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ABSTRACT

The exact relation between the interactor and the
Hermite normal form of a system P is established and
their relation to state feedback compensation is
shown. The Smith-McMillan form at infinitv of P is
then derived from these canonical forms.

INTERACTOR AND HERMITE NORMAL FORM

The interactor £p of a proper plant P(pxm) and
its extension, the Hermite normal form Hp, were
introduced in {1}, [2] respectively as appropriate
canonical forms of P under dvnamlc compensation. It
was shown in [3] that Hp = gp when P nonsingular.
The main difficulty in establishing the relation
between £, and Hp in the general case lies in the fact
that £p in (1] is defined only when P has full rank.

A generalized version of the interactor is introduced
here to overcome this difficulty.

If rank P = r = p(<m), the interactor is defined
in [1] as the unique polynomial matrix £p (pxp) which
satisfies:

limgfp P = Kp , rank Kp = p (n
S+
with
M 0 £;
£p = diag [s ] (2)
ui; 1

where uj; is divisible by s (or is 0).

The generalized interactor of a proper P, where
rank P = r <« min (p,m), is defined as follows: Con-
sider the top first r lin. indep. rows of P and let P,
(rxp) denote these rows; let Pp—r denote the remaining
p-r rows of P. This interchange of rows can be ex-
pressed as

Pr
CP= (3)
Pp-r.
where C is nonsingular with entries 0 and 1. Define
the interactor £p of P by: .
Epr 0
£Ep = C (4)
Yr Yp-r,

where £p, is the intetractor of Pr defined in (1), (2)
and
Pr
[YrsYp—r1 CP= {Yr:Yp-r] =0 (53
.. LLTPT
where [YrsYp r] =Y a minimal basis of ‘the left kernel
of CP with Y p-r TOW proper and in (lower left) Hermite
normal form; note that such basis is uniquely speci-
fied by CP (4]. The unique £p satisfies:

EprPr Kpr
limgp P = lim = , rank Kpp =t (6)
s+ [ rged 0 o]

When rank P = r = min{p,m) and the top r rows of P are
lin. indep. then C = I and the above definition re-
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duces to the definition of the interactor in [1].

The Hermite normal form Hp of P, where rank P =r
< min (p,m) satisfies (2}:

PP=H [H,0] (7
P, P~1 proper) and the top first
(Dxr) are:

"
0
my (8)
/s

mjj

where ajj = 0 when mj = 0 or gj§ = als proper when
(mi; <) mj # 0. Here Hp is the Hermite normal form

of P over the principal ideal domaln of proper transfer

where P biproper (i.e.
r lin. indep. rows of

fcns (S = all monic polyn. in R[s], I = s) [2].
I 0

Proposition 1: Ep Hp = 9
0 0

~

Proof: £p is defined in (4). [erYp r] CHp =y CPP
= 0 in view of (5), (7). The first I rows of C Hp are
[H*,01, that is [£p,,0] C Hp = [£pE*,0] = [1,.0] since
it has been shown in [3], that fp H* = I. AAA

Linear state feedback (lsf) compensation. It is
now shown that Hp can be obtained as the closed loop
transfer matrix when appropriate lsf is applied on P.
To define lsf, consider the factorization P = Np~!
which corresponds to the controllable realization Dz =
u, v = Nz [5]. Let D be column proper with column de-
grees 3.iD = di, and define the lsf control law (F,G)
by: u = Fz + Guv, 3.4F < d; and G real, !Gl # 0; the
closed loop transfer matrlx is N(D- F)'IG (ND—i)

(DDg~ lgy = » Pp Re (PF ¢ biproper).

Let rank P =t = p (< m) and let Q be a (pxp)
matrix such that

Lemma 2.
polyn.

lim OP = Kp

§+x

rank Kp = p (10)

Then there exists lsf (F,G) such that
O P PF,G = [IP,O] (11)

If p = m, (F,G) is unique.

Proof: Find F and G so that ON = Kp(D-F) and KpG =
[Ip,0]. It can be shown that such (F,G) always exists;
it is unique when p = m. AbA
Proposition 3 Let rank P = r < min (p,m). There ex-
ists 1sf (F,G) such that
-1 Iy 0
P PF c = Ep = Hp (12>
0 0

If r = m, (F,G) is unique.
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. ~ ~
Proof: Use Lemma 2 to find Pp ¢ such that £py Pr P g
= [1.,0]} bAA

A special case of thisg result (r=p) has been shown in
[6]; note also that PPp ¢ = Hp is implied in [2] and

used in [3] and elsewhere. Here (F,G) is easily de-

rived and it is shown to be unique when rank P = m,

ZERO STRUCTURE AT INFINITY

P(s) has an infinite zero of order k if P(1/X)
has a finite zero of order k at » = 0 [4,7,8]. The
infinite zero orders nj of P are directly available if
the Smith-McMillan factorization at infinity is
known, namely

’—Ar 0
P = B} B (13)
[0 0

where By, By biproper and A, = diag [s""] nj < nyep
[9-12]. 1In (12), Py g is biproper which implies that
the infinite zeros of P are exactly the infinite zeros
of Hy. Even though all the information about the zero
structure at infinity of P exists in Hp or £p only
partial results have been available, namely: when
rank P = p = m, the highest degree in £p is the
largest infinite zero order of P [13]; if in addition
£p is diagonal the infinite orders are the degrees of
the diagonal entries [14].

The following results establish the relation between
£p, Hp (or Q) and the Smith-McMillan form at infinity
of P. Note that a version of Silverman's structure
algorithm was used in [15] to derive By, By of (13).

Proposition 4. Assume rank P = p and let Q satisfy
10). 1f Q is row proper, its row degrees are the

infinite zero orders of P.

Proof: Interchange rows so that KQ(s) has row degrees

nj < nj4+] and write KO = [diag gni] Q; 0 is biproper.

In view of (11), (13) is derived with By = o~l, By =
K 0 R

Pr, " LG, AAA
0 Ip-p

Proposition 5. Let rank P = p. Hp (1/x) is a poly-
nomial matrix in Hermite normal form. TIf S(A) is its
Smith form, $(1/s) is the Smith McMillan form at in-
finity of P.

Lemma 6. Let rank P = p. There exists real nonsingu-
lar matrix C so that Ecp is row proper.

Let rank P = r < min (p,m) and choose C in (4) as fol-
lows: Find row proper minimal basis y of left kernel
of P and collect p-r columns of y to obtain yp.r row
proper with row degrees those of y; this specifies
Pp-r. Note that Yp—r-l Yr proper. H*(1/A) of Pr
specifies the zero orders at infinity (Prop. 5). 1If
the remaining r rows of P are rearranged to satisfy
Lemma 6 then the row degrees of £,, are the zero orders
at infinity of P. Having established the relation
between the zeros at infinity and Hy(g,), it is
straight forward to study the effect of feedback and
cascade compensation on these zeros.

Examgle
1/s+1 1/s+2 s 0
P = 3 EpT
1/s+3  1/s+4 -s3+252  §3

row proper with row degrees 1, 3 the infinite zero
orders of P (Prop. 4). The Smith McMillan form at
infinity is given by (13) with

-

1/s 0 ~ 1 0
Ay = , By =¢gp ! =
P o) 1/s3 ! ? (s=2)/s 1
where £p~1 (=Hp) = £p~! Ap. Also
a1 s/s+l1 s/s+2
By = Pp,g =
[_6sz/r(s+l)(s+3) 852/ (s+2) (s+4)
A 0

Note that Hp(l/X) = (Prop. 5)

[ A-222 A3

If P as above but with s on the second row numerators
then

s 0
T _-s3+252 s2
Vhich is not row proper. Interchange rows of P, that
[0 1 1 0
°r 1 0 o Then for ” -s2-2s s3

which is row proper with row degrees the infinite zero
orders of P (Lemma 6, Prop. 4).
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