In Corollary 3.3, TD is nonempty. Otherwise, since all transitions from T \ TD could simulta-
neously be made live, this would imply that N is repetitive, which is a contradiction. A special
case is T \ TD = ∅, when the Petri net is not even partially repetitive, and so deadlock can not be
avoided for any finite marking.

It was already shown that only repetitive Petri nets can be made live. The corollary above shows
that the set of transitions of a partially repetitive Petri net can be uniquely divided in transitions
that can be made live and transitions that cannot be made live. So the liveness property of partially
repetitive Petri nets is that all transitions that can be live are live.

Further on we prove an existence result for supervisors which enforce linear constraints.

Theorem 3.3 Let N be a Petri net. Let Ξ be a quality like liveness, deadlock-freedom, a.o., that
has the property that for any marking µx so that Ξ can be enforced for µx, Ξ can be enforced for
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all markings µ ≥ µx. If Ξ can be enforced in N for some markings, then N can be supervised by
enforcing linear constraints to enforce Ξ for some markings.

Proof: The set of markings acceptable for the supervisory policy Σ enforcing Ξ is a subset of the
set of markings such that Ξ holds in N . We call µ a minimal marking accepted by Σ if there is no
acceptable marking µi s.t. µi ≤ µ and µi 6= µ. LetM be the set of minimal markings accepted by Σ.
We claim thatM is finite. Assume the contrary. Let µk ∈M. Then for all other markings µi ∈M
there are px, py ∈ P (P is the set of places of N ) such that µi(px) > µk(px) and µi(py) < µk(py).
Further on, we reach a contradiction by the same reasoning as in the necessity proof of Theorem
3.2. SinceM is finite, we may find linear constraints which enforce the condition that all reachable
markings µ are in the space µ ≥ µi1 ∨ µ ≥ µi2 ∨ . . . µ ≥ µiN , where M = {µi1 , µi2 , . . . µiN }. For
example a rough solution is to use a single linear constraint given by the inequality µ ≥ µmax,
where µmax(pi) = max

µk∈M
µk(pi) ∀pi ∈ P . 2

4 The Deadlock Prevention Method

4.1 Petri Net Supervisors Based on Place Invariants

This subsection is an outline of results from [Moody, 1998] and [Yamalidou, 1996] for supervisors
based on linear constraints, in the particular case of fully controllable and observable Petri nets.

The control problem considered here is to enforce a set of nc linear constraints to prevent
reaching undesired markings of a Petri net. The constraints are written in a matrix form:

L · µp ≤ b (4)

where L is an integer nc × n matrix (nc - the number of constraints, n - the number of places of
the given Petri net), b is an integer column vector and µp denotes a marking vector.

Let µc be a vector of nc nonnegative slack variables, defined as:

µc = b− L · µp (5)

Let µc0 be the slack variables that correspond to the initial marking µp0, that is µc0 = b−Lµ0. Let
q be the firing vector associated with the transitions that led the Petri net from µp0 to µp and Dp
the incidence matrix, that is µp = µp0 +Dq. So we see that µc = b− L · (µp0 +Dp · q), which also
can be written as:

µc = µc0 + (−LDp) · q (6)

Therefore µc may be regarded as a marking of some additional control places, where the ex-
tended (supervised) Petri net has a marking vector µ = [µTp , µ

T
c ]
T , and an incidence matrix

D = [DTp , D
T
c ]
T , and where Dc = −LDp.

In the supervised net, initial markings µp0 such that L · µp0 > b cannot be considered, since
equation (5) shows that in this case µc0 will not be nonnegative, and it does not make sense in
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classic Petri nets to have places with negative markings. When the constraints are initially satisfied,
the initial marking of the control places may be chosen according to equation (5), and therefore
the constraints will remain satisfied for any reachable marking, since the Dc part of the incidence
matrix prevents any firings which would attempt to make any of the variables of µc negative.

The way the constraints are enforced prevents only forbidden markings to be reached, so the
supervisor is maximally permissive. The next theorem summarizes the construction above:

Theorem 4.1 Let a plant Petri net with controllable and observable transitions, incidence matrix
Dp and initial marking µp0 be given. A set of nc linear constraints Lµp ≤ b are to be imposed. If
b−Lµp0 ≥ 0 then a Petri net controller (supervisor) with incidence matrix Dc = −LDp and initial
marking µc0 = b − Lµp0 enforces the constraint Lµp ≤ b when included in the closed loop system
D = [DTp , D

T
c ]
T . Furthermore, the supervision is maximally permissive.

Proof: See [Moody, 1998] and [Yamalidou]. 2

Because Dc = −LDp, every row of [L, I] is a place invariant of the incidence matrix of the
closed loop system, D.

4.2 Siphon Control Based on Place Invariants

Proposition 3.1 showed that in a PT-ordinary Petri net deadlock is not possible if all siphons are
controlled. This suggests that all siphons should be made controlled siphons. An easy way to make
a siphon controlled is to create a place invariant to control the siphon. This is done below by
adding an additional place to the original Petri net. Early references of this approach for siphon
control are [Barkaoui, 1995] and [Ezpeleta, 1995]. This section presents it as a special case of the
supervision method based on place invariants (section 4.1). The operations described here do not
depend on the fact that the structure they are applied to is a siphon, so they are described in more
general terms.

Let N = (P, T, F,W ) be a Petri net. Given a set of places S, ∑
p∈S
µ(p) ≥ 1 is the desired control

policy. This constraint can be enforced using the methodology of invariant based supervision of
[Moody, 1998], [Yamalidou], outlined in section 4.1, which yields an additional place C, called
control place. The place invariant created is x, such that x(i) = 1 for pi ∈ S, x(iC) = −1 and
x(i) = 0 for all other indices, where iC is the row index of C in the closed loop incidence matrix.
This invariant corresponds to the equation

µ(C) =
∑
pk∈S

µ(pk)− 1 (7)

where the constant (−1) results from the initial marking of the control place. There are several
particular cases:
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(a) •C = ∅ and C• 6= ∅: no transition increases the marking of S and there are transitions which
decrease the marking of S. In this case C alone makes up a minimal siphon which cannot be
controlled (see also [Moody, 1998, p.87-88]).

(b) C• ⊆ •S (in particular C• = ∅): no transition can make S token free. Also, C• ⊆ •S if and
only if S is a trap. Therefore when S is also a siphon, it is (trap) controlled for all initial
markings µ0 that satisfy

∑
p∈S0
µ0(p) ≥ 1.

(c) •C = ∅ and C• = ∅: the marking of S cannot vary, and so there is a place invariant x such
that x(i) = 1 for all pi ∈ S and x(i) = 0 otherwise.

Case (a) detects transitions that cannot be made live when S is a siphon (Corollary 3.3 and Corollary
5.3). Case (b) shows the case when S does not need control. Note that the method depends only
on structural properties of the Petri net. That is, it does not detect whether S does not need
control for some initial markings, but it detects only the case when S does not need control for all
initial markings µ0 such that

∑
p∈S
µ0(p) ≥ 1. Therefore the method when applied to a siphon that is

not a trap, but includes a trap, always produces a control place. The reason that this is correct is
that there are nonzero initial markings of the siphon such that the included trap has null marking;
hence the siphon is not trap controlled for such markings. Another benefit is that a control place
may reveal transitions that cannot be made live (section 4.6).
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Figure 4: Siphon Control Examples. Connections of control places are dashed.

In figure 4(a) there is a single minimal siphon, {p1, p2, p4, p5, p6, p7}. The siphon includes a
trap {p4, p5, p6, p7}, but it is not trap controlled because the marking of the trap is 0. The control
place C prevents firing t1, which would empty the siphon. In figure 4(b) the original Petri net
has two minimal siphons, {p3, p2, p5} and {p1, p3, p4, p5, p6}. Their control places are C1 and C2,
respectively. C1 is an example of case (a). Also, the control place C that results by controlling the
minimal siphon {p2, C2} satisfies •C = ∅ and C• = ∅.
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By Theorem 4.1, the way in which the constraint
∑
p∈S
µ0(p) ≥ 1 was enforced is maximally

permissive. Therefore, because the enforcement of this constraint on a siphon by definition makes
the siphon controlled, there is no other more permissive way to control a siphon. This is not the
only way to provide maximally permissive control of a siphon; however, any other way is equivalent.
An important quality of this technique is that the closed loop remains a Petri net.

4.3 A Transformation of Petri Nets to PT-ordinary Petri Nets

Because Proposition 3.1 in section 3.1 applies to PT-ordinary Petri nets, we are interested in using
a transformation to PT-ordinary Petri nets. In principle Proposition 3.2 could be used instead, but
it is difficult to express its requirement in terms of linear inequalities.

We use a slightly modified form of the transformation from Lautenbach and Ridder (1996), and
we call it the PT-transformation. Let N = (P, T, F,W ) be a Petri net. Transitions tj ∈ T such
that W (p, tj) > 1 for some p ∈ •tj may be split (decomposed) in several new transitions:

The transition tj is split in m = n(tj) transitions: tj,1, tj,2, . . . tj,m. Also, m− 1 new places
are added: pj,1, pj,2, . . . pj,m−1. The connections are as follows:

(i) •tj,1 = •tj and ∀p ∈ •tj,1: W (p, tj,1) = 1
(ii) tj,m• = tj• and ∀p ∈ tj•: W (tj,m, p) =W (tj, p)
(iii) For i = 2 . . . m, p ∈ •tj,i if p = pj,i−1 or if p ∈ •tj and j ≤ W (p, tj); ∀p ∈ •tj,i:

W (p, tj,i) = 1

(iv) For i = 1 . . . m− 1, p ∈ tj,i• if p = pj,i

The PT-transformation consist in splitting all transitions t such that W (p, t) > 1 for some
p ∈ •t. In this way the transformed Petri net is PT-ordinary. A few properties are apparent:

|pj,i • | = | • pj,i| = 1 i = 1 . . . m− 1 (8)

|tj,i • | = 1 i = 1 . . . m− 1 (9)

| • tj,i| = m− i+ 1 i = 1 . . . m (10)

A split transition t is replaced with new places and transitions and so it does not exist as an element
of the set of transitions in the PT-transformed net.

Let PT be the set of places of the transformed net. To a marking µ of the original net we
associate in the transformed net a marking µT such that µT (p) = µ(p) ∀p ∈ P and µT (p) = 0
∀p ∈ PT \ P .
Firing of an unsplit transition tj in the original net corresponds to firing the same transition in

the transformed net. Firing of a split transition tj in the original net corresponds in the transformed
net to firing the sequence tj,1 . . . tj,m in which tj was split. For similar initial markings µ and µT (see
above) the firing sequence σT corresponds to a firing sequence σ, such that every split transition tj
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in σ is replaced in σT by its components tj,1 . . . tj,m, and firing σ in N produces a similar marking
µ′ to the marking µ′T reached by firing σT in the transformed net.

An example is the Petri net of figure 6, that becomes as in figure 7(a) after being PT-
transformed. The transition t2 is replaced by t2,1 and t2,2 and t3 by t3,1 and t3,2. Firing t2 in
the original net (figure 6) corresponds to firing the sequence t2,1, t2,2 in the transformed net (figure
7(a)) and firing t3 to the firing sequence t3,1 and t3,2.

4.4 The Idea of the Method

A deadlocked PT-ordinary Petri net has an empty siphon, by Proposition 3.1. Therefore a PT-
ordinary Petri net which has all minimal siphons controlled, cannot reach deadlock.

Section 4.2 introduced a technique that controls siphons with maximal permissivity. Apparently,
an approach for deadlock prevention would be to control all uncontrolled minimal siphons of a Petri
net. A closer look, however, reveals that this does not guarantee that deadlock is not reached.
Indeed, from Proposition 3.1 it can be deduced that a PT-ordinary Petri net with all siphons
controlled is deadlock-free, but it cannot be deduced that a PT-ordinary Petri net in closed loop
with a supervisor which controls its uncontrolled siphons is deadlock-free. In particular, when the
maximally permissive approach presented in section 4.2 is used, one may find examples in which the
control places which are added to control siphons of the Petri net create new uncontrolled siphons
(for instance, such a Petri net is in figure 5(a)) and do not make the Petri net deadlock-free. The
reason is not that the maximally permissive control of siphons is done through control places and
not some other way, but the fact that a Petri net may have the property that a marking exists such
that all siphons have a token, and all transitions enabled by it, if fired, would empty a siphon.

At this point, if the siphon control method of section 4.2 is used, a natural way to try to
overcome the difficulty mentioned above is to apply the siphon control method again for the new
uncontrolled siphons which were created by controlling the original uncontrolled siphons. The idea
would be that eventually an improved Petri net is obtained such that all siphons are controlled.
The final Petri net is the initial Petri net in closed loop with the supervisor defined by the control
places that were added. The form of an iteration would be:

Use the supervisory control method on each new minimal siphon that has at least one
input transition (i.e. not a minimal siphon that is a source place). For each considered
siphon S, add the control place C only if C• 6⊆ •S.

The purpose of these iterations is to obtain a final Petri net with no uncontrolled siphons, if
possible. So far the possibility that the original Petri net might have source places or that source
places may appear during iterations was ignored. Each source place is by itself a minimal siphon
and such a siphon cannot be effectively controlled. Indeed, the siphon control method of section
4.2 would yield another source place as a control place, and the new source place is a again an
uncontrolled siphon. Corollary 5.3 shows that if such places appear, the initial net cannot be made
live (is not repetitive.) Extensions to deal with the case when source places are present are discussed
in section 4.6. Section 4.7 states the deadlock prevention algorithm.
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Note that without splitting transitions, this iterative procedure modifies the original net only
by adding new places and arcs to the transitions of the initial net. Formally, if we use Ni =
(Pi, Ti, Fi,Wi) to denote the Petri net at the end of iteration i, for any positive integers m, n,
m < n, Pm ⊂ Pn, Tm = Tn, Fm ⊂ Fn and Wm(x) =Wn(x) ∀x ∈ Fm.

4.5 Implicit Inequalities

When control places are successively added by repeated application of the siphon control method of
section 4.2, the set of acceptable markings of the original net is gradually restricted. In this section
we show that to each (minimal) siphon corresponds a linear inequality in terms of the marking of
the original net, which expresses the requirement that the siphon be controlled. For some siphons
this requirement may be satisfied if it is satisfied for the initial marking, while other siphons need a
control place to make sure that all reachable markings will satisfy the constraint. These constraints
are important because the deadlock prevention method assumes that the initial marking satisfies
them, and also restricts the set of reachable markings to the markings that satisfy them. We refer
first to the case where no transition was yet split and the siphon control method was repeatedly
applied for several iterations.

4.5.1 No transitions were split

Let Ni = (Pi, Ti, Fi,Wi) be the Petri net at the beginning of iteration i. Because no transitions
were split, Pi+1 = Pi ∪Ci, for all i, where Ci is the set of control places that were added in iteration
i. Any control place C

(u)
k added at some iteration u enforces the constraint (see equation (7))

µ(C
(u)
k ) =

∑
p∈S(u)k

µ(p) − 1, where S(u)k is the siphon controlled by C
(u)
k . Successively replacing the

expressions of the markings of control places from S
(u)
k added at previous iterations, we eventually

come up with µ(C
(u)
k ) =

∑
pi∈P1

a
(u)
ik ·µ(pi)− c(u)k , which expresses µ(C(u)k ) in terms of the marking of

the places of the original Petri net N1, where a(u)ik , i = 1 . . . |P1| are nonnegative integers, not all 0,
and c

(u)
k is an integer such that c

(u)
k ≥ u. Since µ(C(u)k ) ≥ 0, the inequality enforced by C(u)k is:∑

pi∈P1
a
(u)
ik · µ(pi) ≥ c(u)k (11)

In the case of the siphons S
(u)
j which do not need a control place in order for S

(u)
j to be controlled,

the only requirement is that the constraint
∑
p∈S(u)j

µ(p) ≥ 1 holds true for the initial marking. In

precisely the same way as before, this requirement may be written as∑
pi∈P1

a
(u)
ij · µ0(pi) ≥ c(u)j (12)

where the coefficients have the same properties as before and µ0 is the initial marking of the initial
Petri net N1.
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Any marking of the original net which does not satisfy one or more of the desired constraints
(in the form of equations (11) and (12)) is called a forbidden marking.

Considering the total net, which includes all of the control places added so far, let S be a set of
places (e.g. a siphon). A certain constraint, such as

∑
p∈S
µ(p) ≥ 1, must be placed on S. Let Φ be

the current set of forbidden markings and let ΦS be the set of markings of the original net which do
not satisfy the desired constraint. We say that S is implicitly controlled if ΦS \Φ = ∅. In other
words, S is implicitly controlled when the desired constraint on S holds whenever the inequalities
enforced by the previous control places hold. Therefore, if S is implicitly controlled, a control place
for S is not necessary.

4.5.2 There are split transitions

Eliminating as above the markings of control places, the inequalities are in terms of markings of
the places of the original net and the places that were added by splitting transitions. If Ps denotes
the set of places added through transition splits, the final form of the inequalities is obtained by
replacing µ(p) = 0 for all p ∈ Ps. The reason in doing so is that by simulating a Petri net with
a PT-transformed net, only markings µ of the latter such that µ(p) = 0 for all p ∈ Ps have a
counterpart in the original Petri net (see section 4.3).

4.6 Extensions to Deal with Source Places

If the method would be based only on iterating the operations of sections 4.4 and 4.3, it would
not handle efficiently Petri nets which cannot be made live for any finite marking, because in this
case it is likely that source control places will appear even if the original Petri net does not have
any source places. As discussed at the end of section 4.4, source places are minimal siphons which
cannot efficiently be controlled by the siphon control method of section 4.2, because a control place
of a source place is also a source place and hence creates a new uncontrolled minimal siphon.

It is important to consider the source places. If they are not considered for control, even if all
others siphons are controlled, deadlock might still be reachable. Indeed, by Corollary 3.3 there is
a nonempty set of transitions TD with the property that any transition in TD cannot be made live
for any finite marking if the Petri net cannot be made live for any finite marking. This means that,
given a finite initial marking, after a finite number of firings of transitions from TD, all transitions
of TD are dead and the Petri net will behave as if it would be reduced by removing all transitions
in TD. Note that all transitions connected to source places appear in TD, but not all transitions of
TD are connected to source places in the original net. Because the reduced net may have siphons
which do not appear in the original Petri net, it is clear why deadlock might still be reachable if
source places are ignored.

Therefore the following extensions are added to the deadlock prevention method. The method
will partition the net of each iteration, which will be denoted as the total net, into two subnets:
the inactive subnet and the active subnet. At every iteration, if one or more transitions are
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detected as transitions which cannot be made live for any finite marking, they are partially moved
from the active subnet to the inactive subnet. In this way any siphon structure which might appear
when those transitions become dead are detected and controlled, if needed. Basically, the inactive
subnet contains the part of the Petri net which was detected as going to deadlock for any finite
marking. The active subnet can be made live if all transitions which cannot be made live in the
total net have been removed from it.

At the beginning of iteration k − 1, let Nk,1, NAk,1 and N Ik,1 denote the total Petri net and
respectively its active and inactive subnets. If NAk,1 has source places, an iterative procedure is
applied to update the subnets. Iterations are necessary because removing transitions or transition
arcs from the active subnet may produce new source places. The form of these iterations is:

1. All source places of the active subnet are moved to the inactive subnet. For every transition
t in the postset of a source place, the transition t and all its arcs are moved to the inactive
subnet. Any place p such that an arc connected to it was moved in the inactive subnet is
copied there.

The formal description of these operations is given below, where the operator • always is
taken with respect to NAk,i:
P Ik,i+1 = P

I
k,i ∪ {p ∈ PAk,i : ∃p′ ∈ •(•p) ∪ •(p•) s.t. • p′ = ∅} ∪ {p ∈ PAk,i : •p = ∅}

PAk,i+1 = P
A
k,i \ {p ∈ PAk,i : •p = ∅}

T Ik,i+1 = T
I
k,i ∪ {t ∈ TAk,i : ∃p ∈ •t, • p = ∅}

TAk,i+1 = T
A
k,i \ (T Ik,i+1 \ T Ik,i)

F Ik,i+1 = F
I
k,i ∪ {(p, t) ∈ FAk,i : ∃p′ ∈ •t, • p′ = ∅} ∪ {(t, p) ∈ FAk,i : ∃ p′ ∈ •t, • p′ = ∅}

FAk,i+1 = F
A
k,i \ (F Ik,i+1 \ F Ik,i)

W Ik,i+1 : F
I
k,i+1 → N is defined by W Ik,i+1(x) =Wk,i(x)

WAk,i+1 : F
A
k,i+1 → N is defined by WAk,i+1(x) =Wk,i(x).

This construction keeps the total net unchanged: Nk,i = Nk,i+1.
2. Step 1 is repeated until the active subnet has no source places.

The relation between the total net Nk and its subnets N Ik and NAk is: Pk = P Ik ∪PAk , Tk = T Ik ∪
TAk , Fk = F

I
k ∪ FAk and Wk : Fk → N is given by Wk(x) =WAk (x) for x ∈ FAk and Wk(x) =W Ik (x)

for x ∈ F Ik . By construction, F Ik ∩ FAk = ∅, T Ik ∩ TAk = ∅, but P Ik and PAk may not be disjoint sets.
If the total net has no source places, the active subnet is equal to the total net and the inactive

subnet is empty, that is P I1 = ∅, T I1 = ∅, F I1 = ∅.

4.7 The Deadlock Prevention Algorithm

LetN0 = (P0, T0, F0,W0) be the initial Petri net. The first iteration begins withN1 = (P1, T1, F1,W1),
which is the same as N0 if the latter is PT-ordinary, or else it is the PT-transformed net. The
methodology of section 4.6 is used to compute the initial inactive subnet N I1 and the active subnet
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NA1 . The algorithm is iterative. In every iteration inequalities of the form
∑
p∈S
µ(p) ≥ 1 are enforced

on sets of places S in the total net. In every iteration the active subnet is searched for new minimal
siphons. A siphon is not considered to be new if it differs from an old siphon only by additional
places resulted from transition split operations (Proposition 5.4). In particular, when the active
subnet does not include a smaller siphon, the algorithm regards the whole subnet as a minimal
siphon.

The purpose of the iterative process below is to produce two sets of linear constraints for the
original net in the form Lµ ≥ b and L0µ ≥ b0, where L and L0 are integer matrices with |P0|
columns and b and b0 are integer column vectors. The description of the algorithm iteration is
given below:

The current iteration (let it be number k) modifies the nets resulted in the previous iteration:
N Ik , NAk and Nk.

1. If no new minimal siphon of the active subnet is found in the total net, the algorithm termi-
nates. (In the first iteration every siphon is considered to be new.) Otherwise it continues
with the next step.

2. For every new minimal siphon S of the active subnet the supervisory control method of section
4.2 is used to add the invariant needed to enforce

∑
p∈S
µ(p) ≥ 1 in the total net. Let C be the

control place which would result and lµ ≥ c the inequality in terms of the marking of the
original Petri net which is associated to the requirement that

∑
p∈S
µ(p) ≥ 1 (see section 4.5).

There are two cases:

(a) the methodology of section 4.2 would yield C• ⊆ •S. In this case S does not need
supervision and C is not added to the total net. The linear constraint (l, c) is included in
(L0, b0).

(b) the methodology of section 4.2 would yield C• 6⊆ •S. In this case the place C is added to
the total net according to the method of section 4.2. The linear constraint (l, c) is included
in (L, b). The two subnets are updated as follows:

(i) The active subnet: C is added to the set of places. All transition arcs of the form (C, t)
and (t, C) such that t ∈ TAk are copied in the set of transition arcs.

(ii) The inactive subnet: the arcs of the total subnet which were not copied in the active
subnet are copied in the set of transition arcs and C in the set of places.

3. The two subnets are updated as shown in section 4.6, because source places may have appeared
in the active subnet in the previous step.

4. If the active subnet is no longer PT-ordinary, the transitions of the active subnet which do not
comply with this requirement are split (section 4.3). The final nets of iteration k are denoted
by N Ik+1, NAk+1 and Nk+1. The algorithm proceeds with the next iteration.
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After the iterative process above terminates, a method that removes redundant constraints may
be used to simplify (L, b). The inequalities given by (L, b) (in terms of markings of the original
net N0) are enforced on N0 with the invariant based methodology of section 4.1. For all initial
markings µ0, such that Lµ0 ≥ b and L0µ0 ≥ b0, deadlock prevention in the closed loop Petri net
is guaranteed for the condition of Theorem 5.2(d). The difference between the constraints (L, b)
and (L0, b0) is that (L, b) need to be enforced by supervision, while (L0, b0) need not. (L0, b0) are
guaranteed by the structure of the original Petri net in closed loop with the supervisor enforcing
(L, b) for all initial markings µ0 of the original Petri net that satisfy L0µ0 ≥ b0 in addition to
Lµ ≥ b. The algorithm is allowed to start with initial constraints of the type (L0, b0), to which
it may add other constraints, as necessary. However, without reducing the generality (see section
5.3.1), no initial constraints of the form (L, b) are allowed.

4.8 A Special Case: Repetitive Petri Nets

Repetitive Petri nets have the property that finite markings exist such that liveness is enforcible via
supervision. So they do not have source places and source places cannot appear in the iterations
of the deadlock prevention algorithm (Corollary 5.3). Because of this there is no need to partition
the Petri net into the two subnets, because the active subnet always is equal to the total net and
the inactive subnet always is empty. In this case the description of the algorithm is simplified by
removing parts (i) and (ii) from step 2(b) and step 3.

The deadlock prevention algorithm simplified for repetitive Petri nets is similar to the algorithm
from [Lautenbach, 1996]. A difference is that in [Lautenbach, 1996] the supervised Petri net is built
by collapsing transitions produced through splitting. This operation is equivalent in our method
to enforcing the set of linear inequalities. The approach we use better suits our purpose not to
assume that the initial marking is known. In our approach, the requirements on the initial marking
appear clearly stated: Lµ0 ≥ b and L0µ0 ≥ b0. Another difference is that the transformation to
PT-ordinary Petri nets is used in our approach in a slightly simplified form, which reduces the
number of siphons.

4.9 Illustrative by Examples

Example 4.1 We consider the Petri net of figure 5(a), which is repetitive. Indeed, the marking
reached by firing the sequence t2, t1, t4, t5, t4, t2, t3, t4 is equal to the initial marking.

The original net has two minimal siphons: {p1, p2} and {p3, p4}. The method of section 4.2
yields two control places for each of the two siphons, C1, C2 respectively, and C1• 6= ∅, C2• 6= ∅.
The net after the first iteration is shown in figure 5(b). If µ0 is the initial marking and if the initial
markings chosen for C1 and C2 are µ0(C1) = µ0(P1)+µ0(P2)−1, and µ0(C2) = µ0(P3)+µ0(P4)−1,
then for any reachable marking µ:

µ(C1) = µ(P1) + µ(P2)− 1 (13)

µ(C2) = µ(P3) + µ(P4)− 1 (14)
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As shown in section 4.2, the previous two equations correspond to the enforcement of the constraints
µ(P1) + µ(P2) ≥ 1 and µ(P3) + µ(P4) ≥ 1. The matrices L and b at the end of the iteration below
reflect equations (13) and (14).

L =

[
1 1 0 0
0 0 1 1

]
b =

[
1
1

]

At the second iteration the only new minimal siphon is {C1, C2}. Using the equations (13),(14),
the constraint µ(C1) + µ(C2) ≥ 1 is equivalent to µ(P1) + µ(P2) + µ(P3) + µ(P4) ≥ 3. The siphon
{C1, C2} is not implicitly controlled by C1 and C2, since µ(P1) + µ(P2) ≥ 1 and µ(P3) + µ(P4) ≥ 1
do not imply µ(P1)+µ(P2)+µ(P3)+µ(P4) ≥ 3. Using again the method of section 4.2 for {C1, C2},
we get a new control place C3 with initial marking µ0(C3) = µ0(C1) + µ0(C2) − 1, which implies
that for any reachable marking µ:

µ(C3) = µ(P1) + µ(P2) + µ(P3) + µ(P4)− 3 (15)

The resulting net (figure 5(c)) has no new minimal siphons, therefore the algorithm terminates.
The matrices L and b after the second iteration are:

L =


 1 1 0 00 0 1 1
1 1 1 1


 b =


 11
3




Because L and b cannot be simplified, the supervised net for deadlock prevention is the same as
net as that of figure 5(c). By Theorem 5.2, the supervised Petri net is deadlock-free for all initial
markings µ0, such that Lµ0 ≥ b. In this example the matrices L0 and b0 are empty. 2

Example 4.2 Consider the Petri net of figure 6, which is not PT-ordinary. Three transitions
cannot be made live, for any finite marking: t1, t2, t3. At the beginning, because no source places
are present, the active subnet is equal to the PT-transformed net (figure 7(a)), while the inactive
subnet is empty.

The first iteration begins with the PT-transformed net. There is a single minimal siphon,
{p1, p2, p3}. A control place C1 is added to the total net (figure 7(e)). Because C1 is a source place,
at the end of the iteration there is a nonempty inactive subnet. The active and inactive subnets
are shown in figure 7(b) and (c). The inequality associated with C1 is µ(p1) + µ(p2) + µ(p3) ≥ 1,
so at the end of this iteration L = [1, 1, 1] and b = 1.

In the second iteration the active subnet has a single siphon, {p1, p2}. The siphon is uncon-
trolled, since µ(p1) + µ(p2) ≥ 1 is not implied by µ(p1) + µ(p2) + µ(p3) ≥ 1. The control place C2
which is added is also a source place. At the end of the iteration, we have the same active subnet
(figure 7(a)) and a different inactive subnet (figure 7(d)). Then the algorithm terminates, since
there is no new minimal siphon in the active subnet. The matrices L and b after iteration two are:

L =

[
1 1 1
1 1 0

]
b =

[
1
1

]
which can be simplified to L = [1, 1, 0] and b = 1. The supervised net is shown in figure 8. By
Theorem 5.2 it is deadlock-free for all initial markings µ0 such that Lµ0 ≥ b. 2
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Figure 5: Example 4.1: (a) the original net, (b) after one iteration, (c) the final net. C1 is a control
place for the siphon {p1, p2}, C2 for {p3, p4} and C3 for {C1, C2}.
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Figure 6: The initial Petri net of Example 4.2

5 Properties

5.1 Basic Properties of the Method

5.1.1 Introduction and Notations

In the deadlock prevention algorithm, we start with a Petri net N0 = (P0, T0, F0,W0) that may not
be PT-ordinary. New Petri nets Ni = (Pi, Ti, Fi,Wi), i ≥ 1, are derived in the iterative process.
The only operations of an iteration that modify the structure of the total net are the addition of a
new control place (section 4.2) and transition split (section 4.3).

Adding control places does not modify the set of transitions. The set of places is increased
by the set of new control places, and the set of transition arcs by the new arcs which connect
the control places to already existing transitions. The old arcs have unmodified weights; new arcs
connecting the new control places may have weights greater than one. If a weight of an arc entering
a transition is greater than one, the Petri net is not PT-ordinary and transitions not conforming
to the requirement may be split.

When a transition is split, it is replaced by a string of places and transitions. The transition
that was split does not appear in the modified Petri net, and firing the old split transition is now
equivalent to firing the sequence of transitions that replaced it. Let TR be the set of transitions of
the modified net that appeared by splitting and TS the set of transitions that were split. Also, let
PR be the set of places generated by transition split. Then, Pi = P0∪PR∪C and Ti = (T0\TS)∪TR,
where C is the set of control places that were added.
If t ∈ Ti and in iteration i it is split, and so t /∈ Ti+1, then σi,i+1(t) will denote the replacing

sequence of transitions. If t is not split, then σi,i+1(t) = t. If x = t1 . . . tk is a sequence of transitions,
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Figure 7: Example 4.2: (a) the active subnet at the beginning of iteration one; (b) the active subnet
after the first iteration, which remains the same after the second iteration; (c), (d) the inactive
subnet after the first iteration and the second iteration, respectively; (e) the total net after the first
iteration; (f) the total net after the second iteration.
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Figure 8: The Petri net of Example 4.2, supervised for deadlock-freedom

σi,i+1(x) is the sequence that enumerates the sequences of σi,i+1(t1) . . . σi,i+1(tk). So:

σi,i+1(x) =



x if x ∈ Ti+1 ∩ Ti
replacement sequence if x ∈ Ti \ Ti+1
σi,i+1(t1) . . . σi,i+1(tk) if x = {tj}j=1...k, tj ∈ Ti for j = 1 . . . k

where Ti \ Ti+1 corresponds to the set of transitions which were split, and Ti+1 ∩ Ti to the set of
transitions which were not split in iteration i.

Another notation is σk,i(t), which accounts for all transitions split in iterations 1, 2 . . . i− 1. If
t was split in iteration k ≤ j < i, then σi(t) is the replacement of t in Ni, and not in Nj+1, which
is σj+1(t). The difference is that some transitions which appeared in σj+1(t) may have been split
from iteration j + 1 to i− 1, and thus σi(t) uses their replacement. This can be written as follows

σk,i(x) = σi−1,i(σi−2,i−1(. . . σk,k+1(x)...))

where x is a transition or a sequence in Tk. In particular, σ0,i considers all transitions which were
split beginning with the original Petri net N0.
The notations of Petri nets which are used are: N0 = (P0, T0, F0,W0) – the initial Petri net, N1 =

(P1, T1, F1,W1) – N0 PT-transformed, Ni = (Pi, Ti, Fi,Wi) – the Petri net produced by iteration
i− 1 for i ≥ 2, N Ii = (P Ii , T Ii , F Ii ,W Ii ) – the inactive subnet of Ni and NAi = (PAi , TAi , FAi ,WAi ) –
the active subnet of Ni.

5.1.2 Properties

Proposition 5.1 Let N Ik , NAk and Nk be the inactive subnet, the active subnet and the total
subnet after iteration number k − 1.
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(a) Pk ⊆ Pk+1 for all k ≥ 0.
(b) Any p ∈ P Ik \PAk has in Nk the property that •p ⊆ T Ik .
(c) Consider the step 2 of an iteration and let C be a control place added to the total net with
regard to a minimal siphon S of the active subnet, NAk . Then S is controlled by C in the
active subnet (considered as an independent net.)

Proof: (a) By construction, control places are added to the total net and new places may be
created by transition split. In this way Pk+1 = Pk ∪ Ck ∪ PS,k, where Ck is the set of control places
added in iteration k and PS,k is the set of places resulted from transition split in iteration k.

(b) Immediate consequence of the construction from section 4.6.

(c) If •C and C• are considered in the total net, the arcs of the form (C, t) and (t, C) of the
total net which would appear in the active subnet are limited to (C, t) with t ∈ C • ∩TAk and (t, C)
with t ∈ •C ∩ (TAk \ T Ik ) (TAk ∩ T Ik can only be sink transitions in the active subnet). Since these
arcs (C, t) and (t, C) are also obtained by applying the methodology of section 4.2 directly in NAk ,
it follows that C is a control place for S in the active subnet. 2

In the previous proposition note that part (b) considers the active subnet before the update that
the algorithm makes at step 3; C may remain or not in the active subnet after step 3, depending
on whether or not C is not a source place in the active subnet.

Several properties also related to transition splitting are given in the next two propositions.

Proposition 5.2 Let tx ∈ T0 and C be a control place added before some iteration m > 1. Assume
that in the iteration number m − 1 tx is split, σ0,m(tx) = tx,1, tx,2, . . . tx,k and the places in the
replacing sequence are px,1, px,2 . . . px,k−1.

(a) If C ∈ •tx,i then C ∈ •tx,1.
(b) If C ∈ tx,i• then i = k.
(c) •tx,i \ {px,i−1} ⊆ •tx,1 for all 1 < i ≤ k.

Proof: The proof is by induction. Assuming the properties (a) and (b) to be true for all the control
places added so far (let their set be C), let C be a control place that is to be added now with regard
to a minimal siphon S of the active subnet NA. Note that the induction assumption implies the
property (c) to be currently true: (•tx,i \{px,i−1})∩C ⊆ •tx,1∩C, and since (•tx,i \{px,i−1})∩P0 ⊆
•tx,1 ∩ P0 and (•tx,i \ {px,i−1}) ∩ PS = ∅, where PS is the set of places resulted through transition
split, the property (c) is currently true: •tx,i \ {px,i−1} ⊆ •tx,1 ∀1 < i ≤ k. If px,i ∈ S, since
S is minimal, px,i • • ∩ S 6= ∅. If i < k − 1, px,i • • = px,i+1 (see section 4.3 and note that
successive transition split does not affect this property.) This implies that if px,i ∈ S then px,j ∈ S
∀j = i . . . k − 1. If C is to control tx,i (i.e. an arc (C, tx,i) is to be added) then •tx,i ∩ S 6= ∅
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and firing tx,i reduces the number of tokens of S. If px,i−1 /∈ S then px,1 /∈ S and by property
(c) firing tx,1 reduces the marking of S, so C will be in •tx,1. If px,i−1 ∈ S then px,i ∈ S and so
(•tx,i \ {px,i−1}) ∩ S 6= ∅. Further on, using relation (c), tx,1 reduces the marking of S if px,1 /∈ S,
which is true, because px,1 ∈ S would imply that S is not minimal (S \ {px,1 . . . px,i−1} would be a
siphon.) This shows that relation (a) holds true after C is added.

If tx,j, for j < k, would increase the number of tokens of S, then px,j ∈ S, because px,j = tx,j•.
Then tx,j ∈ TA, because otherwise px,j would be a source place in the active subnet, which is not
possible. Because S is a siphon in NA, •tx,j ∩ S 6= ∅, so tx,j cannot increase the marking of S.
Therefore property (b) holds true for C. 2

Proposition 5.3 For every iteration index i:

(a) If PAi ∩ P0 = ∅ then NAi is empty.
(b) Let t ∈ T0. If tx ∈ σ0,i(t) and tx ∈ TAi then every transition of σ0,i(t) is in TAi .
(c) Let C be the set of control places of Ni, that is all the control places which were added in
iterations 1, 2, . . . i− 1. There is no siphon S of the total net or of the active subnet such that
S ⊆ Pi \ (P0 ∪ C).

Proof: (a) PAi ∩ P0 = ∅ ⇒ T0 ∩ TAi = ∅. Also, for any original transition t0 ∈ T0 subsequently
split in σ0,i(t0) = t0,1t0,2 . . . t0,k, t0,1 /∈ TAi . This implies that the first place p0,1 from the split
replacement is a source place, so p0,1 /∈ PAi , which in turn implies t0,2 /∈ TAi . Iterating in this way,
no transition of σ0,i(t0) is in T

A
i . Then T

A
i = ∅ ⇒ PAi = ∅ and FAi = ∅ (section 4.6.)

(b) Assume that ∃ty ∈ σ0,i(t) and ty /∈ TAi . Then •ty ∩ (P Ii \ PAi ) 6= ∅ (section 4.6). By
Proposition 5.2(c) •t1∩(P Ii \PAi ) 6= ∅, so t1 /∈ TAi , where t1 is the first transition of σ0,i(t). However,
as in the proof of (a), this implies that all transitions of σ0,i(t) are not in T

A
i , contradicting tx ∈ TAi .

(c) Let PS be the set of places resulted from transition split: PS = Pi \ (P0 ∪ C). The proof is
a direct consequence of the splitting method (section 4.3). Thus, p ∈ PS cannot be a source place
in the total net, while the active subnet cannot anyway have source places. Further on, if PSx is
the set of places from the replacement of tx ∈ T0 in Ni, there are no cyclic structures only made
up of places in PSx. Also, because (• •PSx \PSx)∩PS = ∅ and (PSx • • \PSx)∩PS = ∅ there is no
cyclic structure only made up of places in PSx and other places from PS . The same justification
also applies to the active subnet, in which a replacement sequence is either completely included or
not present (part (b).) 2

It is interesting to find out what a siphon controlled with a control place becomes when one or
more of its transitions are split. A transition t may be split after a control place C is added in the
preset of t and W (C, t) > 1. The following proposition considers some of the effects of splitting
transitions.
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Proposition 5.4 Let S be a minimal siphon in a PT-ordinary net. Assume that after adding some
control places the net is no longer PT-ordinary. If a transition t is split, let Ps be the set of places
generated through this split.

(a) If before the split t ∈ •S, then S is no longer a siphon and S′ = S ∪ Ps is a minimal siphon.
(b) If t /∈ •S, S is still a minimal siphon.

Proof: (a) Consider that t is split in t1,1, t1,2 . . . t1,k and that the new places which result are
p1,1, p1,2 . . . p1,k−1 (the same notations as in section 4.3.) Initially t ∈ •S ⇒ t ∈ S•, but now
t1,k ∈ •S and t1,1 ∈ S•. Since S was a minimal siphon in a PT-ordinary net, t1,i /∈ S• ∀i > 1 (t was
split because one or more control places C were connected to t such that W (C, t) > 1). It follows
that S is not a siphon (t1,k /∈ S•) and S′ is a minimal siphon.
(b) This is obvious, since splitting t does not modify •S, but only S •\•S at most, when t ∈ S•.

2

Proposition 5.5 Let S be a siphon of NAi controlled in step 2 of iteration i with the control place
C. Let PR be the set of places resulted through transition split in iterations i to j and µ0 be a
marking of Nj such that µ0(p) = 0 ∀p ∈ PR and µ0(C) =

∑
pi∈S
µ0(pi) − 1. For all markings µ

reachable from µ0 and such that µ(p) = 0 ∀p ∈ PR, µ(C) =
∑
pi∈S
µ(pi)− 1 is satisfied.

Proof: This is a direct consequence of the fact that C initially enforced
∑
p∈S
µ(p) ≥ 1 on S and

that firing an entire split replacement sequence modifies the marking of the original places in the
same way as firing the transition which was split (see section 4.3.) 2

Proposition 5.6 Let S ⊆ Pi, i ≥ 1. New control places are added in iteration i, and so the net
resulting after the step 2 of iteration i may not be PT-ordinary. Assume that the marking constraint∑
p∈S
µ(p) ≥ 1 is currently enforced using the control place C, added in this iteration or on a previous

iteration. Consider that a transition t ∈ •S ∪ S• is split, Ps is the set of places generated through
the split, and S′ = S ∪ Ps.

(a) If initially the arc (C, t) does not exist or if it does, W (C, t) = 1, then after t is split

(i) C insures in S′ that
∑
p∈S′
µ(p) ≥ 1 if originally t ∈ •S.

(ii) C insures in S that
∑
p∈S
µ(p) ≥ 1 if originally t /∈ •S.

(b) If initially W (C, t) > 1, then after t is split

(i) C insures in S′ that
∑
p∈S′
µ(p) ≥ 1 if originally t ∈ •S.
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(ii) C does not insure in S that
∑
p∈S
µ(p) ≥ 1 if originally t ∈ S • \ • S.

Proof: Consider that t is split in t1,1, t1,2 . . . t1,k and that the new places which result are
p1,1, p1,2 . . . p1,k−1 (the same notations as in section 4.3.)

Splitting t does not affect C controlling the other transitions that by firing could empty S.
Consider the case (i), t ∈ •S. If t1,1 /∈ S•, then firing any of t1,j does not reduce the marking of S,
so
∑
p∈S
µ(p) ≥ 1 remains always true. If t1,1 ∈ S• then by firing t1,1 S looses one or more tokens,

but p1,1 gets one, so S
′ does not become empty. Also, by firing any of t1,j , j < k, always is a place

of Ps with a token, so S
′ is not empty. By firing t1,k, because t1,k ∈ •S, S gets one or more tokens.

So, in all cases S′ cannot become empty.

Consider the case (ii), t /∈ •S, but t ∈ S•. Then an arc (C, t) should exist before the split, since
t takes tokens from S without returning any back. If W (C, t) = 1, S looses one token by firing
t1,1 and no tokens by firing any other t1,j. Because t1,1 is enabled when C has at least one token,
and so S at least two, S is not emptied by t1,1 (or any of t1,j.) If W (C, t) > 1, S looses W (C, t)
tokens by firing t1,1 and no tokens by firing any other t1,j. However C looses only one token by
firing t1,1, and W (C, t) tokens in total after firing all t1,i. (After t is split, no place p exists such
that W (p, t1,j) > 1, for any j.) So if S has W (C, t) tokens (and so C has W (C, t) − 1 > 0 tokens)
such that t1,1 is enabled, by firing t1,1, S is emptied. 2

Proposition 5.7 Let S ⊆ PAi such that
∑
p∈S
µ(p) ≥ 1 is insured for all markings reachable from

a set of markings M of NAi . Let S′ be a minimal siphon of NAk , k > i, such that S ⊆ S′ and
S′ ⊆ S ∪ PR, where PR is the set of places resulted by transition split in iterations i through k − 1.
Then S′ is a controlled siphon of NAk , that is

∑
p∈S′
µ(p) ≥ 1 for all markings µ reachable from

markings µ0 such that µ0(p) = 0 ∀p ∈ PR, µ0(p) = µi(p) ∀p ∈ PAk ∩ PAi and µi ∈M.

Proof: Transitions t ∈ Ti are considered in what follows only if σi,k(t) is contained in TAk . (In view
of Proposition 5.3(b), a replacement sequence is either completely included in the active subnet
or does not appear at all there.) Let σi,k(t) = t1,1t1,2 . . . t1,u and p1,1, p1,2 . . . p1,u−1 be the places
resulted from the split and Z = PAk ∩ PAi . For all t ∈ Ti such that σi,k(t) is in TAk , •t ⊆ Z in Ni.
Indeed, if •t ∩ (Pi \ Z) 6= ∅ then σi,k(t) is in T Ik , and so not in TAk , since Pi \ Z are places of the
inactive subnet N Ik .
For markings µ′ reachable from µ′0 ∈ M consider the markings µ of NAk such that µ(p) = 0

∀p ∈ PAk ∩PR and µ(p) = µ′(p) ∀p ∈ Z. As a split transition property, firing t in NAi and σi,k(t) in
NAk produces the same marking change for the places of Z in NAi and NAk and if µ enables σi,k(t)
then the similar marking µ′ of NAi enables t. Let t be a transition such that σi,k(t) is contained in
TAk :

(a) If t ∈ S•\•S in Ni then t1,1 ∈ S′• and t1,j /∈ S′• for all other transitions of σi,k(t), since S′ is
minimal. (Otherwise all t1,j ∈ •S′, the last transition of σi,k(t) satisfies in addition t1,u ∈ •(S′\PR),
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and so t ∈ •S in Ni is inferred, which is a contradiction.) Because t1,1 cannot be enabled unless t
is enabled and firing t in NAi and σi,k(t) in NAk produces the same marking change for the places
of Z in NAi and NAk , σi,k(t) cannot empty S′: there is at least one token left in S′ ∩ Z = S ∩ Z.
(b) If t ∈ S • ∩ • S in NAi then σi,k(t) is contained in •S′ (for all p1,j, p1,j ∈ S′). So each time

one of t1,j fires, there is at least one token left in S
′.

The case t ∈ •S \ S• in NAi was not considered, since considering σi,k(t) to be contained in
TAk contradicts that S

′ is a siphon, because t1,u ∈ •S′, t1,j /∈ S• for all 1 ≤ j ≤ u, •t1,1 /∈ PR and
•t1,j \ {p1,j−1} /∈ PR for all 1 < j ≤ u (see split transition construction in section 4.3 for the last
two claims.) 2

In the next definition we will denote by valid markings those markings in which the invariant
relations associated with every control place hold and in which places obtained by transition split
have the marking 0. Also we define equivalence of markings, which is an equivalence relation on
the Petri nets N1, N2, N3, ... generated in each iteration. A class of equivalence contains the valid
markings of the nets Nk which have the same marking for the places p ∈ P0.

Definition 5.1 Let Ni, (Li, bi) and (Li0, bi0) be the Petri net and respectively the sets of constraints,
all at the beginning of iteration i ≥ 1, or for the initial Petri net, in which case i = 0. Let C be the
set of control places that were added beginning with iteration 1 and PR = Pi \ (P0 ∪ C). A marking
µ of Ni is said to be a valid marking if µ(p) = 0 ∀p ∈ PR, Liµe ≥ bi and Li0µe ≥ bi0, where µe is
a marking of N0 such that µe(p) = µ(p) ∀p ∈ P0, and the marking of the control places corresponds
to the invariants they enforce.

The definition above applies also for N1, where in case that no initial constraints exist, the
remaining requirement for µ to be a valid marking of N1 is µ(p) = 0 ∀p ∈ PR. When we refer
to a marking µ of N0, µ is always valid when the algorithm starts with no constraints in (L0, b0).
Otherwise, µ is valid if it satisfies the constraints stated at the beginning of the algorithm.

A Petri net Ni may not be well-marked for a marking that is valid. Indeed, the definition of
valid markings does not require the new siphons of Ni not to be empty. Previous siphons cannot
be empty for a valid marking, because of the constraints Liµe ≥ bi and Li0µe ≥ bi0 which encode
this requirement for previous siphons.

Definition 5.2 Let µe be a valid marking of N0 and µ a valid marking of Ni. If µe(p) = µ(p)
∀p ∈ P0, then µe and µ are said to be equivalent markings. Moreover, two valid markings µi of
Ni and µj of Nj also are called equivalent markings if they have the same equivalent marking
in N0.

The way in which equivalence is defined implies that if two markings are equivalent they must
also be valid. Equivalence is not defined for markings that are not valid.
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Proposition 5.8 Any valid marking of Ni has at most an equivalent marking in Nj for 0 ≤ i < j.
Every valid marking of Nj has a unique equivalent marking in Ni when 0 ≤ i < j.

Proof: By definitions 5.1 and 5.2, for any Ni a valid marking µi of Ni has a unique equivalent
marking µ in N0. Also, µi is the unique equivalent marking of µ in Ni. Indeed, the marking of
the control places of Ni are the values of the excess variables associated to Liµ ≥ bi. The marking
of the other places that do not appear in the original net N0 must be zero, in order that µi be
valid. So µi can have only one equivalent marking µj in Nj. The equivalent marking µj may not
exist if µ, the equivalent marking of µi in N0, does not satisfy the additional constraints added in
iterations i, . . . j − 1.
Because the constraints of iteration j, (Lj , bj) and (Lj0, bj0), include the constraints of iteration

i, (Li, bi) and (Li0, bi0), it is clear that Ljµ ≥ bj ⇒ Liµ ≥ bi and Lj0µ ≥ bj0 ⇒ Li0µ ≥ bi0. So, if µj
is a valid marking of Nj, and µi is µj restricted to the places of Ni, µi is also valid. By definition,
if the marking µ of N0 is equivalent to µj then µ is µj restricted to the places of N0. Because µi
and µj have the same equivalent marking in N0, they are therefore equivalent. 2

Proposition 5.9 The equivalence of markings is an equivalence relation.

Proof: The proof follows immediately by checking the symmetry, reflexivity and transitivity of the
relation. 2

In [Moody, 1998] it was shown that adding control places to a net results in an incidence matrix
of the form

D2 =

[
D1
Dc

]
(16)

where D1 is the incidence matrix of the initial net.

Proposition 5.10 Let Di and Dj be the incidence matrices of Ni and Nj , i < j. If no transitions
were split in iterations i, . . . j − 1, then Dj can be written in the form:

Dj =

[
Di
Dc

]
(17)

where the lines of Dc correspond to the control places added in iterations i, . . . j − 1.

Proof: Because no transitions were split, the inequalities enforced from iteration i to j − 1 can be
written only in term of the places of Ni (see section 4.5). Then, by enforcing these linear inequalities
directly to Ni the closed loop is the same net as Nj, and so the incidence matrix can be written as
in equation (17) by Theorem 4.1 of section 4.1. 2

The incidence matrix is more difficult to express when transitions are split, because some old
columns disappear and new columns and rows appear.
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Proposition 5.11 Let µi and µk be two markings of Ni and Nk, i < k.

(a) µi and µk are equivalent markings if and only if they are valid and ∀p ∈ Pi, µi(p) = µk(p).
(b) Assume that µi and µk are equivalent. Let t be an arbitrary transition of Ni. If σi,k(t) is
enabled in Nk, then t is enabled in Ni. In addition, if i 6= 0, t1,1 is the first transition of
σi,k(t) and t1,1 is enabled, then t is enabled in Ni.

(c) If Si is a siphon of NAi and µk(p) = 0 ∀p ∈ Si, then µk is not a valid marking of Nk. However,
if µi(p) = 0 ∀p ∈ Si, µi may be a valid marking of Ni.

(d) If µi is a valid marking and it does not have an equivalent marking in Nk, j exists, such that
i ≤ j < k, Nj has a marking µj equivalent to µi and NAj has an empty siphon with respect
to µj .

(e) If µi and µk are equivalent, t ∈ T0, µi[σ0,i(t) > µ′i and µk[σ0,k(t) > µ′k then µ′i and µ′k are
equivalent.

Proof: (a) Two markings are equivalent if they are valid. If valid, the marking of the places from
replacement sequences are zero, while equivalence implies µi(p) = µk(p) ∀p ∈ P0. The marking of
the common control places of Ni and Nj are equal, being uniquely determined by the marking of
the original places, for all valid markings (see section 4.5.) Hence the conclusion follows. On the
other hand, by Proposition 5.8, µi and µj have equivalent markings µ0,i and µ0,j in N0. Because
P0 ⊆ Pi and ∀p ∈ Pi µi(p) = µk(p): µ0,i = µ0,j. Therefore µi and µj are equivalent.
(b) •t in Ni is subset or equal to •t1,1 in Nk (•t may be a subset because additional control

places C with arcs (C, t1,1) may appear in Nk.) For i 6= 0, both Ni and Nk are PT-ordinary, and
because µi and µk are equivalent, t1,1 enabled implies t enabled. This may not be true for i = 0
because N0 may not be PT-ordinary. If i = 0, for all p ∈ •t, firing σ0,k(t) requires that p has at
least W0(p, t) tokens (see section 4.3.) Therefore t is enabled by µi.

(c) The deadlock prevention algorithm adds constraints for all uncontrolled siphons of the active
subnet. So, the constraints (Lk, bk) and (Lk0, bk0) on Nk include the requirement that siphons of
previous iterations be controlled. So µk cannot satisfy these constraints, and therefore is not a
valid marking of Nk. Further on, if Si is not implicitly controlled by the constraints added in the
iterations 1, 2, . . . i− 1, there are valid markings of Ni such that Si has no tokens.
(d) Let (Lx, bx) and (Lx0, bx0) be the constraints associated to Nx, where x > i is the first index

such that µi does not satisfy one or both of (Lx, bx) and (Lx0, bx0). Because the requirements that
are not satisfied only can correspond to the condition that some siphons of NAx−1 be not empty, the
conclusion follows for j = x− 1.
(e) Because no tokens remain in split replacement places by firing the entire sequences σ0,i(t)

and σ0,k(t) replacing t, both µ
′
i and µ

′
k are valid. Let µ

′
0,i and µ

′
0,k be their equivalent markings in

N0 and µ0 the equivalent marking of µi and µk in N0. By part (b), µ0[t > µ′0,i and µ0[t > µ′0,k. So
µ0,i = µ0,k and hence µ

′
i and µ

′
k are equivalent. 2
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Proposition 5.12 Let µi,1 and µj,1 be two equivalent markings of Ni and Nj, i < j. If µi,2 and
µj,2 are two other equivalent markings of Ni and Nj and a transition t exists, such that µi,1[t > µi,2
in Ni, then µj,1[σi,j(t) > µj,2 in Nj .

Proof: If σi,j(t) is enabled by µj,1 and µj,1[σi,j(t) > µ
′
j,2 then µ

′
j,2(p) = µi,2(p) ∀p ∈ Pi and

µ′j,2(p) = 0 ∀p ∈ Ps follow directly from split transition properties, where Ps is the set of the places
resulted through transition split. Therefore, since µj,1 is valid, µ

′
j,2 is also, because the constraints

are satisfied (see Proposition 5.5). Then by Propositions 5.8 and 5.11(a), µj,2 = µ
′
j,2.

If σi,j(t) is not enabled by µj,1, let k be the first index such that σi,k(t) is not enabled in Nk
by µk,1, which is the equivalent marking of µi,1 in Nk. Because σi,k−1(t) is enabled in Nk−1, there
is a control place that prevents σi,k(t) to fire, because of a constraint added in iteration k − 1. So
µk−1,2 cannot satisfy one of the constraints added in iteration k − 1, and therefore µk−1,2 has no
equivalent marking in Nk. But this is a contradiction, because j ≥ k implies ∃µk,2 equivalent to
µj,2 (Proposition 5.8), and µj,2 is equivalent to µi,2, which in turn is equivalent to µk−1,2. (The fact
that the markings µi,2 and µk−1,2 are equivalent follows from µi,2(p) = µk−1,2(p) ∀p ∈ Pi because
of the split transition construction (section 4.3), µi,1 and µk−1,1 are equivalent, µi,1[t > µi,2 in Ni
and µk−1,1[t > µk−1,2 in Nk−1.) 2

Corollary 5.1 Let µ(1) and µ(2) be two markings of N0 such that µ(1)[t > µ(2) (where t ∈ T0)
and satisfying the constraints produced by the algorithm after termination: Lµ(1) ≥ b, L0µ(1) ≥ b0,
Lµ(2) ≥ b, µ(1)[t > µ(2). Then the markings µ(1)k and µ(2)k of Nk equivalent to µ(1) and respectively
to µ(2) are defined for any k, µ

(1)
k enables σ0,k(t) and µ

(1)
k [σ0,k(t) > µ

(2)
k .

Proof: Because µ(1) and µ(2) satisfy the constraints generated by the algorithm, all the control

places that were added have a well defined marking, in accord with the supervisory policy. So µ
(1)
k

and µ
(2)
k are defined for all iteration indices k. Then, by Proposition 5.12, the remainder of the

conclusion follows. 2

Theorem 5.1 The following statements are true:

(a) Let σi be an arbitrary firing sequence of Ni and σj = σi,j(σi) the corresponding firing sequence
in Nj, i < j. If µj is a marking of Nj that enables σj, then the marking µi of Ni such that
µi(p) = µj(p) ∀p ∈ Pi enables σi. Also if µi[σi > µ′i and µj [σj > µ′j then µ′i(p) = µ′j(p)
∀p ∈ Pi.

(b) Assume that the algorithm does not start with initial constraints, or if it does, all valid mark-
ings µ of N0 have the property that exists µ′ ≥ µ, µ′ has an equivalent marking in Nk. Let
σ be an arbitrary transition sequence of N0 and σk = σ0,k(σ) the corresponding sequence in
Nk. If a valid marking µ of N0 exists which enables σ, a valid marking µk of Nk exists which
enables σk.

(c) In the conditions of part (b), if some marking µ′k of Nk exists which enables σk, then a
marking of Nk exists which enables σk and which also is valid.
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Proof: (a) If the property is true for all σi finite, than it is also true for all σi infinite. Indeed, if
the property would not be true for some σi infinite, then there is a partition σi = σi,1σi,2 such that
σi,1 is finite and σi,1 does not satisfy the property. Therefore, in what follows the proof considers
only the case when σi is finite: σi = t1, t2, . . . ts, where every tk is a transition of Ti.

The set Pj is the disjoint set union Pj = Pi ∪ C ∪PR, where C is the set of control places added
in the iterations i through j−1 and PR is the set of places resulted from split transition operations
in the same iterations. Firing σi,j(t1) requires the same number of tokens from places of Pi as firing
t1 in Ni, as a split transition property, and may require additional tokens from C. Therefore t1
is enabled by µi. Let µi,1 and µj,1 be the markings reached by firing t1 and σi,j(t1), respectively.
Again, as a split transition property, firing t1 in Ni and σi,j(t1) in Nj modifies in the same way
the marking of Pi, and firing σi,j(t1) does not change the marking of PR. Hence µj,1(p) = µi,1(p)
∀p ∈ Pi and µj,1(p) = µj(p) ∀p ∈ PR. Continuing in the same way with t2, t2 is enabled and the
markings reached by firing t2 and σi,j(t2) satisfy the same property, and by induction it follows
that the markings µi,1 . . . µi,s and µj,1 . . . µj,s exist such that µi[t1 > µi,1[t2 > . . . µi,s−1[ts > µi,s,
µj[σi,j(t1) > µj,1[σi,j(t2) > . . . µj,s−1[σi,j(ts) > µj,s, µj,s(p) = µi,s(p) ∀p ∈ Pi and µj,s(p) = µj(p)
∀p ∈ PR. So the conclusion follows with µ′j = µj,s and µ′i = µi,s.
(b) This proof uses induction. Suppose that µi of Ni enables the sequence q. Let S0 denote the

set of siphons of NAi which in Ni either are token-free under the marking µi, or become so by firing
q. By Proposition 5.3(c) each siphon s ∈ S0 includes at least an original place and/or a control
place. Using the relations from section 4.5, a valid marking µi,2 ≥ µi can be chosen such that
∀s ∈ S0,

∑
p∈s
µi,2(p) ≥

∑
p∈s
µi(p) + 1. By construction, for the marking µi,2 no siphon s is token-free,

µi,2 also enables q and no siphon s becomes token-free when firing q. Thus µi,2 has an equivalent
marking µi+1 which enables q in Ni+1.
(c) Let PR be the set of all places of Nk that have resulted through transition split in previous

iterations. Let µ′′k be defined as µ
′′
k(p) = µ

′
k(p) ∀p ∈ Pk \ PR and µ′′k(p) = 0 ∀p ∈ PR. Then

µ′′k enables σk. Indeed, let’s assume the contrary. Then σk can be partitioned in the sequence
σk = σ1txσ2, where tx ∈ Tk, µ′′k[σ1 > µ′x, µ′k[σ1 > µx, µx enables tx but µ′x does not enable tx. The
only possibility is that PR∩•tx = {px}, µx(px) > 0 and µ′x(px) = 0 (refer also to the split transition
construction in section 4.3.) Because σk = σ0,k(σ) and σ is a sequence of transitions of N0, σ1 has
the form σ0,k(t1)σ0,k(t2) . . . σ0,k(tn)σx, where t1, . . . tn are not necessarily distinct transitions of T0
and σx is the first part of some σ0,k(tn+1). It follows that σ0,k(tn+1) has the form σxtxσy. However,
firing σx always brings a token in the replacement place px such that px• = {tx}, which contradicts
µ′k(px) = 0.

Because µ′′k enables σk, we can always choose a valid marking µk such that µk ≥ µ′′k (see the
form of the constraints added by the algorithm in section 4.5.) Therefore µk is valid and enables
σk. 2

Corollary 5.2 Consider the assumption of Theorem 5.1(b) to be true.

(a) Deadlock-freedom cannot be enforced for any finite marking in Nk if and only if it also cannot
be enforced in N0.
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(b) Liveness cannot be enforced for any finite marking in Nk if and only if it also cannot be
enforced in N0.

Proof: Deadlock-freedom may be enforced in a net in which there is a marking allowing an infinite
firing sequence. Thus necessity results directly from Theorem 5.1(b) and sufficiency from Theorem
5.1 parts (a) and (c), where part (c) is used for the case when initial constraints exists, and so not
all possible markings of N0 are valid. The proof of part (b) is similar. 2

Theorem 5.1(a) showed that if i < j and µi, µj are equivalent markings of Ni and Nj, then a
firing sequence σi is always enabled by µi in Ni, when its counterpart σj = σi,j(σ) is enabled by µj
in Nj. The converse generally is not true. However, it is true for the particular case when i = 0,
because N1 differs from N0 only by the fact that N1 is the PT-transformed version of N0 and no
constraints were yet enforced.

Proposition 5.13 Every valid marking µ of N0 has an equivalent marking µ′ in N1. Moreover, if
µ and µ′ are equivalent, σ is a transition sequence enabled by µ and σ′ = σ0,1(σ), then µ′ enables
σ′.

Proof: The equivalent marking µ′ of µ is defined by µ′(p) = µ(p) ∀p ∈ P0 and µ′(p) = 0 ∀p ∈ P1\P0.
The fact that ∀t ∈ T0, µ[t > µ1 implies both µ′[σ0,1(t) > µ′1 and µ1 is equivalent to µ′1, is a property
of transition split. Thus the remainder of the conclusion follows immediately. 2

5.2 Main Results

The first important result of this section is Theorem 5.2, that shows when the algorithm the algo-
rithm provides a supervisor preventing deadlock and when the algorithm detects that no supervisor
preventing deadlock exists. Theorem 5.3 gives a practical way to guarantee termination. Theorem
5.4 gives a permissivity estimate of the supervisor generated by the algorithm: the supervisor is at
least as permissive as any supervisor enforcing liveness, if any exists.

This section uses the same notations as in the description of the algorithm in section 4.7, as
well as the notations from section 5.1.1. That is, in every iteration i the inactive subnet is N Ii =
(P Ii , T

I
i , F

I
i ,W

I
i ), the active subnet NAi = (PAi , TAi , FAi ,WAi ) and the total net Ni = (Pi, Ti, Fi,Wi),

σi,j(σ) the replacement sequence in Nj of the transition sequence σ of Ni, i < j and σi,j(t) the
replacement sequence in Nj of the transition t of Ni.
The following lemma shows that the final active subnet is deadlock-free when no minimal siphon

exists which has a transition or split replacement taking, when fired, more than one token from the
siphon without returning any back. This condition of Lemma 5.1 will be referred to guarantee that
the algorithm provides a supervisor preventing deadlock.

Lemma 5.1 Assume that the algorithm terminates after k−1 iterations and that in the final active
subnet NAk no minimal siphons S exist such that ∃tx ∈ T0, σ0,k(tx) = tx,1tx,2 . . . tx,u, tx,u /∈ •S,
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Fx = {(p, t) : p ∈ S, t ∈ σ0,k(tx), (p, t) ∈ FAk } and Fx has at least two elements. (NAk , µA) is
deadlock-free for all markings µA that are the restriction of a valid marking of Nk to the places of
NAk .

Proof: Minimal siphons of the active subnet in a certain iteration may be found transformed
in subsequent iterations, as shown in Proposition 5.4. The modification is that they may include
additional places resulted through transition split operations. A minimal siphon is controlled by
adding a control place if the control place is not in the situation of Proposition 5.6(b-ii), which
appears when there are transitions taking more than one token from the siphon without returning
any back. This property corresponds to the siphon having the property forbidden in the statement
of the lemma. The siphons not having the forbidden property remain controlled (for valid markings)
in the subsequent iterations, if they still appear in the active subnet (see Proposition 5.7.) However
it is also true that any siphon with the forbidden property becomes controlled if in subsequent
iterations it loses all transitions or replacement sequences satisfying the forbidden property (by
being moved to the inactive subnet), since their only mean of becoming empty disappears (see
proof of Proposition 5.6(b)). Because the algorithm terminated, all minimal siphons have been
considered for control. Since none of the minimal siphons has the forbidden property, all are
controlled and by Proposition 3.1 the subnet is deadlock-free. 2

Recall that if Nk is a PT-ordinary Petri net with no uncontrolled siphons, Proposition 3.1
suggests that we found an supervisor enforcing deadlock-freedom for N0. However, when the
original net is not repetitive, i.e. liveness cannot be enforced, the final net may have a nonempty
inactive subnet. So the final active subnet is not equal to the final total net. Therefore it is not yet
clear that if the final active subnet is PT-ordinary and has no uncontrolled siphons, then the total
net is deadlock-free. The next theorem proves among other things that this is the case.

Theorem 5.2 Assume that the deadlock prevention method terminates after k− 1 iterations. Let
N0 be the original Petri net and Nk the net produced by the last iteration. Let (L, b) and (L0, b0)
denote the two sets of constraints generated by the algorithm.

(a) Any transition t of N0, such that tx ∈ T Ik and tx appears in σ0,k(t), cannot be made live for
any finite marking of N0.

(b) If NAk is an empty net (i.e. PAk = ∅, TAk = ∅), then the original net N0 cannot be made
deadlock-free.

(c) If the conditions of Lemma 5.1 hold true and N0 cannot be made deadlock-free, then either
(i) or (ii) is true:

(i) NAk is an empty net.
(ii) the algorithm started with initial constraints (see also Theorem 5.3) and there is no
marking of N0 which satisfies all constraints.

(d) If NAk is nonempty and the conditions of Lemma 5.1 hold true, then the original net N0 in
closed loop with the supervisor enforcing Lµ ≥ b, is deadlock-free for all initial markings µ0
of N0, such that Lµ0 ≥ b and L0µ0 ≥ b0.
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Proof: (a) The algorithm updates the subnets in step 3 by repeated passing through the two
steps of section 4.6. A transition introduced in the inactive subnet is not later split. So if such a
transition t cannot be made live in Ni, it cannot be made live either in Nj, j > i, by Theorem
5.1(a).

The proof is by induction. Let tf be the first transition introduced in the inactive subnet, and
let i be the iteration number when this happens. By the algorithm construction, ∃p ∈ Pi s.t.
p ∈ •tf and •p = ∅. Therefore tf cannot fire infinitely often in Ni. Suppose that at a certain point
all transitions in the inactive subnet have the property that they cannot be made live. Let t be the
next transition introduced in the inactive subnet and let j be the iteration number when it happens.
A transition t is copied in the inactive subnet when ∃p ∈ Pj , s.t. p ∈ •t and •p is a subset of the
current set of transitions of the inactive subnet. So, t cannot fire infinitely often in Nj because in
p only can enter finitely many tokens. This proved that all transitions in T Ik cannot be made live.
Then the conclusion follows by Theorem 5.1(b). Indeed, if the algorithm had no initial constraints,
t live in N0 for some marking implies tx live in Nk for some marking, by Theorem 5.1(b), which
contradicts tx ∈ T Ik . If t cannot be live when there are no marking constraints, it cannot be live
either with marking constraints. So the proof covers the case when the algorithm starts with initial
constraints as well.

(b) Obvious from (a), since no transition can be made live.

(c) The proof is by contradiction. Assume that NAk is nonempty and that there is an initial
marking of N0 which satisfies the constraints. By part (d) (whose proof follows) this is not possible.
(d) By construction, every marking of the original Petri net N0 which satisfies the constraints

has an equivalent marking in Nk such that NAk is well-marked. The proof uses the fact that for any
such marking, there is an infinite sequence enabled in NAk (Lemma 5.1). It proves by contradiction
that no marking of N0 satisfying the constraints is a deadlock marking for the closed loop Petri
net.

Assume that from a good initial marking µ0 of N0, the closed loop net (let it be NS) reaches a
marking µ such that all possible firings in N0 would lead to markings which do not comply with
the enforced constraints, Lµ ≥ b. This would be deadlock in NS.
Let µ0,k and µk be the equivalent markings of µ0 and µ in Nk, and µAk the restriction of µk to

the places of NAk . Because µk is valid, by Lemma 5.1 µAk enables an infinite transition sequence σ
in NAk . Let TR be the set of transitions that appeared by split transition operations and Tf ⊆ TR
the set of transitions which are last in the sequences of split transition replacements. Let C be
the set of control places. Revisiting the transition split operation (section 4.3) and by Proposition
5.2(b), firing any t ∈ TR \ Tf always reduces the marking of some places in P0 ∪ C and firing t ∈ Tf
increases the marking of some places in P0 ∪ C. Because the total marking of P0 ∪ C is finite, σ
must include transitions t ∈ T0 ∪ Tf (where from T0 may only appear transitions that remained
unsplit). Let t1 be the first transition in T0 ∪ Tf that appears in σ. If t1 ∈ T0, since all transition
of σ before t1 are in TR \ Tf , and firing them only decrease markings of P0 ∪ C, t1 is enabled by µAk
since it is enabled after firing the transitions that precede it in σ. But this implies that t1 is also
enabled by µ in NS, which is a contradiction. The remaining possibility is t1 ∈ Tf , and so t1 is
the last transition tx,m of a split replacement sequence σ1 = tx,1 . . . tx,m. Since µ

A
k is valid, tx,m−1
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must appear in σ before t1, tx,m−2 must appear in σ before tx,m−1, and so on. Because all other
transitions of σ not in σ1 that appear before t1 are in TR \Tf , µAk enables σ1. This is contradiction,
because this implies that µ enables t0 ∈ T0 such that σ1 = σ0,k(t0). 2

Perhaps the most important result of the previous theorem is part (d), which gives conditions
that the method provides a supervisor preventing deadlock. Part (a) of Theorem 5.2 motivates step
3 of the algorithm. Indeed, the algorithm removes from the active subnet all transitions connected
to source places. These transitions cannot fire infinitely often, and after becoming inactive (dead),
the Petri net behaves as if they were missing from the net. Removing them from the active subnet
is useful to reveal new siphon structures.

Corollary 5.3 If at the end of some iteration k − 1 the total net Nk has a source place, liveness
is not enforcible in N0.

Proof: Let p be a place such that •p = ∅ and p• 6= ∅. By the construction of the deadlock
prevention algorithm, p• ⊆ T Ik . Then, by theorem 5.2 (a) N0 cannot be made live. 2

A Petri net N is structurally bounded [Murata] if for all finite markings µ0, R(N , µ0) is
bounded. The algorithm can be guaranteed to terminate for such Petri nets if step 2 of the algorithm
considers only new siphons that are not implicitly controlled (see section 4.5.) A sufficient condition
that Theorem 5.2(d) applies for this modification of the algorithm is that the final active subnet
contains no replacements of split transitions, because in this case it is clear that the implicitly
controlled siphons of the active subnet are controlled siphons and so the proof of Lemma 5.1 is
unchanged.

Theorem 5.3 Let N be a structurally bounded Petri net. LetMI be a set that includes all possible
initial markings in some given application. IfMI is bounded, then a supervisor based on the method
of section 4.7 can be constructed in a finite number of iterations.

Proof: Consider modifying the step 2 of the algorithm to consider only new siphons that are not
implicitly controlled (section 4.5.) Since N is structurally bounded and MI is bounded, the set
of reachable markings is bounded. Let MR be a bounded set that includes the set of reachable
markings. Let FN be the set of markings forbidden by the control places added up to some point.
Let S be the next siphon considered for control, and fS the set of markings which would be forbidden
in the original net by enforcing

∑
p∈S
µ(p) ≥ 1 (i.e. by adding a control place). S is not implicitly

controlled if fS \ FN 6= ∅. Not every marking might be reached, so the previous condition can be
written as (fS \FN )∩MR 6= ∅. Since each controlled siphon adds at least a new forbidden marking
that is in MR, andMR is finite, after we control a finite number of siphons, all new siphons are
implicitly controlled. 2

Considering the assumptions of Theorem 5.3 true, let (Li, bi) be a set of linear constraints
defining a bounded feasible set that includes the set of reachable markings R(MI). Then the
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deadlock prevention algorithm can be started with initial constraints (L0, b0) equal to (Li, bi), and
by Theorem 5.3 it terminates. Theorem 5.3 is important because it gives a sufficient (but not
necessary) condition for termination which is not very restrictive for real applications, where in
general the capacity of every node is finite.

Lemma 5.2 Consider the case when N0 is repetitive. Let S be a siphon of Ni+1, i ≥ 1, that does
not appear in Ni. Let µi+1 be a valid marking of Ni+1 and µi the equivalent marking in Ni. Assume
that S is empty. Let ts be an arbitrary transition of Ni with the property that there is a transition
t ∈ S• of Ni+1 such that ts = t or ts is split in Ni+1 and t appears in the replacing transition
sequence σi,i+1(ts). If ∃µ ∈ R(µi) such that µ[ts > µs, then (Ni, µs) has at least one empty siphon.

Proof: Let C be the set of control places added to Ni+1. Note that Pi+1 is made up of Pi, C and the
set of places that result through transition split, PR = Pi+1 \ (Pi ∪ C). Let σ be the firing sequence
that was used to reach µ: µi[σ > µ. We consider the parallel evolution of Ni and Ni+1 from the
equivalent markings µi and µi+1, by firing the transitions of σ in Ni and the same transitions or
their replacements in Ni+1. The only reason for σ′ = σi,i+1(σ) not to be enabled in Ni+1 by µi+1
would be that a control place prevents it.

If σ′ is not enabled, σ = σ1t1σ2, µi[σ1 > µ1, µi+1[σi,i+1(σ1) > µ′1, µ1 enables t1, but µ′1 does not
enable σi,i+1(t1). This corresponds to the following: Ni has a siphon S1, that is controlled in Ni+1
with C1; when C1 was added, t1 ∈ C1•, and if W (C1, t1) > 1, t1 was split in step 3 of iteration i
in σi,i+1(t1) or if W (C1, t1) = 1, σi,i+1(t1) = t1. So t1 ∈ S1•, and since t1 would not be allowed by
C1 to fire from µ1, it means that firing it would make S1 empty. Since t1 is fired in the sequence
σ = σ1t1σ2, after σ is fired, S1 is an empty siphon in (Ni, µs).
If σ′ is enabled by µi+1, let µ′ be the marking reached: µi+1[σ′ > µ′. Because σ′ may contain

only entire replacements of split transitions and µi+1 is a valid marking (which implies µi+1(p) = 0
∀p ∈ PR), µ′(p) = 0 ∀p ∈ PR. Also, µi+1 and µi are equivalent and σ′ = σi,i+1(σ), therefore
µ(p) = µ′(p) ∀p ∈ Pi (Theorem 5.1(a)). Because S is a siphon, S empty for µi+1 implies S empty
for all reachable markings, and so for µ′ too. There are two cases: (a) ts is not split in Ni+1 and
(b) ts is split.

(a) If ts is not split, •ts ∩ PR = ∅. Further on, µ enables ts in Ni but µ′ does not enable ts in
Ni+1, so in Ni+1, •ts ∩ C 6= ∅ and there is C ∈ •ts ∩ C such that µ′(C) = 0. Let SC be the siphon
of Ni controlled by C. ts was not split, so W (C, ts) was 1; ts enabled by µ, µ′(C) = 0 and ts ∈ C•
⇒ ts ∈ (SC•) \ (•SC). SC appears in Ni+1 either unmodified or as a siphon S′C ⊆ SC ∪ PR. Since
µ′(p) = 0 ∀p ∈ PR, SC ⊆ Pi and µ′(C) = 0,

∑
p∈SC

µ(p) = 1, where Proposition 5.5 was also applied

for µ′ seen as reachable from the valid marking µi+1. Because ts is enabled by µ, firing ts empties
SC , so there is an empty siphon in (Ni, µs).
(b) If ts was split, then let σi,i+1(ts) = ts,1 . . . ts,r be its replacement in Ni+1. Also, let

ps,1 . . . ps,r−1 be the places that appeared through the split; the notations follow the convention
from section 4.3, i.e. ts,i = •ps,i, i = 1 . . . r − 1, etc. From the lemma statement, ∃p ∈ S ∩ •ts,u. If
u > 1, we prove that p = ps,u−1.
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If p 6= ps,u−1, then p /∈ PR, because by construction of split transitions, every place ps produced
by split has | • ps| = |ps • | = 1. Also, p /∈ Pi, because (see section 4.3) this implies in Ni that
Wi(pi, ts) > 1, which is not possible since the Petri net at the beginning of every iteration i ≥ 1 is
PT-ordinary. The remaining possibility p ∈ C also is not possible. Indeed, this implies that there
is a control place C which, after being added to Ni, produced an arc (C, ts) with W (C, ts) > 1.
But C ∈ S, S is empty, so µ′(C) = 0, which implies that SC , the siphon of Ni controlled by C, has
only one token at the marking µ, so µ will not enable ts since ts needs more than one token from
SC to fire. Contradiction.

So p = ps,u−1. Because p ∈ S and •ps,u−1 = ts,u−1, ts,u−1 ∈ S•. This showed that ts,u ∈ S• ⇒
ts,u−1 ∈ S•. So, ts,1 ∈ S•. Since ts is enabled by µ, and S is empty for µ′, •ts,1 ∩S ⊆ C. As before,
there is a control place C ∈ S ∩ (•ts,1) controlling a siphon SC of Ni; C ∈ •ts,1 implies C ∈ •ts
before ts was split, and so firing ts reduces the marking of SC . Because this is 1 at marking µ,
firing ts makes Sc empty. Therefore there is an empty siphon in (Ni, µs). 2

Part (a) of Theorem 5.2 shows that if liveness may be enforced in the original net N0, then
the inactive subnet remains empty, and the final supervised net is equal to the final active subnet.
Theorem 5.4 addresses this case, in which for every k, NAk = Nk.

Theorem 5.4 The deadlock prevention method provides a supervisor at least as permissive as any
liveness enforcing supervisor, if any.

Proof: Assuming that there are markings which allow a liveness enforcing policy, N0 is repetitive,
by Corollary 3.1(b), and Lemma 5.2 applies. The proof is by contradiction. It shows that any
marking forbidden by the deadlock prevention method also is forbidden by any liveness enforcing
supervisor. Recall that our algorithm forbids markings which will produce an empty siphon in an
Nk for some k.
Let µ(1) be a marking of N0 and µ(1)k the equivalent marking in Nk. Suppose that for the

marking µ
(1)
k there is an empty siphon Sk in Nk. Because µ(1)k is valid, Sk is a new siphon which

does not appear in Nk−1; µ(1) is forbidden by iteration k, which adds the constraint that Sk be
well-marked.

Assume that µ(1) is not forbidden by some liveness enforcing supervisor and that there is an
infinite firing sequence σ enabled by µ(1) such that every transition of N0 appears infinitely often
in σ. According to Lemma 5.2, there is a transition t′k−1 of Nk−1 such that in any possible firing
sequence, after t′k−1 fires in Nk−1, there is an empty siphon Sk−1 of Nk−1. Let tk−1 ∈ T0 such
that t′k−1 appears in σ0,k−1(tk−1). Let µ

(2) be the marking of N0 that appears while σ is fired,
immediately after tk−1 fires for the first time. Also, let σ1 be the subsequence of σ that was fired so
far, that is µ(1)[σ1 > µ

(2). Let i ≥ 0 be the largest integer, such that µ(2)i is an equivalent marking
of µ(2) in Ni. By Lemma 5.2, i ≤ k − 1. Indeed, if σ1 is allowed to fire in Nk−1, there is an empty
siphon Sk−1 for the marking µ

(2)
k−1, but there is no valid marking of Nk such that Sk−1 is empty

(Proposition 5.11(c)). Now, the fact that µ(2) has an equivalent marking µ
(2)
i in Ni but not in Ni+1

shows that there is an empty siphon Si in Ni and that Si does not appear in Ni−1 (Proposition
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5.11(d)). Further on, the same idea as before is used, that a transition ti−1 with the same property
as tk−1 exists, and following the same idea, an index j ≤ i − 1 is found such that for the marking
µ(3) of N0 there is an empty siphon in Nj−1. This procedure is repeated and finally two cases may
appear (Lemma 5.2 applies for i > 0 only) after the first n transitions of σ are fired, where n is a
finite number. Let σp denote the sequence that enumerates the first n transitions of σ, and let µ

(p)

be the marking reached by firing σp (that is, µ
(1)[σp > µ

(p)) and µ
(p)
1 the equivalent marking in N1.

Then (a) there is an empty siphon in (N0, µ(p)) or (b) there is an empty siphon in (N1, µ(p)1 ). Case
(a) contradicts the fact that every transition appears infinitely often in σ and µ(1) enables σ, since
after n firings none of the transitions in the postset of the empty siphon may fire again. Case (b)
leads to the same type of contradiction, because Proposition 5.13 shows that the firing sequence

σ′ = σ0,1(σ) is enabled by µ
(1)
1 , which is the equivalent marking of µ

(1) in N1, and by construction
every transition of N1 appears infinitely often in σ′. 2

In other words, the theorem states that the set of forbidden markings of the supervisor obtained
by successive application of the siphon controlling rule is a subset of the set of markings forbidden
by any liveness enforcing supervisor. The previous result shows also that if for some Petri net the
successive application of the supervisory controlling rule enforces liveness, the resulting supervisor
is maximally permissive. The theorem applies for a supervisor obtained after an arbitrary number
of iterations. The proof does not assume that the algorithm terminates.

5.3 Special Cases

5.3.1 Additional Constraints

We consider the case when additional constraints are to be enforced. Let (La, ba) be the additional
constraints and N the Petri net. A good way to proceed with the deadlock prevention algorithm is
to apply it rather to the supervised Petri net NL, which contains the additional places necessary to
enforce (La, ba) according to the invariant based approach ([Moody, 1998], also outlined in section
4.1). So the algorithm would start with N0 = NL and initial constraints (L0, b0) reflecting (La, ba).
The reason why it is not a good idea to apply the deadlock prevention algorithm first to N

and then to enforce (La, ba) is that additional constraints can make deadlock possible. Indeed, we
can easily find examples of deadlock-free Petri nets which with additional marking constraints may
reach deadlock.

5.3.2 Finite Capacity Petri Nets

In many applications it is reasonable to assume that the maximum number of tokens that a place
may have is bounded. In this case the Petri nets may be extended with an additional function
K which maps its capacity to each place. This type of Petri net is called place/transition net
[Reisig]. So, a place/transition structure is represented by the quintuple N = (P, T, F,W,K),
where K : P → N is the capacity function, and with an additional initial marking we have a
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place/transition net, denoted by (N , µ0). The capacity of a place is allowed to be infinite. The
firing rule of a transition in place/transition nets is the same as for conventional Petri nets, except
that a transition is not enabled by a marking if firing it would cause a place to exceed its capacity.

Let N = (P, T, F,W,K) be a place/transition structure and NR = (P, T, F,W ) the correspond-
ing Petri net structure. N can be transformed in an equivalent conventional Petri net NE by
enforcing in NR, to each place p with finite capacity, the linear constraint µ(p) ≤ K(p). The con-
ventional Petri net is obtained using the invariant based approach of [Moody, 1998], outlined also
in section 4.1.

If all the places have finite capacity, the equivalent Petri net is by construction structurally
bounded. The deadlock prevention algorithm can be started as in section 5.3.1, with N0 = NE and
constraints (La, ba) which describe µ(p) ≤ K(p) for all p ∈ P . The method can be guaranteed to
terminate by Theorem 5.3, since a bound on the marking of each place is known. Indeed, the upper
bound for the marking of any place p ∈ P is the finite capacity K(p) and the upper bound for the
marking of a control place pc enforcing for a place p ∈ P the constraint µ(p) ≤ K(p), is also K(p).

5.3.3 Safe Petri Nets

An ordinary Petri net (N , µ0) is safe if for all reachable markings the marking of any place is at
most 1. We consider the case when a Petri net N needs to be made safe by supervision. The
deadlock prevention algorithm may be used to provide such a policy which is not blocking.

Let (La, ba) be the constraints associated to µ(p) ≤ 1, for all places of N . Then we can proceed
as shown in section 5.3.1.

The deadlock prevention algorithm terminates by Theorem 5.3, because it is known that 1 is
an upper bound of the marking of each place.

5.3.4 Some Particular Cases when Liveness is also Enforced

It is possible, however not very likely, that if the initial Petri net is an asymmetric choice net the
final Petri net still will be an asymmetric choice net. By Theorem 3.1, this is a sufficient condition
for liveness for all initial markings which are not forbidden.

Both parts of Corollary 3.2(c) are useful for the deadlock prevention algorithm. The second
part is good also because of Theorem 5.4. Corollary 3.2(c) provides conditions that let us know
before applying the algorithm whether the supervisor also will enforce liveness. In the case of
asymmetric choice net result, we need first to run the algorithm, and then check whether the final
result complies with Theorem 3.1.

It is not clear at this time if the conditions of Corollary 3.2(c) have practical importance. It
depends on whether or not there is an efficient algorithm to check them.

The class of Petri nets on which the algorithm enforces liveness may be larger then that resulting
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from Corollary 3.2(c), because the class of deadlock prevention supervisors more permissive than
liveness enforcing supervisors is rather large.

Note that whenever the supervisor provided by the algorithm enforces liveness, it is the maxi-
mally permissive supervisor, by Theorem 5.4.

5.4 Final Remarks and Directions for Further Research

5.4.1 The Termination Problem

Theorem 5.3 shows how we can guarantee the termination of the algorithm in the case of structurally
bounded Petri nets. The termination of the algorithm is facilitated by considering only minimal
siphons that are not implicitly controlled (see section 4.5). For instance, the algorithm does not
terminate for the Petri net of figure 9 if implicitly controlled siphons are not eliminated. However
this operation does not guarantee termination in general. For instance, if in figure 9 we change
the weight of (t2, p1) to 2, the algorithm does not terminate, failing to generate one of the good
constraints. Instead it generates a sequence of constraints converging to that constraint. When
W (t2, p1) = 1 that good constraint is generated from a siphon appearing in iteration 2, which does
not appear for W (t2, p1) = 2, and which allows to consider as controlled the siphon that generates
the recurrent behavior.

t

1

5

t

4t3t

2t

5p

4p3pp2

1p

Figure 9: Example for the termination problem

Checking whether a siphon is implicitly controlled is equivalent to an integer programming
feasibility problem, which is an NP type problem [Wolsey].

5.4.2 An Improvement that is Desired for Permissivity

5.4.2.1 A Desired Permissivity Property It has been proven that the method provides a
supervisor at least as permissive as any liveness enforcing supervisor, if any. It would be desirable
to modify the method such that we have a similar permissivity result for Petri nets which cannot
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be made live. In this case, the requirement would be that the supervisor is at least as permissive
as any supervisor that insures that any transition that can be made live is live for any reachable
marking. (This makes sense, since it has been proven in Corollary 3.3 that the transitions of any
Petri net may be divided in transitions which eventually become dead, for any finite marking, and
transitions that can be made live).

An illustration of this problem is in example 4.2. One may check that the marking vector
[0, 0, 2], which allows enforcement of the discussed permissivity property, is unacceptable for the
constraints (L, b) which were generated by the deadlock prevention algorithm.

5.4.2.2 A Possible Solution Progress has been made in this direction based on the idea that
a minimal siphon may be allowed to include source places if we do not consider them as siphons.
This idea can be generalized as follows (probably there are more ways to do it).

Let PD be the set of places which are not live for any marking, in the sense that eventually
(after some firings, depending on the initial marking) they cannot enable any transitions. Let PA
be the rest of places, i.e. places connected to transitions that can be made live. Places may be
divided in the disjoint sets PD and PA with a polynomial computational complexity (see appendix).

An active siphon is a siphon of the total net that contains all places of some siphon of the
active subnet (where the active subnet is the total net obtained by deleting all transitions that
cannot be made live and all places remained thus unconnected). An active siphon is minimal if
it contains no other active siphon. The algorithm would successively control all minimal active
siphons (instead of minimal siphons, as it is done in the algorithm of this paper). It can be shown
in the case when no transitions need to be split (and probably for the more general case too)
that this modified algorithm prevents deadlock and has the maximally permissive property defined
above. A drawback is that if there are siphons in the active subnet such that deadlock can be
avoided even for markings in which they are empty, this algorithm might allow them to become
empty. So this algorithm variant is rather closer to deadlock prevention than liveness enforcement.

5.4.2.3 A Harder Permissivity Problem As it was said in previous parts of the work, the
algorithm does not provide in general the maximum permissive deadlock prevention supervisor.
This limitation appears because of the principle on which the method is based, that a deadlocked
PT-ordinary Petri net has an empty siphon (Proposition 3.1), is only a necessary condition.

On the other hand, it is not clear if in practice it really would be useful to allow a system to
reach some local deadlocks, and only to prevent reaching a state of total deadlock. Basically, the
method of this work prevents siphons from becoming empty. An empty siphon is a form of local
deadlock, since all transitions connected to the empty siphon can no longer fire.

5.4.3 Other Remarks

A MATLAB implementation revealed the fact that a key factor for the applicability of the deadlock
prevention method is a fast program for (minimal) siphon computation. As the number of iterations
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increases, the size of the Petri net increases with new control places, split transitions and places
from replacements of split transitions. Both computation of siphons and checking whether new
siphons are implicitly controlled have a computation time which grows rapidly with the number of
places and constraints, respectively. For this reason it seems to be faster in general to reduce the
redundancy of the constraints at every iteration, and so to remove at every iteration that control
places which become redundant because of stronger new constraints.

6 Summary of Results

This paper introduced a deadlock prevention algorithm for Petri nets. The algorithm was stated in
section 4.7. The main results concerning the deadlock prevention algorithm were proved in section
5.2. They show that:

• When the algorithm terminates given a Petri net N0 and the requirement of Lemma 5.1
applies, then N0 in closed loop with the supervisor enforcing the constraints (L, b) is deadlock-
free for all initial markings µ0 such that L0µ0 ≥ b0 and Lµ0 ≥ b (Theorem 5.2(d)).

• The case when the structure of N0 does not allow deadlock to be prevented for any finite
initial marking is also detected when the algorithm terminates and the requirement of Lemma
5.1 is true. The conditions are given in Theorem 5.2(b) and (c).

• The algorithm does not necessarily generate the maximally permissive supervisor which pre-
vents deadlock. However it has the permissivity quality that if there are initial markings
µ0 such that liveness can be enforced in (N0, µ0), the supervisor provided by the algorithm
(for deadlock-freedom) is at least as permissive as any supervisor enforcing liveness (Theorem
5.4).

• There are particular cases in which the supervisor of our algorithm also enforces liveness. In
these cases the algorithm provides the maximally permissive liveness enforcing supervisor.

• The algorithm can be slightly modified to guarantee termination for structurally bounded
Petri nets, by assuming an upper bound of the marking of each place to be known; see proof
of Theorem 5.3. This assumption is reasonable in problems that require initial markings from
a bounded set. A sufficient condition which guarantees deadlock prevention for this case is
that the final active subnet contains no split transition replacements.

The properties of section 5.1.2 are technical results important for understanding the method and
for proving the main results. In section 3.2, several consequences are derived from a known result
[Murata], which appears in this paper as Theorem 3.2. These consequences are general results that
give insight in the relation of deadlock prevention to liveness enforcement. Part (b) of Corollary
3.1 also appears in [Sreenivas, 1997]. Of particular interest for this paper are Corollary 3.3 and
Corollary 3.2.

A major advantage of our approach is that it is very general, being applicable to generalized Petri
net structures. The approach is also applicable for timed Petri nets and with some modifications
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it is potentially applicable to Petri nets with uncontrollable and unobservable transitions by using
the admissible constraint transformation from [Moody, 1998]. Another advantage of the algorithm
is that it does not require the initial marking to be known and that it characterizes the usable
initial markings as the feasible region of a set of linear inequalities.

APPENDIX

A Computation of Transitions that Cannot Be Made Live

Below we show an algorithm of polynomial complexity that identifies the set TD from Corollary 3.3.
If the transitions from TD are removed, dividing the resulting net in active and inactive subnets
will identify the set of places PD that are connected only to transitions which cannot be made live:
PD = P \ PA, where P is the set of places and PA the set of places in the active subnet.

A.1 Problem Formulation

Let x be a vector and A a matrix. Let ‖x‖ denote the support of x: ‖x‖ = {i : x(i) 6= 0} and let
M(A) = {y : Ay ≥ 0, y ≥ 0}. We say that x ∈ S has maximum support with respect to a set S if
∀y ∈ S, ‖y‖ ⊆ ‖x‖. It is not difficult to check that ∃x ∈M(A) that has maximum support.

A.2 A Linear Programming Approach

In this approach, to see whether an index i belongs to the maximum support, a linear program is
solved. The program checks a solution exists for the constraints Ax ≥ 0, x(i) = 1 and x ≥ 0. With
artificial variables, Ax ≥ 0 is transformed in [A,−I] · [xT , yT ]T = 0.
It may not be clear from the beginning why we solve linear programs and not linear integer

programs. Obviously, for any rational invariant q, an integer invariant x exists with the same
support; indeed, by multiplying q with the denominators of the nonzero elements of q we get such
an invariant. A less obvious result is that for any real invariant r, a rational invariant exists with
the same support. This is not true in general (for instance consider the invariants of A = [1, π]),
but it is true for matrices with rational elements.

Let |x− y| be the Euclidean norm of x− y.

Proposition 1.1 Let A be a matrix with rational elements. Let x be a real vector in the null space
of A. For all ε > 0 a rational vector q exists such that |x− q| < ε and q has the same support as x.

Proof: Let Ar be A restricted to the columns i of A such that x(i) 6= 0, and let xr be the
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corresponding restriction of x. For simplicity, assume that Ar is full row rank (otherwise we can
delete a number of rows) and that the first rank(Ar) columns of Ar are linearly independent
(otherwise we can reorder the columns). Then Ar = [B,N ], and if x = [x

T
B , x

T
N ]
T , we have that

xB = −B−1NxN . All xN (i) that are irrational can be approximated as close as desired with
rational numbers; so let qN be a rational vector such that |qN − xN | < δ. Then qB = B−1NqN
is rational, because A has rational elements, and |qB − xB | ≤ |B−1N ||qN − xN |. Therefore, if
δ = ε/(

√
1 + |B−1N |2), then |qr − xr| < ε, and by adding 0 elements we find a rational vector q

such that |q − x| < ε. To make sure that q and x have the same support, δ can be chosen small
enough such that for xr(i) > 0: qr(i) > 0 and for xr(i) < 0: qr(i) < 0. 2

The proposition above shows that computation of integer invariant supports can be accom-
plished by working with real invariants. So Integer Programming is not necessary in this applica-
tion, and the more efficient methods of Linear Programming can be used instead.

The algorithm is outlined below:

• Transform Ax ≥ 0 in [A,−I] · [xT , yT ]T = 0, where y are the excess variables. Let n be the
number of rows of x.

• Is index i found to belong to a nonnegative invariant? If yes, try index i+1. If not, continue
with the next step.

• If i > n, terminate.
• Check feasibility of [A,−I] · [xT , yT ]T = 0, x(i) = 1, x ≥ 0 and y ≥ 0 with a Linear
Programming method. If feasible, let [xTs , y

T
s ]
T be a solution. Add all indices in ‖xs‖ to the

set of indices that belong to a nonnegative invariant.

This method is more efficient than the method based on invariant computation because it has
a good computational complexity. The worst case is better than O(n ∗LP ), where LP corresponds
to the order of the complexity of the Linear Programming method that is used. When an interior
point method is used, the algorithm always has a polynomial complexity.
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