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This paper studies and solves the problem of asymptotic stabilization of switched systems consisting of unstable second-
order linear time-invariant (LTI) subsystems. Necessary and su� cient conditions for asymptotic stabilizability are ® rst
obtained. If a switched system is asymptotically stabilizable, then the conic switching laws proposed in the paper are used
to construct a switching law that asymptotically stabilizes the system. Switched systems consisting of two subsystems with
unstable foci are studied ® rst and then the results are extended to switched systems with unstable nodes and saddle points.
The results are applicable to switched systems that consist of more than two subsystems.

1. Introduction

A switched system is a particular kind of hybrid
system that consists of several subsystems and a switch-
ing law specifying the active subsystem at each instant of
time. The interest in switched systems stems from the
fact that many real-world processes and systems in, for
example, chemical, transportation and communication
industries, can be modelled as switched systems (see, e.g.
Morse 1997) .

There have already been many results on the stability
analysis of switched systems. Most of the results are
based on Lyapunov’s direct method, especially, on the
common Lyapunov function (CLF) approach (see, e.g.
Narendra and Balakrishnan 1994, Ooba and Funahashi
1997, Shorten and Narendra 1997, 1998, Ska® das et al.
1999) or the multiple Lyapunov functions (MLFs)
approach (see, e.g. Peleties and DeCarlo 1991,
Pettersson and Lennartson 1996, Branicky 1998,
Johansson and Rantzer 1998, Pettersson 1999) . Linear
matrix inequalities (LMIs) are often formulated to help
search for Lyapunov functions (see, e.g. Pettersson and
Lennartson 1996, Johansson and Rantzer 1998,
Pettersson 1999) . Liberzon and Morse (1999), Michel
(1999) and DeCarlo et al. (2000) provide good surveys
of the related results. However, results using Lyapunov
functions typically provide su� cient-only conditions for
stability. The only necessary and su� cient conditions
that the authors are aware of are the necessary and
su� cient condition for the existence of a CLF for two
second-order stable linear systems (Shorten and
Narendra 1998) and the necessary and su� cient con-
dition for the test of quadratic stability (Ska® das et al.
1999) . Note that the ® rst result is applicable only to
stable subsystems and the second result is applicable
only to a very special type of stability which demands
strict decrease in some Lyapunov function.

Another important related problem for switched
systems is the control design for stability problem
(stabilization) . In many situations, one is given a collec-
tion of unstable subsystems and it is his or her task to
design a stabilizing switching law. There have been very
few such stabilization methods reported in the literature.
Stability design methods based on CLF or MLFs and
using LMIs have been proposed in Wicks et al. (1994),
Malmborg et al. (1996), Wicks and DeCarlo (1997),
Wicks et al. (1998) , Pettersson (1999) and Ska® das
et al. 1999) . Pettersson (1999) proposed a min-projection
strategy for the stability design. However, the above-
mentioned methods may be complicated to work with
and are su� cient only for stability or asymptotic stab-
ility, even in the case of second-order LTI switched
systems. In other words, if a method fails to stabilize a
switched system, one still cannot say much about the
stabilizability of the system.

In this paper, we concentrate on the stability design
of second-order LTI switched systems. The main char-
acteristics of our results are the necessary and su� cient
conditions for asymptotic stabilizability of such systems
and the construction of stabilizing control laws when
they exist. The idea behind our approach is to select
an active subsystem so that the distance of the state to
the origin (kxk2

2) is minimized. To achieve this, we base
our selection criterion on the angles of subsystem vector
® elds and the geometric properties of R 2. Note that our
selection criterion which is based on the angles is di� er-
ent from the above mentioned min-projection criterion
in that, in the min-projection criterion, the contribution
of the length of the vector ® elds may result to di� erent
selection of an active subsystem than our approach.
Another important point worth noting is that, by fully
utilizing the geometric properties of R 2, our approach
obtains necessary and su� cient conditions for the
asymptotic stabilizability as opposed to the su� cient-
only conditions obtainable by the min-projection and
Lyapunov approaches. From the literature, it can be
observed that the behaviours of switched systems are
complicated and di� cult to study in general. We point
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out that even for second-order LTI switched systems,
the dynamic behaviours of the systems are very rich,
and the study of such systems is therefore useful in
also gaining insight into higher-order switched systems.
It is then not surprising that second-order LTI switched
systems have been attracting researchers for some time.
For example, Shorten and Narendra (1998) studied the
stability analysis problem of ® nding a CLF for two sec-
ond-order linear systems. Another related interesting
research is by Loparo (Loparo et al. 1987 a, b) which
studies the local and global cycles, controllability and
attainability for second-order LTI switched systems.
Loparo et al. derived su� cient conditions for global
controllability of such systems and indicated that
attempts to determine necessary and su� cient con-
ditions for global controllability had been unsuccessful.
However, there was no result in the papers for the stabil-
ization problem of such systems, which we investigate in
the present paper.

Since the behaviour of a second-order LTI switched
system can be quite complex, to derive necessary and
su� cient conditions for asymptotic stabilizability, we
need to study di� erent cases exhaustively by categoriz-
ing subsystems. Although the approach in the paper is
applicable to several second-order LTI subsystems, yet
for clarity of motivation and presentation, we investi-
gate in detail two subsystems with foci, nodes and saddle
points. In } 3, we study two subsystems with foci by
identifying di� erent regions based on di� erent proper-
ties of the angles of subsystem vector ® elds. The main
results there are Theorem 1 and Theorem 2, which state
necessary and su� cient conditions for asymptotic stabil-
izability for two subsystems with foci. The isocline prop-
erties of linear systems and the topology of R 2 are
central to the proofs of these theorems. Besides these
theorems, we propose conic switching laws which
asymptotically stabilize a system if the system is asymp-
totically stabilizable. In }} 4 and 5, based on the methods
for subsystems with foci, stability designs are carried out
for two subsystems with nodes and two subsystems with
saddle points. It can be seen that the behaviour of such
systems is more complicated than two subsystems with
foci; therefore we go through exhaustive case studies to
completely explore the asymptotic stabilizability of such
systems. Section 6 indicates that the approach is also
applicable to several subsystems. Throughout the
paper, examples are presented to illustrate our results.

2. Preliminaries

In this paper, we study second-order LTI switched
systems of the form

_x ˆ fi…t†…x† ˆ Ai…t†x ; i 2 I ˆ f1 ;2 ; . . . ;Mg …1†

where Ai 2 R 2£2 (i 2 I) is the matrix for subsystem i and
is unstable. i…t†:‰0 ;1† ! I is a piecewise constant func-
tion indicating the active subsystem at each instant and
is determined by some switching law. Here we assume
that we are given a collection of subsystems

_x ˆ Aix ; i 2 I …2†

and are asked to design a switching law. In order to
motivate and clearly explain our approach, we concen-
trate on the case of two subsystems (I ˆ f1 ;2g) in }} 3, 4
and 5. In } 6, we mention extensions to the general M
subsystem cases.

Remark 1: Note that a switching law is valid if and
only if the switching function i…t† it produces is piece-
wise constant. Therefore any law that will cause
Zenoness (i.e. in® nitely many switchings in a ® nite
time interval) is regarded as unacceptable.

Remark 2: For the discussion of two subsystems, we
assume that A1 6ˆ cA2 ;8c 2 R . For if 9c µ 0;A1 ˆ cA2,
then one subsystem will be stable and this contradicts
our assumption. If 9c > 0 ;A1 ˆ cA2, then the trajec-
tory of the two subsystems are similar except for the
di� erence of speed; note that in this case, the system
will behave as a single unstable system.

Focus, node, saddle point. For a second-order system
_x ˆ Ax, the origin of R 2 is said to be a focus, or a
node, or a saddle point if the eigenvalues of A are
complex conjugates, or real numbers of the same sign,
or real numbers of opposite signs, respectively (see
Chapter 1 of Khalil (1996) for details). In this paper, a
second-order LTI system will be said to be with focus,
or node, or saddle point with regard to the correspond-
ing type of the origin. In the following, we mainly dis-
cuss these three kinds of systems. Figure 1 shows some
typical trajectories.

The direction of a subsystem at x. We say that the
direction of a subsystem at x 6ˆ 0 is clockwise (resp.
counterclockwise ) if, starting from x, its trajectory
evolves in a clockwise (resp. counterclockwise) direc-
tion. To be more precise, let x ˆ …x1 ;x2†T be a non-
zero point in R 2, and denote

f1 ˆ A1x ˆ … f11 ; f12†T …3†
f2 ˆ A2x ˆ … f21 ; f22†T …4†

We view x, f1 and f2 as vectors in R 2 and de® ne
³i ; i ˆ 1 ;2 to be the angle between x and f i measured
counterclockwise with respect to x (³i is con® ned to
¡º µ ³i < º). So in this case, when ¡º < ³i < 0 (resp.
0 < ³i < º), the ith subsystem is said to be of clockwise
(resp. of counterclockwise) direction at x. Figure 2(a)
shows an example in which subsystem 1 is of clockwise
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direction and subsystem 2 is of counterclockwise direc-
tion at x.

Notice that for any non-zero vector x ˆ …x1 ;x2†T,
…x2 ;¡x1†T is a vector obtained by rotating x clockwise
by an angle º=2. It can be seen that subsystem i is of
clockwise (resp. counterclockwise) direction at x if and
only if the absolute value of the angle (con® ned to
‰¡º;º†) between …x2 ;¡x1†T and f i is less than º=2
(resp. greater than º=2), in other words, the inner prod-
uct h…x2 ;¡x1†T ; f ii > 0 (resp. < 0). This actually pro-
vides us with an easy way to check the direction.

The regions Eis and Eiu. De® ne the following regions

Eis ˆ fxj ¡ º µ ³i µ ¡º=2 or º=2 µ ³i < ºg

ˆ fxjxTf i…x† ˆ xTAix µ 0g ; i ˆ 1 ;2 …5†
Eiu ˆ fxj ¡ º=2 µ ³i µ º=2g

ˆ fxjxTf i…x† ˆ xTAix ¶ 0g ; i ˆ 1 ;2 …6†
For subsystems with focus, node and saddle point, the
interior of Eis (resp. Eiu) is the set of all points in R 2

where the trajectory of the ith subsystem would be
driven closer to (resp. farther from) the origin if the
subsystem evolves for su� ciently small amount of time
starting from the point x. It can be veri® ed that Eis and
Eiu both have two conic sections.

The regions Eic and Eicc . De® ne the following regions

Eic ˆ fx ˆ …x1 ;x2†Tjh…x2 ;¡x1†T
; f ii ¶ 0g

ˆ fx ˆ …x1 ;x2†Tj…x2 ;¡x1†Ai…x1 ;x2†T ¶ 0g ;

i ˆ 1 ;2 …7†
Eicc ˆ fx ˆ …x1 ;x2†Tjh…x2 ;¡x1†T

; f ii µ 0g

ˆ fx ˆ …x1 ;x2†Tj…x2 ;¡x1†Ai…x1 ;x2†T µ 0g ;

i ˆ 1 ;2 …8†

For subsystems with focus, node and saddle point, Eic
(resp. Eicc ) denotes the regions in the interior of which
the ith subsystem trajectory travels clockwise (resp.
counterclockwise).
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Figure 1. The typical trajectory of a second order LTI system with (a) unstable focus (b) unstable node (c) saddle point.

(a) (b) (c)

x10

x2

x
q 1

q 2f 2

f 1

x10

x2

x f 1

x1x2( ,- )T

x10

x2

x

x1x2( ,- )T

f 2q 1

q 2
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the angle between …x2 ;¡x1†T and f1 is less than º=2. (c) The absolute value of the angle between …x2 ; ¡x1†T and f2 is greater
than º=2.



3. Stabilization of second-order LTI switched systems

with foci

In the present section, the switched system (2)
consisting of two second-order LTI subsystems with
unstable foci is studied in detail. Necessary and su� cient
conditions for the asymptotic stabilizability of such
systems are shown. If a switched system is asymptoti-
cally stabilizable, a switching law will also be obtained.

Note that for a second-order LTI system with focus,
starting from any x 6ˆ 0 the system trajectory is a spiral
around the origin in the clockwise (or counterclockwise)
direction. In view of the above discussion, the system is
said to be of clockwise (or counterclockwise) direction.
For a switched system consisting of two subsystems with
unstable foci, we will study the vector ® elds of both
subsystems and obtain stabilizing switching laws if
they exist. The basic idea is to choose an appropriate
subsystem at each instant so as to drive the trajectory
closer to the origin, i.e. kx…t†k2 ! 0 as t ! 1. Hereafter
we implement this idea to the case of two subsystems of
the same direction and of opposite directions.

3.1. Two subsystems of the same direction

Without loss of generality, assume that both sub-
systems are of clockwise direction. We ® rst de® ne the
following six regions

O1 ˆ E1s \ E2u …9†
O2 ˆ E1u \ E2s …10†
O3 ˆ E1s \ E2s \ fxj j³1j ¶ j³2jg …11†
O4 ˆ E1s \ E2s \ fxj j³1j µ j³2jg …12†
O5 ˆ E1u \ E2u \ fxj j³1j ¶ j³2jg …13†
O6 ˆ E1u \ E2u \ fxj j³1j µ j³2jg …14†

where Eis ;Eiu ; ³1 ;³2 are as de® ned in } 2. Figure 3 shows
the appearance of the vector ® elds in O1 to O6. Some
characteristics of these regions are now discussed.

The regions O1, O2. From (9), for any x 2 O1,
¡º < ³1 µ ¡º=2 and ¡º=2 µ ³2 < 0 hold. Moreover,
if Int …O1† 6ˆ 1, for any x 2 Int …O1†, we have
¡º < ³1 < ¡º=2 and ¡º=2 < ³2 < 0 as shown in
® gure 3(a) since equality ³i ˆ ¡º=2 only holds on the
boundary of O1.

O2 can be similarly explained as O1. If Int …O2† 6ˆ 1,
for any x 2 Int …O2†, ¡º < ³1 < ¡º=2 and ¡º=2 <
³2 < 0 hold (® gure 3(b)).

The regions O3, O4, O5 and O6 . From (11), for any
x 2 O3, ¡º < ³1 µ ³2 µ ¡º=2 must hold ; note that
strict inequalities hold for any x 2 Int …O3† (see ® gure
3(c)). In this case, (11) is true if and only if, in addi-
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direction.



tion to x 2 E1s \ E2s, the absolute value of the angle
(con® ned to ‰¡º;º†) between … f12 ;¡f11†T and
f2 ˆ … f21 ; f22†T is greater than or equal to º=2 (see
® gure 4), in other words, the inner product
h… f12 ;¡f11†T, … f21 ; f22†Ti ˆ f12 f21 ¡ f11 f22 µ 0. This pro-
vides us an alternative way to de® ne O3 in this case

O3 ˆ E1s \ E2s \ fxj f12 f21 ¡ f11 f22 µ 0g …15†

Similarly, for O4, O5 and O6 we have

¡º < ³2 µ ³1 µ ¡º=2; for x 2 O4

¡º=2 µ ³1 µ ³2 < 0 ; for x 2 O5

¡º=2 µ ³2 µ ³1 < 0 ; for x 2 O6

and the corresponding alternative de® nitions in this case
for these regions are

O4 ˆ E1s \ E2s \ fxj f12 f21 ¡ f11 f22 ¶ 0g …16†
O5 ˆ E1u \ E2u \ fxj f12 f21 ¡ f11 f22 µ 0g …17†
O6 ˆ E1u \ E2u \ fxj f12 f21 ¡ f11 f22 ¶ 0g …18†

Remark 3: Note that because A1 6ˆ cA2 ; 8c 2 R , it
can be shown that ³1 ˆ ³2 on only ® nitely many rays
through the origin which are parts of the boundaries
of some Oj .

Remark 4: The alternative de® nitions (15)± (18) pro-
vide us with an easier way to calculate O3 to O6 than
(11) ± (14). Note that if both subsystems are of counter-
clockwise direction, equations (9)± (14) are still valid as
de® nitions for O1 to O6, but the alternative de® nitions
(15) ± (18) need to be modi® ed following the idea of the
above discussion; for example, O3 will then be
O3 ˆ E1s \ E2s \ fxj f12 f21 ¡ f11 f22 ¶ 0g.

Remark 5: Note that [6
jˆ1 Oj ˆ R 2 and that the in-

teriors of Oj ’ s are disjoint.

An important observation can now be made. Refer
to ® gure 5(a). Assume that Int …O1† 6ˆ 1 and assume
that the ray l1 goes through the origin and the non-
zero points on l1 are in Int …O1†. Let l2 be the ray in
the same conic section of O1 as l1 obtained by rotating
l1 around the origin for the angle ¬ < 0 (¬ < 0 means
rotating clockwise). Starting from a non-zero point
x 2 l1, let x…i† ; i ˆ 1 ;2 be the point where the trajectory
intersects l2 for the ® rst time by following subsystem i.
Then from the de® nition of O1 is not di� cult to see that
for j¬j su� ciently small, we must have kx…1†k2 µ kx…2†k2.

Now refer to ® gure 5(b), let l1 and l2 be two di� erent
rays that go through the origin and are in the same conic
section of O1. Suppose that l2 is to the clockwise side of
l1. Let x 6ˆ 0 be on l1 and x…i† ; i ˆ 1 ;2 be the point on l2
where the trajectory of the system intersects l2 for the
® rst time if the system evolves solely by following sub-
system i. Then it can be seen that kx…1†k2 µ kx…2†k2.
Moreover, this observation can be extended to O2 to
O6 as stated by the following lemma.
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Lemma 1: Consider a switched system (2) consisting of
two subsystems with unstable foci and of the same direc-
tion. L et l1 and l2 be di� erent rays that go through the
origin and be in the same conic section of the region Oj
and l2 be to the clockwise side of l1. If x0 6ˆ 0 is on l1
and x…i† ; i ˆ 1 ;2 is the point on l2 where the trajectory
of the system, evolving solely by following subsystem i,
intersects l2 for the ® rst time, then

(a) for j ˆ 1 ;3 ;5, kx…1†k2 µ kx…2†k2,
(b) for j ˆ 2 ;4 ;6, kx…2†k2 µ kx…1†k2.

The proof of this result is straightforward (see Xu
and Antsaklis 1999 c). From Lemma 1, it can be seen
that for asymptotic stability it is preferable to choose
subsystem 1 in O1, O3 and O5 and subsystem 2 in O2,
O4 and O6 . So we propose the following switching law.

Conic Switching Law I: Switch to subsystem 1 when-
ever the system trajectory enters the conic sections of
the regions O1, O3, O5 and switch to subsystem 2 when-
ever the system trajectory enters the conic sections of
the regions O2, O4, O6.

It is clear that this conic switching law selects the
subsystem which drives the trajectory closer to the origin
at each point x 6ˆ 0.

Remark 6 : If at some instant t, the trajectory of a
switched system is at a point x where ³1 ˆ ³2, then the
point x is on the boundary of two Oj regions. In this
case, we associate with x the subsystem corresponding
to the region which is to be entered. This would make
the switching function right continuous.

By using Conic Switching Law I, we have the follow-
ing theorem that provides necessary and su� cient con-
ditions for the asymptotic stabilizability of the switched
system.

Theorem 1: Consider a switched system (2) consisting
of two subsystems with unstable foci and of the same
direction. L et l be a ray that goes through the origin
and let x0 6ˆ 0 be on l. L et x¤ be the point on l where
the trajectory intersects l for the ® rst time after leaving
x0, when the switched system evolves according to Conic
Switching L aw I (see ® gure 6). The switched system is
asymptotically stabilizable if and only if kx¤k2 < kx0k2.

Proof : If kx¤k2 < kx0k2, then, by the isocline prop-
erty of linear systems, the trajectory of the switched
system under Conic Switching Law I will evolve in the
similar fashion as in the ® rst round (i.e. the round
from x0 to x¤). Hence the trajectory will go to the
origin as t ! 1. Therefore Conic Switching Law I is
an asymptotically stabilizing switching law.

Next we prove that the `only if ’ part is also true. We
claim that if s is an arbitrary switching law and if ~x is the
point on l where the trajectory of the system intersects l
for the ® rst time after leaving x0, when the system
evolves using s, then we must have kx¤k2 µ k~xk2. This
can be proved as follows. Let ¬ be the angle from ray l
to the ray on which x…t† lies, measured counterclock-
wise. Note that s generates a ® nite number of switchings
in any ® nite time interval by Remark 1 in } 2; we assume
that using s the system switches when ¬ is equal to
0, ¬1, ¬2, . . . , ¬n, . . . . Now combine the above switching
¬’ s with the switching ¬’ s obtained when using Conic
Switching Law I and ¡2º. For simplicity of notation,
we still denote the combined switching ¬’ s as
0, ¬1, ¬2, . . ., ¬n, . . . ,¡2º, . . . . Let the trajectory for s
be xs…¬† and the trajectory using Conic Switching Law
I be xc…¬† indexed by ¬.

Now in the conic section ¬1 µ ¬ µ 0, it is better to
follow the subsystem which is speci® ed by Conic
Switching Law I in view of Lemma 1. So upon arriving
at ¬1, we have kxc…¬1†k2 µ kxs…¬1†k2.

In the conic section ¬2 µ ¬ µ ¬1, if
kxc…¬1†k2 ˆ kxs…¬1†k2, then from Lemma 1, it is still
better to follow Conic Switching Law I. If
kxc…¬1†k2 < kxs…¬1†k2, then it would be even clearer
that it is better to follow Conic Switching Law I, since
every trajectory evolving according to any one subsys-
tem starting from xc…¬1† is closer to the origin than
starting from xs…¬1†. Therefore upon arriving at ¬2,
we have kxc…¬2†k2 µ kxs…¬2†k2. By induction, we can
use similar argument as above to prove that upon arriv-
ing at ¡2º, we have kxc…¡2º†k2 µ kxs…¡2º†k2, i.e.,
kx¤k2 µ k~xk2.

Next we assume that the system is asymptotically
stabilizable but kx¤k2 ¶ kx0k2, therefore by the above
arguments, any switching law will have
kx0k2 µ kx¤k2 µ k~xk2. So when the system evolves
around the origin for ¡2º, the trajectory will not be
closer to the origin than x0 for any switching law. By
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induction, we can prove that for any ¡2kº (k > 0)
around the origin, the trajectory still cannot be closer
to the origin than x0 for any switching law. Therefore
the system is not asymptotically stabilizable, which is a
contradiction to our assumption. Consequently it must
be true that kx¤k2 < kx0k2. &

Example 1: Consider a switched system (2) consisting
of two subsystems with unstable foci and of the same
direction where

A1 ˆ
1 13

¡2 3

" #
; A2 ˆ

¡1 2

¡10 3

" #

It is asymptotically stabilizable. Figure 7 shows the tra-
jectory of the system with x0 ˆ …2 ;2†T. Here the system
starts with subsystem 2 and when the trajectory ® rst
intersects a dashed line, it switches to subsystem 1 and
then to subsystem 2, 1, etc. upon intersecting the dashed
lines according to Conic Switching Law I. Note that
here the active region for subsystem 1 (resp. 2) is actu-
ally the union of O1, O3, O5 (resp. O2, O4, O6 ) and Oj ’ s
are not shown individually.

3.2. Two subsystems of opposite directions

Assume that subsystem 1 is of clockwise direction
and subsystem 2 is of counterclockwise direction.
Similar to } 3.1, de® ne the following regions

Ô1 ˆ E1s \ E2s …19†

Ô2 ˆ E1u \ E2u …20†

Ô3 ˆ E1s \ E2u \ fxj j³1j ‡ j³2j ¶ ºg …21†

Ô4 ˆ E1s \ E2u \ fxj j³1j ‡ j³2j µ ºg …22†

Ô5 ˆ E1u \ E2s \ fxj j³1j ‡ j³2j ¶ ºg …23†
Ô6 ˆ E1u \ E2s \ fxj j³1j ‡ j³2j µ ºg …24†

Figure 8 shows the appearance of the vector ® elds in Ô1
to Ô6. Notice, the Ôj ’ s in this subsection are di� erent
from Oj ’ s in the previous subsection. Some characteris-
tics of these regions are now discussed.

The regions Ô1, Ô2. From (19), for any x 2 Ô1,
¡º < ³1 µ ¡º=2 and º=2 µ ³2 < º hold. Moreover, if
Int …Ô1† 6ˆ 1, for any x 2 Int …Ô1†, we must have
¡º < ³1 < ¡º=2 and º=2 < ³2 < º as shown in ® gure
8(a) since equality ³1 ˆ ¡º=2 or ³2 ˆ º=2 only holds
on the boundary of Ô1.

Ô2 can be similarly explained as Ô1. In Int …Ô2†, we
have ¡º=2 < ³1 < 0 < ³2 < º=2 (® gure 8(b)).

The regions Ô3, Ô4, Ô5 and Ô6. From (21), for
any x 2 Ô3, ¡º < ³1 µ ¡º=2, 0 < ³2 µ º=2 and
j³1j ‡ j³2j ¶ º must hold; note that strict inequalities
hold for any x 2 Int …Ô3†. In this case, (21) is true if
and only if, in addition to x 2 E1s \ E2u, the absolute
value of the angle (con® ned to ‰¡º;º†) between
… f12 ;¡f11†T and f2 ˆ … f21 ; f22†T is smaller than or equal
to º=2 (see ® gure 9), in other words, the inner product
h… f12 ;¡f11†T

;… f21 , f22†Ti ˆ f12 f21 ¡ f11 f22 ¶ 0. This pro-
vides an alternative way to de® ne Ô3 in this case

Ô3 ˆ E1s \ E2u \ fxj f12 f21 ¡ f11 f22 ¶ 0g …25†
Similarly for Ô4, Ô5 and Ô6 we have

¡º < ³1 µ ¡º=2; 0 < ³2 µ º=2 ; j³1j ‡ j³2j µ º

for x 2 Ô4

¡º=2 µ ³1 < 0 ; º=2 µ ³2 < º; j³1j‡ j³2j ¶ º

for x 2 Ô5

¡º=2 µ ³1 < 0 ; º=2 µ ³2 < º; j³1j‡ j³2j µ º

for x 2 Ô6

and the corresponding alternative de® nitions in this case
for these regions are

Ô4 ˆ E1s \ E2u \ fxj f12 f21 ¡ f11 f22 µ 0g …26†

Ô5 ˆ E1u \ E2s \ fxj f12 f21 ¡ f11 f22 ¶ 0g …27†

Ô6 ˆ E1u \ E2s \ fxj f12 f21 ¡ f11 f22 µ 0g …28†

Remark 7: Note that in Ô1, Ô3 and Ô5,
j³1j ‡ j³2j ¶ º, but in Ô2, Ô4 and Ô6 , j³1j‡ j³2j µ º.
Moreover, j³1j ‡ j³2j ˆ º can be true only on a ® nite
number of rays through the origin which are parts of
the boundaries of some Ôj .
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Remark 8: Note that if subsystem 1 is of counter-
clockwise direction and subsystem 2 is of clockwise di-
rection, equations (19)± (24) are still valid as de® nitions
for Ô1 to Ô6 , but the alternative de® nitions (25)± (28)
need to be modi® ed following the idea of the above
discussion; for example, Ô3 will then be Ô3 ˆ
E1s \ E2u \ fxj f12 f21 ¡ f11 f22 µ 0g.

Remark 9: Note that [6
jˆ1 Ôj ˆ R 2 and the interiors

of Ôj ’ s are disjoint.

Assume that l1 and l2 are di� erent rays that go
through the origin and are in the same conic section of
the region Ô1 and l2 is to the clockwise side of l1.
Suppose x0 6ˆ 0 is on l2. Let the switched system follow
subsystem 2 until the trajectory intersects l1 for the ® rst
time and then let the system switch to subsystem 1 and
evolve following subsystem 1. Suppose x¤ is the point on
l2 where the trajectory intersects l2 for the ® rst time after
the switching. Then it can be seen that kx¤k2 µ kx0k2
(see ® gure 10(a)). Moreover, we have the following
Lemma.

Lemma 2: Consider a switched system (2) consisting of
two subsystems with unstable foci and of opposite direc-
tions. L et l1 and l2 be di� erent rays that go through the
origin and be in the same conic section of the region Ôj

and l2 be to the clockwise side of l1. L et x0 6ˆ 0 be on l2.
L et the switched system follow subsystem 2 until the tra-
jectory intersects l1 for the ® rst time and then let the
system switch to subsystem 1 and evolve following sub-
system 1. Suppose x¤ is the point on l2 where the trajec-
tory intersects l2 for the ® rst time after the switching,
then
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(a) for j ˆ 1 ;3 ;5, kx¤k2 µ kx0k2,
(b) for j ˆ 2;4;6, kx¤k2 ¶ kx0k2.

The proof of the above lemma is straightforward (see
Xu and Antsaklis 1999 c). Figure 10 shows the trajec-
tories in Ô1, Ô3 and Ô5. Next we prove an important
theorem that shows a necessary and su� cient condition
for the asymptotic stabilizability.

Theorem 2: A switched system (2) consisting of two
subsystems with unstable foci and of opposite directions
is asymptotically stabilizable if and only if
Int …Ô1† [ Int …Ô3† [ Int …Ô5† 6ˆ 1.

Proof : If 9j 2 f1 ;3 ;5g such that Int …Ôj† 6ˆ 1, then
we can ® rst force the trajectory to the boundary of a
conic section of Ôj by following subsystem 1. Upon in-
tersecting the boundary, we can switch back and forth
between the two subsystems in Ôj as shown in ® gure
10. In view of the isocline property of linear systems,
we can asymptotically stabilize the system by switching
in this way.

Next we show that the `only if ’ part is also true. The
proof is by contradiction. Assume that the switched
system is asymptotically stabilizable but Int …Ô1†[
Int …Ô3† [ Int …Ô5† ˆ 1. Let x0 6ˆ 0 be on ray l0 through
the origin (see ® gure 11). Let ¬ be the angle from l0 to
the ray on which x…t† lies, measured counterclockwise.
Assume that s is an arbitrary switching law such that the
system switches when ¬ is equal to 0 ;¬1 ;¬2 ; . . . ;¬n ; . . .
and starting from subsystem 2. And let the correspond-
ing points at switching moment be x0 ;x1 ;x2 ; . . . ;xn ; . . .
and x1 be on ray l1 through the origin. (A similar argu-
ment can be applied to an arbitrary switching law start-
ing from subsystem 1.)

Now consider the trajectory of subsystem 2 starting
at x0 and go backward in time, i.e., x…¡t†. Assume x¤ is
the point where the trajectory intersects l1 for the ® rst
time (at time ¡t¤) ( ® gure 11). Let

E ˆ fx…¡t†j ¡ t¤ µ ¡t < 0g

If we consider the trajectory from x0 to x1 using s, it is
clear that for any point x on the trajectory between x0 to
x1, kxk2 would be greater than or equal to the norm of
the corresponding point on E (x 0 on E corresponds to x
when they are on the same ray through the origin).

Since Int …Ô1† [ Int …Ô3† [ Int …Ô5† ˆ 1, by Lemma
2 and induction we can show that any x on the trajec-
tory between xk and xk‡1 (k ¶ 1) that uses the law s have
a norm greater than or equal to the norm of the corre-
sponding points on E. Therefore, any x on the trajectory
of the switched system under s would have a norm
greater than the minimum value of the norms of the
points on E. Hence the switched system is not asympto-
tically stabilizable by any s, which is a contradiction to
our assumption. &

With the help of the above de® nitions of Ôj and
Theorem 2, if a switched system is asymptotically stabil-
izable, we propose the following switching law.
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Conic Switching Law II:

1. Start with subsystem 1 or 2 and stay with it until
the trajectory enters into the interior of one of the
conic sections of the regions Ô1, Ô3 and Ô5.

2. Switch to another subsystem upon intersecting the
boundary of the conic section so as to keep the
trajectory inside the conic section.

According to Theorem 2, there must be one of Ô1,
Ô3 and Ô5 with non-empty interior for an asymptoti-
cally stabilizable switched system. Therefore, by staying
with subsystem 1 or 2, the trajectory can always be
forced into one of the conic sections as mentioned in
Step 1. Conic Switching Law II drives the trajectory
closer to the origin in Ô1 or Ô3 or Ô5 as can be seen
from Lemma 2.

Example 2: Consider a switched system (2) consisting
of two subsystems with unstable foci and of di� erent
directions where

A1 ˆ
¡2 52

¡8 6

" #
; A2 ˆ

11 ¡10

50 ¡9

" #

It is asymptotically stabilizable since Int …Ô1† 6ˆ 1.
Figure 12 shows (a) the conic sections of the regions
Ôj ’ s, (b) the trajectory of the system with
x0 ˆ …¡2 ;2†T. In this example, the system starts with
subsystem 2 and when the trajectory ® rst intersects the
boundary of the conic section of Ô1 in quadrant II, it
switches to subsystem 1 and then to subsystem 2, 1, etc.

upon intersecting boundary of the conic section accord-
ing to Conic Switching Law II.

4. Stabilization of second-order LTI switched systems

with nodes

In this section, the asymptotic stabilizability of
switched systems (2) consisting of two subsystems with
unstable nodes is studied in detail. If a switched system
is asymptotically stabilizable, a switching law will also
be obtained.

The trajectory of a simple second-order LTI system
where

A ˆ
c1 0

0 c2

" #

; c2 > c1 > 0

is shown in ® gure 1(b). The trajectory travels counter-
clockwise in quadrant I since h…x2 ;¡x1†T,
…c1x1 ;c2x2†Ti ˆ …c1 ¡ c2†x1x2 < 0. Similarly, the trajec-
tories in quadrants II, III and IV travel clockwise, coun-
terclockwise and clockwise, respectively. Using the
notation Ec and Ecc in } 2, Ecc includes quadrants I
and III, while Ec includes quadrants II and IV. In gen-
eral, for a second-order LTI system with unstable node,
a linear transformation can be used to transform the
system equation into the above simple form (see, e.g.
Chapter 2 in Antsaklis and Michel (1997)). So we can
analyse the direction of the system at each point in the
transformed coordinate system and then translate the
result back to the original coordinate system. In this
section, we do not consider the special case

1270 X. Xu and P. J. Antsaklis

W 6
^

W 6
^

W 4
^ W 4

^W 3
^

W 3
^

W 2
^

W 2
^

W 1
^

W 1
^

W 5
^

W 5
^

0.5

0.5

1.5

1.5-0.5

-0.5

-1.5

-1.5

0

0

1

1

2

2

-2
-2

-1

-1

x 2

x1

0-0.5

0.5

-1-1.5-2-2.5
0

1

1.5

2

2.5

(a) (b)

Figure 12. Example 2: (a) the conic sections; (b) the trajectory in Ô1.



A ˆ
c 0

0 c

" #

This is because if one of the subsystems has two positive
eigenvalues c1 ˆ c2, it can be shown that the system is
not stabilizable.

Now de® ne

Ec;c ˆ E1c \ E2c …29†
Ec;cc ˆ E1c \ E2cc …30†
Ecc ;c ˆ E1cc \ E2c …31†

Ecc ;cc ˆ E1cc \ E2cc …32†
Ec;c denotes the conic sections in which both the trajec-
tories of subsystem 1 and 2 travel clockwise. Ec;cc, Ecc ;c
and Ecc ;cc have analogous properties. Figure 13 shows
exhaustively the six possible arrangements of Ec;c, Ec;cc,
Ecc;c and Ecc ;cc. In ® gure 13, the small arrows indexed by
the subsystem numbers on the eigenvector lines indicate
the directions of the subsystems crossing the lines.
Without loss of generality, we illustrate these cases by
® xing E1cc to be in quadrants I and III and E1c to be in
quadrants II and IV, respectively. (We can always do so
using a linear transformation, which will not a� ect the
applicability of our results. )

Remark 10: In the six cases, we assume that none of
the two eigenvector directions of A2 coincide with any
of the eigenvector direction of A1. This assumption is
only for the purpose of discussion. However, in the
case that some eigenvectors coincide, it is not di� cult
to carry out similar analysis.

Next we discuss in detail the di� erent cases as shown
in ® gure 13.

4.1. Case 1

We only discuss Case 1(a) (see Case 1(a) in ® gure
13), since similar argument can be applied to Case 1(b)
(similarly we only discuss Cases 2(a) and 3(a) in Cases 2
and 3). First we introduce the notions of Type A, B, C
regions.

Type A region. In Case 1(a), the two subsystems are of
the same direction in Ec;c, Ecc ;cc. Any trajectory starting
in a conic section of these regions will eventually leave
the conic section if the total time the system being active
at subsystem 1 and the total time the system being active
at subsystem 2 are both long enough. We call a region
with this property a Type A region. (Of course, if the
switched system stays with subsystem 1 in Ec;c, it will not
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leave Ec;c, yet the system will be unstable, so this kind of
strategy is not of interest here.)

Type B region. The region Ecc ;c in Case 1(a) has the
property that whenever a trajectory goes into a conic
section of it, the trajectory can never leave that conic
section again. We call such kind of region Type B region.

Type C region. In a conic section of Ec;cc in Case 1(a),
the trajectory of the systems can always leave the conic
section from both boundary lines under appropriate
switchings. We call such kind of region Type C region.

We now introduce a lemma. Notice that the Oj ’ s and
Ôj ’ s mentioned in }} 4 and 5 are de® ned in } 3.

Lemma 3: In Case 1(a), for the Type B region Ecc;c,
Int …Ecc ;c \ Ôj† ˆ 1, j ˆ 1;3;5.

Proof : Consider the conic section of Ecc ;c in quadrant
I and note that similar arguments can be applied to
the conic section in quadrant III. Assume that the
boundary of the conic section is formed by two rays l1
and l2 through the origin. Note that subsystem 1 (resp.
2) is of counterclockwise (resp. clockwise) direction in
Ecc;c (see ® gure 14).

From ® gure 14, j³1j must be smaller than the abso-
lute value of the angle from x to l1, also j³2j must be
smaller than the absolute value of the angle from x to l2
(all angles are con® ned to ‰¡º;º†). While the absolute
value of the angle between l1 and l2 is less than º=2 for l2
is in quadrant I, we conclude that j³1j‡ j³2j < º=2 < º.
Therefore by Remark 7 in } 3.2, we know that in
Int …Ecc ;c \ Ôj† ˆ 1, j ˆ 1;3;5. &

Once a trajectory goes into Ecc ;c, it cannot leave Ecc ;c
since Ecc ;c is a Type B region and moreover, in view of
Lemma 3, the trajectory cannot be asymptotically stabil-
ized by any switching sequences. So in general, the
switched system is not asymptotically stabilizable

because stabilizability in general requires stabilizability
from any initial point.

For the Type C region Ec;cc, it can also be proved
that Int …Ec;cc \ Ôj† ˆ 1, j ˆ 1 ;3 ;5, by showing
j³1j ‡ j³2j < º.

Consequently in Case 1(a), the switched system cannot
be asymptotically stabilized regardless of the initial point.

4.2. Case 2

We only discuss Case 2(a) (see Case 2(a) in ® gure
13). Here Ec;c and Ecc;cc are Type A regions. E1

c;cc is a
Type B region and E2

c;cc is a Type C region.
By applying similar arguments as in Lemma 3,

it can be shown that j³1j‡ j³2j < º so that
Int …E1

c;cc \ Ôj† ˆ 1, j ˆ 1 ;3 ;5. Hence we conclude
that the system is not asymptotically stabilizable.
However, it is still possible for the trajectory starting
in the Type C region to be driven asymptotically toward
the origin as long as the region satis® es the condition of
the following lemma.

Lemma 4: In Case 2(a), trajectories starting in
Int …E2

c;cc† can be driven asymptotically toward the origin
if and only if Int …E2

c;cc \ Ô1† [ Int …E2
c;cc \ Ô3†[

Int …E2
c;cc \ Ô5† 6ˆ 1.

Proof : If Int …E2
c;cc \ Ô1† [ Int …E2

c;cc \ Ô3† [ Int …E2
c;cc \

Ô5† 6ˆ 1, then we can adopt Conic Switching Law II
as in } 3.2 to drive trajectories starting in Int …E2

c;cc†
asymptotically toward the origin.

Next we show that the `only if ’ part is also true. The
proof is by contradiction. Assume that trajectories start-
ing in Int …E2

c;cc† can be driven asymptotically toward the
origin but Int …E2

c;cc \ Ôj† ˆ 1, j ˆ 1 ;3 ;5. Assume the
boundary of the conic section of E2

c;cc in quadrant II is
formed by two rays l1 and l2 through the origin. Note
that subsystem 1 (resp. 2) is of clockwise (resp. counter-
clockwise) direction in E2

c;cc as in ® gure 15.
Now let x0 6ˆ 0 be in the interior of the conic section.

Let F be a region formed by l1, l2 and the trajectory T 1
and T 2 (the shaded region in ® gure 15). Here T i (i ˆ 1 ;2)
is the trajectory if the system starts at x0 and follows
subsystem i until it intersects li. We can show that for
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any switching law, the trajectory of the switched system
starting with x0 will never enter Int …F† (this can be
proved by using similar techniques as in the proof of
Theorem 2), however this is a contradiction to the
assumption. &

In this case, if the conditions in Lemma 4 are satis-
® ed, then trajectories starting in Int …E2

c;cc† can be driven
asymptotically toward the origin using Conic Switching
Law II.

Example 3: Consider a switched system (2) consisting
of two subsystems with unstable nodes where

A1 ˆ
1 0

0 20

" #

; A2 ˆ
¡37 ¡152

14:25 58

" #

It can be shown that Int …E2
c;cc \ Ô5† 6ˆ 1, so trajectories

starting in E2
c;cc can be driven asymptotically toward the

origin. Figure 16 shows (a) the conic sections in E2
c;cc, (b)

the trajectory of the system with x0 ˆ …¡8 ;1†T. Here,
the system starts with subsystem 2 and when the trajec-
tory ® rst intersects the boundary of the conic section of
Ô5 in E2

c;cc in quadrant II, it switches to subsystem 1 and
then to subsystem 2, 1, etc. upon intersecting boundary
of the conic section according to Conic Switching
Law II.

4.3. Case 3

We only discuss Case 3(a) (see Case 3(a) in ® gure
13). In this case E1

c;c and E2
c;c are Type A regions.

We ® rst claim that Int …Ec;cc \ Ôj† ˆ 1 and
Int …Ecc ;c \ Ôj† ˆ 1, j ˆ 1 ;3 ;5. This can be proved
using arguments similar to the proof of Lemma 3 by
showing j³1j ‡ j³2j < º. Hence, the trajectory must not
always be inside Ec;cc (Ecc ;c) in order to be driven asymp-
totically toward the origin.

In fact, we can adopt a similar test as in the case of
two subsystems with unstable foci of the same direction
in } 3.1. In particular, Conic Switching Law I can be
modi® ed as follows.

Conic Switching Law III: Switch to subsystem 1 in
Ec;cc and subsystem 2 in Ecc ;c. W hile in E1

c;c and E2
c;c,

switch to subsystem 1 whenever the system trajectory
enters the conic sections of E1

c;c \ Oj or E2
c;c \ Oj,

j ˆ 1 ;3 ;5 and switch to subsystem 2 whenever the
system trajectory enters the conic sections of E1

c;c \ Oj

or E2
c;c \ Oj , j ˆ 2;4;6.

The following theorem provides necessary and su� -
cient conditions for the asymptotical stabilizability of
the switched system.

Theorem 3: Consider a switched system (2) consisting
of two subsystems with unstable nodes as in Case 3(a).
L et l be a ray that goes through the origin. L et x0 6ˆ 0
be on l. L et x¤ be the point on l where the trajectory in-
tersects l for the ® rst time after leaving x0, when the
switched system evolves according to Conic Switching
L aw III. Then the switched system is asymptotically
stabilizable if and only if kx¤k2 < kx0k2.

The conditions in the above theorem are not easy to
check. The following corollary provides a simpli® ed suf-
® cient condition to check whether a switched system is
not asymptotically stabilizable.

Corollary 1 (The Parallelogram Su� cient Condi-
tion) : Consider a switched system (2) consisting of two
subsystems with unstable nodes as in Case 3(a). If the
boundaries of the regions are denoted as l1, l2, l3, l4 as
shown in ® gure 17. L et x0 be a non-zero point on l3. If
x0x1x2x3 is a parallelogram on R 2, where x1 2 l2,
x2 2 l4, x3 2 l3 and x0x1 k x2x3 k l1, x1x2 k x0x3. Then
the switched system is not asymptotically stabilizable if
kx3k2 ¶ kx0k2.

Proof : Consider the trajectory starting at x0 and
evolving according to Conic Switching Law III. Notice
that in Ec;cc, any point x on the trajectory is always
farther from the origin than the corresponding point
on the line segment x0x1 which is on the same ray
through the origin, so the trajectory is farther away

Stabilization of second-order L TI switched systems 1273

(a) (b)

W 6
^

x1

x 2

2

1

-10 0-2-3-4-8 -7 -5-6
0

W 6
^

W 5
^

W 2
^

q 1=2.9040

q 2=3.1220

Figure 16. Example 3: (a) the conic sections ; (b) the trajectory in Ô5 in E2
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from the origin than x0x1 in Ec;cc. Similarly, in E1
c;c, we

can also show that the points on the trajectory are
farther from the origin than the corresponding points
on x1x2. And we can have the similar results for Ecc;c,
E2

c;c. Therefore, the trajectory of the system starting at
x0 until intersecting l3 again for the ® rst time must be
outside the parallelogram, so if kx3k2 ¶ kx0k2, this
would imply kx 0k2 ¶ kx0k2, where x 0 is the intersecting
point on l3 when the system trajectory evolves accord-
ing to Conic Switching Law III for half round. More-
over, this implies that kx¤k2 ¶ kx0k2 after one round.
So the switched system is not asymptotic stabilizable
by Theorem 3. &

Example 4: Consider a switched system (2) consisting
of two subsystems with unstable nodes where

A1 ˆ
1 0

0 10

" #
; A2 ˆ

58 152

¡14:25 ¡37

" #

The switched system is asymptotically stabilizable using
Conic Switching Law III. Figure 18 shows the trajectory
of the system with x0 ˆ …¡4 ;0:5†T. Here the system
starts with subsystem 1 and when the trajectory ® rst

intersects a dashed line, it switches to subsystem 2 and
then to subsystem 1, 2, etc. upon intersecting the dashed
lines according to Conic Switching Law III.

5. Stabilization of second-order LTI switched systems

with saddle points

In this section, we study the asymptotic stabilizabil-
ity of switched systems (2) consisting of two subsystems
with saddle points.

The trajectory of a simple second-order LTI system
with saddle point where

A ˆ
c1 0

0 c2

" #
; c1 > 0 > c2

is shown in ® gure 1(c). The trajectory travels clockwise
in quadrant I since h…x2 ;¡x1†T

; …c1x1 ;c2x2†Ti ˆ
…c1 ¡ c2†x1x2 > 0. Similarly, the trajectories in quad-
rants II, III and IV travel counterclockwise, clockwise
and counterclockwise, respectively. Hence Ec includes
quadrants I and III, while Ecc includes quadrants II
and IV. While on the vertical axis, the trajectory tends
toward the origin. On the horizontal axis, the trajectory
tends toward 1. In general, for a second-order system
with saddle point, linear transformation techniques can
used to determine the direction of the system at a point.

Figure 19 shows exhaustively the six possible
arrangements of Ec;c, Ec;cc, Ecc ;c and Ecc ;cc. As in } 4,
we illustrate these cases by ® xing E1c to be in the I, III
quadrants and E1cc to be in the II, IV quadrants.

Remark 11: Similar to } 4, in the six cases, we assume
that none of the two eigenvector directions of A2 coin-
cides with any eigenvector direction of A1. Again this
assumption is only for the purpose of discussion. In
the case that some eigenvector directions do coincide,
it is not di� cult to carry out similar analysis as to the
one discussed in the following.

5.1. Case 1

We only discuss Case 1(a) (see Case 1(a) in ® gure
19). Case 1(b) is analogous. Similarly we only discuss
Cases 2(a) and 3(a) in Cases 2 and 3. In this case, Ec;c,
Ecc ;cc are Type A regions. Ecc ;c is a Type B region and
Ec;cc is a Type C region. In this case, we have the follow-
ing lemma.

Lemma 5: In Case 1(a), for the Type C region Ec;cc,
we have

Int …Ec;cc \ Ô1† [ Int …Ec;cc \ Ô3† [ Int …Ec;cc \ Ô5† 6ˆ 1

Proof : See ® gure 20, assume that rays l1, l2, l3, l4
through the origin are in the eigenvector directions of
the two subsystems, respectively. So the conic section
of Ec;cc in quadrant I is bounded by l1 and l2.
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At a point x close enough to l1, we must have j³1j
very close to the absolute value of the angle from x to
the negative direction of l1, i.e. j¬j very close to 0 as in
® gure 20 (all angles are con® ned to ‰¡º;º††. Also note
that j³2j is greater than the angle from x to l4. Therefore
as j¬j is small enough, j³1j‡ j³2j will be greater than or
equal to the addition of absolute value of the angle from
x to l4 and the absolute value of the angle from x to the
negative direction of l1, which is greater than º. So by

Remark 7 in } 3.2, we conclude that Int …Ec;cc \ Ô1†[
Int …Ec;cc \ Ô3† [ Int …Ec;cc \ Ô5† 6ˆ 1. &

For the Type B region Ecc ;c, we have the following
lemma.

Lemma 6: If

Int …Ecc ;c \ Ô1† [ Int …Ecc ;c \ Ô3† [ Int …Ecc ;c \ Ô5† 6ˆ 1

then trajectories starting in Ecc ;cc, Ec;c and Ecc ;c can be
driven asymptotically toward the origin.

By Lemmas 5 and 6, if the condition of Lemma 6
holds, then the system can be asymptotically stabilized
from any initial point on R 2 ; Conic Switching Law II as
in } 3.2 can then be used.

Example 5: Consider a switched system (2) consisting
of two subsystems with saddle points where

A1 ˆ
1 0

0 ¡10

" #

; A2 ˆ
¡4:5 ¡5:5

¡5:5 ¡4:5

" #

It can be shown that Int …Ecc ;c \ Ôj† 6ˆ 1, j ˆ 1 ;3 ;5, so
trajectories starting in Ecc ;c can be driven asymptotically
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Figure 19. Cases for subsystems with saddle points.
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toward the origin. Figure 21 shows (a) the conic sections
in Ecc;c, (b) the trajectory of the system with
x0 ˆ …¡2 ;0:8†T. Here, the system starts with subsystem
2 and when the trajectory ® rst intersects the boundary of
the conic section of Ô1 in E2

cc;c in quadrant II, it switches
to subsystem 1 and then to subsystem 2, 1, etc. upon
intersecting boundary of the conic section according to
Conic Switching Law II.

5.2. Case 2

We only discuss Case 2(a) (see Case 2(a) in ® gure
19). In this case, Ec;c and Ecc ;cc are Type A regions,
E2

cc;c is a Type B region and E1
cc;c is a Type C region.

By adopting similar arguments as in Lemma 5, we
can show that

Int …E1
cc ;c \ Ô1† [ Int …E1

cc ;c \ Ô3† [ Int …E1
cc ;c \ Ô5† 6ˆ 1

Furthermore, it can be shown that Int …E2
cc ;c \ Ôj† ˆ 1,

j ˆ 1 ;3 ;5.
Therefore, in this case, the system is not asymptoti-

cally stabilizable. Yet for any initial point in E1
cc ;c, we can

use Conic Switching Law II to keep the trajectory in
E1

cc;c and to drive the trajectory asymptotically toward
the origin.

Example 6 : Consider a switched system (2) consisting
of two subsystems with saddle points where

A1 ˆ
1 0

0 ¡10

" #
; A2 ˆ

1:6667 0:8889

¡2:0000 ¡1:6667

" #

It can be shown that all the points in E1
cc ;c belong to Ô1.

Speci® cally, we keep the trajectory between the rays l1
with angle 1:6 and l2 with angle 1:8 (Figure 22(a)).
Figure 22 shows (a) l1 and l2 in E1

cc ;c, (b) the trajectory
of the system with x0 ˆ …¡2;10†T. In this example, the
stabilizing control law is derived using a slight modi® ca-
tion of Conic Switching Law II. The system starts with
subsystem 2 and when the trajectory ® rst intersects the
l1, it switches to subsystem 1 and then to subsystem 2, 1,

etc. upon intersecting l2, l1, etc. similarly to Conic
Switching Law II.

5.3. Case 3

We only discuss Case 3(a) (see Case 3(a) in ® gure
19). In this case, E1

cc ;cc and E2
cc ;cc are Type A regions.

In this case, we claim that

Int …Ec;cc \ Ô1† [ Int …Ec;cc \ Ô3† [ Int …Ec;cc \ Ô5† 6ˆ 1

In fact, here especially Int …Ec;cc \ Ô3† 6ˆ 1. This can be
proved using similar arguments as in the proof of
Lemma 5 by considering points close enough to the
vertical axis.

Furthermore, we claim that the system is always
asymptotically stabilizable in this case. This is because
for any initial point x 2 R 2, we can always ® rst choose
appropriate switchings such that the system trajectory is
driven into Ec;cc and then adopt Conic Switching Law II
so as to keep the system trajectory in one conic section
of Int …Ec;cc \ Ôj†; j ˆ 1;3;5 (there must be one avail-
able). In this way, the system can be asymptotically
stabilized.
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cc;c.

(b)
x1

x 2

10

-1 0-2
0

(a)

0

q 1=1.6

q 2=1.8

W 1
^

8

6

4

2

l 2

l 1

Figure 22. Example 6 : (a) l1 and l2 ; (b) the trajectory in Ô1 in
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Example 7: Consider a switched system (2) consisting
of two subsystems with saddle points where

A1 ˆ
1 0

0 ¡1

" #
; A2 ˆ

¡1:5714 ¡0:8571

1:7143 1:5714

" #

This system is asymptotically stabilizable as discussed
above. Here we keep the trajectory between ray l1 with
angle 1 and ray l2 with angle 1:5. Figure 23 shows the
trajectory of the system with x0 ˆ …7 ;0†T and the conic
sections. Here, the stabilizing control law is derived
using a slight modi® cation of Conic Switching Law II.
The system starts with subsystem 2 and when the trajec-
tory ® rst intersects the l2, it switches to subsystem 1 and
then to subsystem 2, 1, etc. upon intersecting l1, l2, etc.
similarly to Conic Switching Law II.

6. Several subsystems

Having studied switched systems consisting of two
subsystems in detail in }} 3, 4, 5, now we turn to switched
systems (2) consisting of M ¶ 2 several subsystems, i.e.
I ˆ f1 ;2 ; . . . ;Mg in (2). The methodology based on the
geometric properties of vector ® elds developed in the
previous three sections can be similarly extended and
applied to several subsystems. Here we will concentrate
only on the case when all subsystems are with unstable
foci for the purpose of illustration. There are two poss-
ible cases.

6.1. Case 1. All subsystems of the same direction

Without loss of generality, assume that all the M
subsystems are with unstable foci and of clockwise direc-
tion. We adapt Conic Switching Law I in } 3.1 to be

Conic Switching Law IV: Associate with each point on
R 2 a subsystem k where j³k j is the biggest among all j³ij’ s
(the ³i ’ s here are all negative) (if some j³k1

j ˆ j³k2
j, we

may choose subsystem according to Remark 6 in } 3.1).

Similar arguments as in } 3.1 can be used for several
subsystems to show the following theorem.

Theorem 4: Consider a switched system (2) consisting
of M ¶ 2 subsystems with unstable foci and of the same
direction. L et l be a ray that goes through the origin.
L et x0 6ˆ 0 be on l. L et x¤ on l be the point where the
trajectory intersects l for the ® rst time after leaving x0,
when the switched system evolves according to Conic
Switching L aw IV . The switched system is asymptoti-
cally stabilizable if and only if kx¤k2 < kx0k2.

6.2. Case 2. Not all subsystems of the same direction

Assume that K…K > 0† subsystems are of clockwise
direction and L …L > 0† subsystems are of counterclock-
wise direction (K ‡ L ˆ M). The following theorem can
now be shown.

Theorem 5: A switched system (2) consisting of
K…K > 0† subsystems S¡

1 ; . . . ;S ¡
K with unstable foci and

of clockwise direction and L …L > 0† subsystems
S‡

1 ; . . . ;S‡
L with unstable foci and of counterclockwise

direction is asymptotically stabilizable if and only if at
least one of the following three conditions holds:

(1). The switched system consisting of S¡
1 ; . . . ;S¡

K is
asymptotically stabilizable.

(2). The switched system consisting of S‡
1 ; . . . ;S‡

L is
asymptotically stabilizable.

(3). There exist i and j with 1 µ i µ K and 1 µ j µ L
such that the switched system consisting of the
two subsystems S¡

i and S‡
j is asymptotically sta-

bilizable.

Proof : If any one of statement 1, 2 holds, then we
can use Conic Switching Law IV to asymptotically
stabilize the switched system. Or if statement 3 holds,
then we can use Conic Switching Law II for the two
subsystems to asymptotically stabilize the system.

Next we show that the `only if ’ part is also true. First
of all, if the switched system is asymptotically stabiliz-
able, and if statement 1 or 2 holds, then the only if part
is also true. So in the following, we assume that con-
ditions 1 and 2 do not hold and we want to prove that
condition 3 must hold. The proof is by contradiction.
Assume that in this case, switched system consisting of
any two subsystems S¡

i and S‡
j is not asymptotically

stabilizable. So it is implied that

Int …Ô1† [ Int …Ô3† [ Int …Ô5† ˆ 1

for any S¡
i and S‡

j .
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Now consider ® gure 24 and assume that x0 is a non-
zero initial point on ray l0 in R 2. Let trajectory 1 (dotted
curve) be the trajectory starting from x0 and switching
among S¡

1 ; . . . ;S ¡
K using Conic Switching Law IV.

Trajectory 1 intersects l0 at x¡
¤ for the ® rst time. Since

statement 1 does not hold in this case, we have
kx¡

¤ k2 ¶ kx0k2. Similarly, trajectory 2 is the trajectory
under Conic Switching Law IV for S‡

1 ; . . . ;S‡
L , and it

intersects l0 at x‡
¤ with kx‡

¤ k2 ¶ kx0k2.
It is clear that trajectory 1 intersects trajectory 2 at

some point x1. Now we argue that any trajectory start-
ing at x0 cannot enter the interior of the region E
bounded by trajectory 1 and trajectory 2 (the shaded
region in ® gure 24).

Assume that x is on the boundary of E, e.g. x is on
trajectory 1. Notice that the vector ® eld of any one of
the subsystems S¡

1 ; . . . ;S¡
K cannot lead the state into E

since trajectory 1 is already the `best’ trajectory using
Conic Switching Law IV. While for vector ® elds of
S‡

1 ; . . . ;S‡
L , since we have

Int …Ô1† [ Int …Ô3† [ Int …Ô5† ˆ 1

for any S ¡
i and S‡

j by our assumption, S‡
1 ; . . . ;S‡

L also
cannot lead the state into E. The similar arguments can
be applied to points on the boundary of E which are on
trajectory 2.

Therefore, any trajectory starting at x0 cannot enter
Int …E†, so the switched system is not asymptotically
stabilizable. This is a contradiction to our assumption
of the asymptotic stabilizability of the switched system.
So condition 3 must hold. &

7. Conclusions

In this paper, we study the problem of asymptotically
stabilizing switched systems consisting of second-order
LTI subsystems. Necessary and su� cient conditions are

obtained for the asymptotic stabilizability of such
switched systems. Conic switching laws are proposed
which asymptotically stabilize a switched system if the
system is asymptotically stabilizable. Complete studies
have been carried out for two second-order LTI subsys-
tems with foci, nodes and saddle points. Based on the
angles of vector ® elds and the geometric properties of
R 2, our approach decomposes R 2 into di� erent regions
and carries out thorough case studies. As is mentioned in
} 6, the approach is also applicable to more than two
subsystems. It is also worth mentioning that for subsys-
tems of mixed type (e.g. one subsystem with focus and
another with node), similar region decomposition and
design approach can be adopted. The approach in this
paper has been implemented via computer software as a
systematic way for asymptotic stabilization of second-
order LTI switched systems. Higher order LTI switched
systems may also be studied using the results obtained in
this paper by projecting the trajectory of the system to
some 2-dimensional subspaces, however this has not yet
been done. In Hu et al. (1999), the conic switching law
proposed in this paper is shown to be robust and be
applicable to local stabilization of non-linear second-
order switched systems. Finally, it is worth noting that
earlier results of this paper have appeared in Xu and
Antsaklis (1999 a, b). Note that further details about
the approach in this paper may be obtained in Xu and
Antsaklis (1999 c) or directly from the authors.
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