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Abstract—Given an arbitrary Petri net (PN) structure, which
may have uncontrollable and unobservable transitions, the dead-
lock prevention procedure presented here determines a set of linear
inequalities on the PN markings. When the PN is supervised so that
its markings satisfy these inequalities, the supervised net is proved
to be deadlock-free for all initial markings that satisfy the supervi-
sion constraints. Deadlock-freedom implies that there will always
be at least one transition that is enabled in the closed-loop (super-
vised) system. The method is not guaranteed to ensure liveness, as
it can be applied to systems that cannot be made live under any
circumstances. However, for controllable and observable PNs, it
is shown that, when the method ensures liveness as well, the live-
ness-ensuring supervisor is least restrictive. Moreover, it is shown
that the method is not restrictive even for PNs in which not all tran-
sitions can be made live. The procedure allows automated synthesis
of the supervisors.

Index Terms—Deadlock prevention, Petri nets, supervisory con-
trol.

I. INTRODUCTION

WE PRESENT a procedure for the automatic generation
of deadlock prevention supervisors for arbitrary Petri net

(PN) structures. These supervisors are specified independently
of the initial marking, prevent deadlock, and are not restric-
tive. Deadlock prevention means that the closed-loop plant/su-
pervisor system is deadlock-free, that is, all (total) deadlock
states and all states from which (total) deadlock is unavoidably
reached are avoided. The results presented in this paper are new
and, to the authors’ knowledge, are superior to related results in
the literature.

The deadlock prevention method presented here uses PN
models for the plant and results in a PN model of the supervisor,
providing a unified formalism for representing the closed-loop
system. The method presents the conditions necessary to ensure
deadlock freedom as a set of linear integer inequalities. Such
formulation is important because it can be used directly in
optimization problems, e.g., determining the minimum number
of resources a system requires using a linear integer program.
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The method is flexible enough to incorporate desired constraint
specifications on the markings of the plant. This method is
appropriate for use on nets that may not be structurally live, i.e.,
nonrepetitive systems for which liveness cannot be enforced
under any circumstances. When the procedure is applied to
repetitive PNs, liveness may be the result. We show that, in this
case, under assumptions always satisfied by controllable and
observable PNs, the resulting liveness-ensuring supervisor is
least restrictive, i.e., no liveness-ensuring supervisor will ever
allow a transition to fire that our supervisor would prevent
from firing. (A controllable and observable PN is a PN without
uncontrollable and unobservable transitions, that is, a PN in
which a supervisor can directly inhibit/observe any transition
firing.) The procedure we present can be computationally
expensive, however, all computations are performed off-line.
A supervisor resulting from our deadlockpreventionmethod
requires very little in terms of computational resources at run
time. The method is an iterative approach that removes new
potential deadlock situations at every iteration. When (and if)
the procedure terminates, the control designer is presented with
either a supervised net that is guaranteed to be deadlock-free
or, in the case of controllable and observable systems, with an
indication that the plant cannot be made deadlock-free under
any circumstances.

The method we use defines the supervisor via linear marking
inequalities. The supervisor is built using supervision based on
place invariants [1]–[3]. Thus, the supervised PN in our ap-
proach can be represented as the original PN plus a number of
additional places, as is in other approaches, such as [4]–[6]. It
has been noticed that structural properties allow the synthesis
of deadlock prevention supervisors to be carried out indepen-
dently of the initial marking (e.g., [7]); similarly, in our ap-
proach, the supervisor is defined for all initial markings satis-
fying the marking inequalities generated by our procedure. It is
well known that deadlock in PNs is related tosiphons(e.g., [8]).
As in other previous methodologies, e.g., [4], [6], [7], [9]–[11],
we use control places to prevent the total marking in the siphons
from becoming zero. In [4], it has been noticed that such siphon
control is not enough to guarantee deadlock prevention, since
new siphons may appear by adding control places. This problem
has been solved in [4] for a subclass of bounded and conserva-
tive PNs by using more restrictive control policies, and liveness
enforcement has thus been achieved. In [6], successive control
of the siphons is used, until no new siphons appear. This is also
one of the ideas of our procedure. One of the problems which
appears by successively controlling the siphons in an ordinary
PN is that the PN can stop being ordinary. Controlling siphons in
a PN which is not ordinary is harder. A related result is given in
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[12], but we cannot use it as we desire our method to be as per-
missive as possible. Instead we transform the PN at the different
stages of the procedure back into ordinary PNs, by adapting a
technique from [6]. In order to have a method effective for non-
repetitive PNs, we define certain repetitive subnets of a PN as
active subnets. Based on this idea, we then define a subclass of
siphons, called active siphons, and prove new results which are
fundamental for our method. These developments can be found
in Section II. We give more details on active subnets and active
siphons in [13]. The procedure that leads to deadlock-free PNs
is described in Section III and is illustrated via an example in
Section IV. The main theoretical results are given in Section V.
Some important proofs and the computation of active subnets
are included in the Appendix.

Finally, note that when the PNs are bounded and the initial
marking is fixed, it is possible to transform the problem from the
PN framework to finite automata and so to solve the problem by
using finite automata methodologies, such as supervisory con-
trol techniques. However, the approach presented here makes no
assumptions about the PN structure: the PN may be unbounded,
nonrepetitive, generalized (i.e., with arc weights greater than
one) and it may have uncontrollable and unobservable transi-
tions. Furthermore, the usage of PNs in deadlock prevention
may be preferable because deadlock often occurs in systems
with concurrency, which are better described by PNs.

II. PRELIMINARY RESULTS

We consider PN structures of the form ,
where is the set of places, the set of transitions, the set
of transition arcs, and the weight function. A PN with an
initial marking is denoted by ( ). We consider the other
usual PN notations [14].

We say that a PN can be made deadlock-free/live if there is
a supervisor and an initial marking such that the supervised
PN is deadlock-free/live. In a PN, a transitioncan be made live
if there is a supervisor and an initial marking such that is
live in the supervised PN.

A PN is ordinary if . We will refer to
slightly more general PNs in which only the arcs from places to
transitions have to have weights equal to one: ,
if then . We call such (partially ordinary)
PNs PT-ordinary. Our deadlock prevention procedure applies to
arbitrary PN structures, not necessarily PT-ordinary; however it
includes a transformation of general PNs to PT-ordinary PNs.
A PN is said to be (partially) repetitive [14] if a marking
and an infinite firing sequencefrom exist, such that every
(some) transition occurs infinitely often in. A PN of incidence
matrix1 is (partially) repetitive iff a vector of positive
(nonnegative) integers exists, such that [14]. We prove
the following theorem in [13].

Theorem 2.1:Consider a PN which is
not repetitive and let be the incidence matrix. At least one
transition exists such that for any given initial marking it cannot
fire infinitely often. Let be the set of all such transitions.

1In this paper the rows of the incidence matrix correspond to places and the
columns to transitions.

Fig. 1. Illustative example.

There is a nonnegative integer vectorsuch that ,
and .

Definition 2.1: Let be a PN, the in-
cidence matrix, and the set defined in Theorem 2.1.

is anactive subnetof if 2

, , is the restric-
tion of to and is the set of transitions with nonzero
entry in some nonnegative vectorwhich satisfies .
The maximal active subnet of is the active subnet such
that .

The maximal active subnet of a PN can be computed using
the algorithm given in the Appendix. A siphon is a set of places

such that . A siphon is empty if it contains no
tokens and controlled [9], [12] if

(1)

is true for all markings reachable from the initial marking.
Next we define a particular type of siphon.

Definition 2.2: Given an active subnet of a PN , a
siphon of is said to be anactive siphonwith respect to
if it is, or includes, a siphon of . An active siphon is minimal
if it does not include another active siphon with respect to the
same active subnet.

As an example, the maximal active subnet of the PN
of Fig. 1(b) is given by . The minimal
active siphons w.r.t. are , and

.
Lemma 2.1:Let be an active

subnet of . Then .
Proof: Let be the vector defining in Definition 2.1.

Let be a sequence such that each transitionappears exactly
times in . There is an initial marking enabling . Then

implies that the infinite sequence is
enabled by . Since contains only transitions in , the
marking of the places is never increased while is
fired. Furthermore, because the transitions of appear infin-
itely often in , , q.e.d.

It is known that a deadlocked ordinary PN has an empty
siphon [8]. We extend this result as follows.

Proposition 2.1: Let be an arbitrary, nonempty, active
subnet of a PT-ordinary PN . If is a deadlock marking of

2Given a setS, �S (S�) denotes the preset (postset) ofS evaluated in the
total net, rather than in a subnet.
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, then there is at least one empty minimal active siphon with
respect to .

Proof: Since is a deadlock marking and
is PT-ordinary, : . By

Lemma 2.1, a marking restricted to the active subnet enables a
transition iff enables in the total net. Therefore, because the
total net is in deadlock, the active subnet is deadlocked
and so there is an empty minimal siphonof the active subnet.
Consider in the total net. If is a siphon of the total net, then
is also a minimal active siphon; therefore the net has a minimal
active siphon which is empty. If is not a siphon of the total net,

. Let be the set recursively constructed as follows:
, ,

where is the (deadlock) marking of the net. In other words
is a completion of with places with null marking such that
is a siphon. By construction is an active siphon and is empty
for the marking , q.e.d.

The significance of Proposition 2.1 is that it provides a way to
do deadlock prevention, since deadlock is impossible when all
active siphons with respect to a nonempty active subnet cannot
become empty. Our usage of active subnets is as follows. In a
PN , we may not be able to prevent reaching a marking such
that the transitions in a set are dead. The set may contain
more than just the transitions of the set of Theorem 2.1 when
the PN has uncontrollable and/or unobservable transitions, or
when the PN markings are restricted to satisfy some given set of
constraints (which beginning with Section III-A are calledini-
tial constraints). Then, we can still prevent deadlock in only
if there is a nonempty active subnet which does not con-
tain any of the transitions in . Furthermore, out of all siphons,
only the active siphons are to be controlled, by Proposition 2.1.
When and is repetitive, the maximal active subnet

equals and so all siphons are active with respect to .
We use active subnets in order to be able to effectively deal with
the cases when or is nonrepetitive. For instance, in
Fig. 1(c), we know that we do not need to control the siphons

and , since they are not active siphons.

III. T HE DEADLOCK PREVENTION APPROACH

A. Introduction to the Method

Given a PN , the deadlock prevention procedure generates
a sequence of PT-ordinary PNs, , , , increasingly
improved with respect to deadlock prevention. is trans-
formed into a PT-ordinary net. The other PNs are obtained as
follows: at each iteration the new minimal active siphons of

arecontrolledand then, if needed, the net is transformed to
be PT-ordinary; the resulting PT-ordinary net is . The ac-
tive siphons of each are taken with respect to an active subnet

computed for every iteration. To control a siphon, a linear
marking inequality is enforced. Let be the total set of
constraints enforced in . Because is the last PN in the se-
quence, it has no uncontrolled active siphons. Thereforeis
deadlock free for all initial markings which satisfy .
Finally, the constraints can easily be translated to
constraints in terms of the markings of , which define the su-
pervisor for deadlock prevention in .

When the markings of the net are restricted due to additional
specifications, a set of inequalities describing how the
markings are restricted can be passed as input to the procedure.
They are calledinitial constraints . The usage of initial con-
straints may result in less complex supervisors, may
enhance convergence and guarantees that the procedure will not
generate constraints requiring .

Uncontrollable and unobservable transitions, as well as initial
constraints which are too restrictive, may cause the procedure
to fail to control some siphons. When this happens, rather than
leaving some active siphons uncontrolled, the procedure shrinks
the active subnet such that those uncontrolled siphons are no
longer active. To this end, the procedure places into an internal
variable the transitions in the postset of such siphons and then
recomputes the active subnet to exclude the transitions in.

B. Transforming Petri Nets to PT-Ordinary Petri Nets

The transformation we use is a modification of a similar op-
eration in [6]. This modification allows us to reduce the number
of siphons and to ensure that the siphons controlled in an iter-
ation of our deadlock prevention procedure remain controlled
after the transformation is applied. Let be a
PN. Transitions such that : are
split. Given , let : . When is
split, new transitions and new places are generated:

, , and , , . The connections
are as follows, where the preset/postset operator is denoted by

for evaluations in and by in the PN obtained by splitting
, which is denoted by .

1) and for ,
for and .

2) for ,
where for and otherwise.

3) and .
4) : and , for

.
5) : and :

.

Note that the connections of in are the same as in ,
except for an additional transition arc and for the weights of the
input arcs. Firing in corresponds to firing the sequence

in . The transformation is illustrated in
Fig. 2.

C. Enforcing Linear Marking Constraints

Linear constraints on the marking vector have the form
, where is matrix and is vector. Enforcing such constraints

is done according to the supervision based on place invariants
in [1] and [2]. However, this requires admissible constraints.
A constraint is admissible [1] if the supervisor enforcing the
constraint does not inhibit an enabled uncontrollable transition
and does not observe an unobservable transition. Then
are admissible if the following conditions of [1] are satisfied:

and , where the columns of and
are the columns of the incidence matrix that correspond to
uncontrollable ( ) and unobservable ( ) transitions.
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Fig. 2. The transformation to PT-ordinary PNs.

Controlling siphons involves enforcing (1). Enforcing (1) via
the method of [1], [2] is equivalent to the approach used for
siphon control in [4], [6], and [9]; note that the latter references
consider controllable and observable transitions only. In the case
of uncontrollable and unobservable transitions, in order to have
a valid supervisor, the final constraints generated by the
procedure need to be admissible. Recall that the procedure adds
constraints to the intermediary PN’s and when it terminates,
the final set of constraints is written in terms of the target net.
So we say that (1) isadmissibleif (1), when written in terms
of , is admissible in . As we want all constraints to be
admissible, when (1) is not admissible it is transformed to an
admissible constraint

(2)

such that and at least two3 coefficients are nonzero.
Enforcing (2) requires an additional place, which is called the
control place. The control place of a siphon introduces the
place invariant described by

(3)

Example: The PN of Fig. 1(a) has a single minimal active
siphon with respect to the maximal active subnet: .
Assume that is unobservable. Then (1) is not admissible.
However, (1) can be transformed to the following admissible
constraint of the form (2):

(4)

In Fig. 1(b), the control place enforces (4).
In order to prove Theorem 5.1, we need to impose an addi-

tional requirement on (2). Let be the set of all transitions
created by the transformations to PT-ordinary nets during the
iterations of the deadlock prevention procedure; for instance, in
Fig. 2, the transitions created by splittingare and . We
impose the requirement that (2) is such that : .
We provide in [15] an algorithm to transform (1) to (2) such that
all requirements are satisfied.

For all such that , is split. The in-
equality (2) is still true after the split, but the place invariant
is changed to include the markings of the new places resulting
through the split, and (3) is changed accordingly. Consider an

3Except whenS is a single place, allowing a single nonzero coefficient con-
straint makes the deadlock prevention procedure diverge.

enforced inequality or an invariant , where
, , and is the number of places. If a transition

is split, using the notations of Section III-B, the inequality or
invariant is modified as follows:

(5)
where if and else . ( is
evaluated before splitting.)

Example: In the example of Fig. 1, results with
. By splitting , a new place and a new

transition are generated. The place invariant (3) becomes

(6)

However, note that (4) is still valid, since (4) is implied by
.

In an intermediary PN , the marking of the control places
can be expressed in terms of the marking of the other places
by

(7)

The matrices and are recursively obtained as follows: if
a control place has been added in iterationwith regard to
a siphon , replace in (3) the markings of all control places

added in the previous iterations with their expres-
sions available from and . Thus the new form of (3) is

and the new form of (2) is

(8)

Example: In Fig. 1(c), has two uncontrolled siphons:
and . For both

and , (1) is inadmissible. However, (1) for
and can be transformed to the forms (2) as follows:

(9)

(10)

By enforcing (9) and (10), we obtain the control placesand
. By substituting (6) into (9) and (10), we obtain

(11)

(12)

So and are

(13)

Some siphons may not need enforcing (1) with a control
place. When a siphon has this property, the control place

which results by enforcing (1) satisfies . (This
identifies the case when also is atrap.) Then we only need to
ensure that the initial markings satisfy (1). So, after bringing
(1) to a form by replacing the control place markings
with their expressions in (7), we add the constraint to
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a set of constraints rather than , since
is only a constraint on the initial marking.

Example: In Fig. 1(c), after adding and , there are four
new active siphons: , , and

. They are controlled if initially marked. For in-
stance, the constraints and

are written as

(14)

(15)

and are included in . Note that no control places
are added and so no new active siphons appear after ensuring
that these four siphons are controlled.

D. The Deadlock Prevention Procedure

Input: The target PN and optionally
a set of initial constraints ( ), by default empty.

Output: Two sets of constraints ( ) and ( ). (Dead-
lock is prevented for all initial markings such that
and , when ( ) is supervised according to
, where the constraints are by construction admissible.)

Procedure:

1) ( ) is initialized to ( ) and ( ) to be empty.
is transformed into a PT-ordinary net; the new PN

is and ( ) is updated accordingly [see (5)]. Let
. If not previously defined, let .

2) The largest active subnets of and which do not
contain the transitions of are computed.4 Let them be

and . If is empty, the procedure cannot gen-
erate a deadlock prevention supervisor and so it termi-
nates.

3) For do (the initial PN of the iteration is denoted
and the active subnet .)

a) If no uncontrolled minimal active siphon5 is found,
the next step is step 4). (The active siphons are
taken with respect to the current active subnet.
A siphon is uncontrolledif (1) is not implied by
the current and )

b) For all uncontrolled minimal active siphonsdo

i) Let be the constraint (1). Verify whether
enforcing produces a control placesuch
that . If so, does not need con-
trol, is not added to and the next step
is step 3.b.iv below.

ii) If is an inadmissible constraint,is trans-
formed6 so that it is an admissible constraint
of the form (2). If this is not possible,

and thefor loop continues with the
next active siphon.

4This involves linear programming and can be carried out with polynomial
complexity; see the Appendix.

5Experience shows that the computation of the minimal siphons may be slow;
verifying whether a siphon is uncontrolled usually involves solving an integer
program.

6In [15] we implement the transformation using integer programming; how-
ever, integer programming may be avoided.

iii) The constraint is enforced using the in-
variant based supervision [1], [2].

iv) Let be the constraint written
in the form (8) and let be the set of all
places generated by transition splits until the
current iteration. Check whether the system

, , ,
is feasible. If the system is

infeasible, . Else,
is added to ( ) if the previous step was
3.b.i, or to ( ) if the previous step was
3.b.ii.

c) If the PN is no longer PT-ordinary, the transitions
which do not comply with this requirement aresplit
(Section III-B) and the matrix is updated ac-
cording to (5).

d) The active subnet is updated as the largest active
subnet which does not contain the transitions in.

e) Let be the set of transitions of the active subnet.
If the active subnet is empty ( ), the proce-
dure cannot generate a deadlock prevention super-
visor and so it terminates. Else if an infeasibility
occurred at a step 3.b.iv of the current iteration,

and the procedure is restarted at
step 1 with this value of .

f) The final nets of the iterationare denoted by
and . Let .

4) The constraints ( ) and ( ) are modified to be
written only in terms of the marking of the target net.
This is done by removing the columns ofand cor-
responding to places not in .

5) Redundant constraints of ( ) and ( ) are re-
moved.7

IV. EXAMPLE

Consider the target PN structure of Fig. 3(a), which we use to
illustrate our procedure. The PN may be seen as the represen-
tation of a manufacturing system shown in Fig. 3(d), which we
describe next. We have four work areas, and
three machine areas , and . In two
parts are assembled and this operation involves two machines
from and one from ; upon completion, all three
machines should be in . Work in involves one part,
one machine from , and one from ; upon comple-
tion, both machines should be in . Work in involves
one part which may be of two different types and one machine
from ; upon completion, the machine returns to .
Optionally, the operation in is continued with an addi-
tional operation in ; when this is the case, the machine of

is released when the process in is completed. If no
failure occurs in , the machine returns to . When a
failure occurs, the machine no longer may be used in , but
it can still be used in or and is moved to . The
marking of the places , , and corresponds to available
machines. The marking of the places, , , and corre-
sponds to the number of working processes in .

7This operation is optional and it usually involves integer programming.
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Fig. 3. (a) Target PN. (b) The PN after five iterations. (c) The supervised PN. (d) Manufacturing system.

The markings of , , , , , and represent the
number of parts in buffer areas. The uncontrollable transition

models the failure in .
In the first iteration, the PN structure

is that of Fig. 3(b), but without the control places,
and their transition arcs. The place and the transition
appear by splitting . The maximal active subnet has the tran-
sitions in . There are two minimal active siphons:

and . They are controlled with two new
control places: and , respectively, where the constraint of

is transformed to (17), which is admissible.
In the second iteration, the maximal active subnet still has

the transitions and the only uncontrolled minimal
active siphon is . There is no admissible constraint of
the form (2) for the control of . ( is not of
the form (2), as (2) requires at least two nonzero coefficients

.) Therefore , the set of transitions which should not appear
in the active subnets of the following iterations, is set to

.
In the third iteration and the remaining iterations, the active

subnet has the set of transitions . The only
uncontrolled minimal active siphon is .
The control place which results is , enforcing the constraint
(1), which is admissible in this case.

In the fourth iteration, the only uncontrolled minimal active
siphon is , and so the control place is added.

In the fifth iteration, the only uncontrolled minimal active
siphon is . Since the control place which
would control this siphon satisfies , no control place
is added and the constraint (1) is included in .

The procedure terminates at the sixth iteration, as there is no
uncontrolled minimal active siphon left. The constraints after
the step 4) of the procedure are

(16)

(17)

(18)

(19)

(20)

where . The inequalities (16)–(19) are included in
and correspond to in this order, while the

inequality (20) is written as . The inequality (19) is
redundant and so it can be omitted. The PN supervised for dead-

lock freedom is obtained by enforcing the constraints () on
the target net [Fig. 3(c)].

V. MAIN RESULTS

In this section, we prove that our deadlock prevention method
produces supervisors which prevent deadlock. Then we prove
that the supervisors are not restrictive. Finally, we show how
initial constraints can help the procedure terminate.

Definition 5.1: A marking of an intermediary PN is
said to bevalid if its restrictions to the control places () and
the rest of the places ( ) satisfy (7) and only if is
a place of or a control place. The markings of and
of areequivalent if both are valid and for all
places common to and .

In order to prove the results of this section, we need to in-
troduce some notations. When a transitionof is split in

, , , thus a new net resulting, firing the sequence
, , has the same effect as firingin . In our

procedure, a transition may be split in some iteration, then
some (where resulted by splitting ) can be split in a
subsequent iteration and so on. We denote by an arbi-
trary transition sequence of such that: 1) enumerates
the transitions (including itself) in which of is succes-
sively split until (and including) the iteration and 2) mark-
ings of exist such that only if is a place of

or a control place and enables . In this way, firing
the sequence in corresponds to firing in . If is
not split, we let . The notation for and

in is similarly defined by taking instead of . Also,
if , we let .
For all , we use the notation .

Theorem 5.1:Assume that the procedure terminates at step
5). The target net supervised by enforcing is dead-
lock-free for all initial markings such that and

.
Proof: Let be the PN of the last iteration, an ar-

bitrary initial marking of satisfying and
, be the equivalent initial marking in and the set

of control places in . By construction, all active siphons of
( ) are controlled. Hence, in view of Proposition 2.1,
( ) is deadlock-free.

We prove by contradiction that ( ) in closed loop with
the supervisor defined by cannot reach a markingsuch
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that all possible firings in lead either to deadlock markings or
to markings which do not satisfy . Assume the contrary,
that such a marking can be reached. Let be the equivalent
marking of in . Because ( ) is deadlock-free, en-
ables an infinite transition sequencein . Let be the set of
transitions created by split transition operations. Enforcing (2)
on a siphon yields by the way we construct (2) [15];
we also prove in [15] that enforcing (1) yields . There-
fore, firing any always reduces the marking of some
places in and only firing (note that )
may increase the marking of some places in . Because
the total marking of is finite, must include transitions

. Let be the first transition in that appears in .
Since all transitions of before are in , firing them only
decreases markings of and cannot fire unless all other
transitions of fired before (as is valid), it follows
that is enabled by . But this implies that also is
enabled by in supervised with , which is a contra-
diction.

The assumptions of Theorem 5.1 are that the procedure ter-
minates and that it terminates at step 5) rather than 2) or 3.e.
Termination at 2) occurs when the structure of the PN does not
allow deadlock prevention, where this corresponds to an empty
active subnet of (cf. Theorem 2.1). Termination at 3.e oc-
curs when there are enough many siphon control failures, where
siphon control failures are the instances in which uncontrollable
and unobservable transitions prevent the transformation of the
constraint to an admissible constraint at step 3.b.ii and the
instances in which the system at the step 3.b.iv is infeasible (in-
feasibilities occur for restrictive enough initial constraints).

Given a set of transitions, we say that a supervisor enforces
-livenessif all transitions are live in the supervised PN.

We include in the Appendix the proof of the next result, as it is
more involved.

Theorem 5.2:Let be the set of transitions of the maximal
active subnet of the target PN. Assume that: 1) a-liveness su-
pervisor subject to the same initial constraints (if any initial con-
straints are given) exists; 2) the deadlock prevention procedure
terminates; 3) no failure to transform a constraint to the admis-
sible form (2) occurs at any step 3.b.ii; and 4) for all constraints
transformed to (2) all are nonzero. Then the supervisor gen-
erated by the deadlock prevention procedure is no more restric-
tive than the least restrictive supervisor which enforces-live-
ness and is subject to the same initial constraints (if any).

Theorem 5.2 gives sufficient conditions for the supervisor
provided by the procedure (let it be) to be at least as permis-
sive as any supervisor which enforces all transitions of the
maximal active subnet to be live in the target net. Note that this
does not mean that our supervisor enforces that the transitions
of the maximal active subnet are live. However, this means that:
a) if enforces -liveness for some initial marking , then

is defined for , that is, it prevents deadlock for (where
is the set of transitions of the maximal active subnet) and

b) any firing sequence enabled by from such a is also
enabled by from . Note also that the assumptions 3) and 4)
are always satisfied when the target PN has no uncontrollable
and no unobservable transitions. In the following corollary, note
that when liveness enforcing supervisors exist, the target PN is
repetitive.

Corollary 5.1: Assume that a liveness enforcing supervisor
(subject to the same initial constraints, if any) exists and the
assumptions 2)-4) of Theorem 5.2 hold true. Then the deadlock
prevention procedure provides a supervisor no more restrictive
than the least restrictive supervisor which enforces liveness and
is subject to the same initial constraints (if any).

Theorem 5.1 shows that the procedure is guaranteed to pre-
vent (total) deadlock if it terminates normally (at step 5). Our
experience shows that the procedure tends to enforce liveness
(when this is possible). However it seems to be hard to charac-
terize the PNs for which the procedure is guaranteed to enforce
liveness upon termination at step 5. In particular, we have shown
that deadlock prevention is equivalent to liveness enforcement
when the incidence matrix satisfies that for all vectors
if then has all entries nonzero [13]. Under the as-
sumptions of Corollary 5.1, when a supervisor generated by the
procedure enforces liveness, it is the least restrictive liveness en-
forcing supervisor. In particular, when no uncontrollable and un-
observable transitions exist, a liveness enforcement supervisor
(subject to the same initial constraints, if any are given) exists
and the procedure terminates, it terminates at step 5. Further-
more, if the generated supervisor enforces liveness, by Corol-
lary 5.1, it is the least restrictive liveness enforcing supervisor.
Corollary 5.1 may be seen as the particularization of Theorem
5.2 for repetitive PNs.

To illustrate the application of our results, we first refer to
the example of Section III-C, involving the PN of Fig. 1. When
the procedure is applied, the remaining constraints after step
5 are (4) in ( ) and (14) and (15) in ( ). The super-
vised PN corresponds to Fig. 1(b). Theorem 5.2 applies, since
(4), (9), and (10) are of the form (2), with nonzero coefficients

. So, by Theorem 5.1 deadlock is prevented and by Theorem
5.2 the supervisor is no more restrictive than the least restric-
tive -liveness enforcing supervisor; it can easily be
seen that the supervisor enforces -liveness, so it is the
least restrictive -liveness enforcing supervisor. How-
ever, Theorem 5.2 does not apply to the example of Section IV,
since the assumptions 3) and 4) are violated: the constraint (17)
controlling has and the procedure cannot
generate an admissible constraint when it attempts to control

.
The procedure does not have guaranteed termination; how-

ever, it can be helped to terminate by using initial constraints.
A particular case is when we are only interested in a finite set
of initial markings and the target PN is bounded. Then initial
constraints can be chosen to define a bounded set including all
markings reachable from the initial markings of interest. Then,
if the procedure is started with these initial constraints, assuming
that no transition splits occur during the iterations (which in
practice is often the case), the procedure terminates. Termina-
tion occurs because each time a new constraint is added to ()
or ( ) in the procedure, at least one new marking is for-
bidden and the number of markings which can be forbidden is
finite due to the initial constraints. To summarize, given a target
PN :

• Find a set of constraints with bounded feasible
set such that for all initial markings of interest for :

(a possible approach to generate
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Fig. 4. Divergence example.

is given in [15, Appendix]). Let be the set of initial
markings of interest.

• Apply the procedure on with initial constraints ( ).
• The resulting supervisor can be used for the initial mark-

ings satisfying and , where
( ) and ( ) are the two sets of constraints generated
by the procedure.

Example: Consider the PN of Fig. 4. At the first iter-
ation, the uncontrolled siphons are: ,

and . The control place
is added to control ; the inequality

is added to , where . However, and do
not need a control place (refer to step 3.b.i of the procedure),
so and are added to

. At the second iteration, there is a single uncontrolled
siphon, and the control place results. At the
third iteration, the uncontrolled siphons are and

. Note that has the same connections asand so
the siphon corresponds to and

to . The procedure diverges. At each
iteration, it adds a control place as follows: 1) at an iteration

, the control place is added to control the siphon
and 2) at an iteration , the control

place is added to control the siphon . Then
it can be noticed that , for enforces

(21)

It can be shown that the system of inequalities (21) for
and implies (21) for , for all .
Furthermore, it can also easily be shown that the new markings
forbidden by adding (21) at the iterationare as follows: 1) for

, , and and 2)
for , , and . Now
assume that we start with the initial constraints for all

; the usage of initial constraints assumes that for all
our initial markings of interest, all reachable markings satisfy
them. Then, at the iteration , the markings forbidden
if (21) would be enforced are , ,
and . However, according to the initial constraints, these
markings can never be reached, so the siphon is
controlled. Therefore, at the iteration , no control place
is added and so the procedure terminates. After removing the
redundant constraints, the procedure terminates with

(22)

and ( ) containing and the initial constraints
.

VI. CONCLUSION

This paper has introduced a new deadlock prevention pro-
cedure. The performance of the procedure is formally proved.
The procedure is effective for PN structures which may be gen-
eralized, with uncontrollable and unobservable transitions, non-
repetitive and unbounded. The initial marking does not need to
be known; instead, the initial markings for which deadlock is
prevented are characterized by a set of linear inequalities. Our
approach to deadlock prevention has been implemented in soft-
ware that performs automated synthesis of deadlock prevention
supervisors and is available from the authors.

APPENDIX I
ADDITIONAL PROOFS

A. Proof of Theorem 5.2

Lemma 1.1:Assume that the requirements 3) and 4) of The-
orem 5.2 are satisfied. Letbe an active siphon of , ,
which does not appear in . Let be a valid marking of

such that is empty and be restricted to . Let
be a transition of with the property that there is a tran-

sition of such that or is split in
and appears in . If such8 that

, then ( ) has at least one empty active siphon.
Proof: Let be the set of control places added in the itera-

tion and the set of places resulting through transition splits
in the iteration : . Let be the firing se-
quence that was used to reach: . Consider firing in

and in . The only reason
for not to be enabled in by is that a control place
prevents it.

If is not enabled, , ,
, enables , but does not

enable . This corresponds to the following: has
an active siphon that is controlled in with ; when

was added, and if , was split in
iteration in , or if , .
So and since is not allowed by to fire from ,
it means that firing it would make empty. Since is fired
in the sequence , after is fired, is an empty
active siphon in .

If is enabled by , let be the marking reached:
. Because may contain only entire replacement

sequences of split transitions and is a valid marking
(which implies ), .
Also, and are equivalent and , therefore

. Because is a siphon, empty for
implies empty for all reachable markings and thus for

too. There are two cases: 1)is not split in and 2)
is split.

1) If is not split, . Further on, enables
in but does not enable in , so in ,

and there is such that .
Let be the active siphon of controlled by . was
not split, so was 1; enabled by ,
and . Since and

8R(N ; � ) denotes the set of reachable markings of(N ; � ).
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, . Because is enabled by
, firing empties , so has an empty active

siphon.
2) If was split, then was connected to one or more

of the control places of , for only transitions con-
nected to such places are split. (This is so because for all

is PT-ordinary and hence only the new added
control places can make the PN not PT-ordinary.) Let
be the set of control places added to in the iteration .
Since enables and is empty at , implies

. Then, by recalling the split transition
operation, such that . Let be the ac-
tive siphon controlled by . Since and is empty,

. Then firing empties , as
before the split of . ( shows that firing in
reduces the marking of .)

Next is the proof of Theorem 5.2.
Proof: Let be the set of supervisors subject to the initial

constraints which enforce that all transitions appearing in the
maximal active subnet are live in the target PN. Note that when
we compare our procedure to any other supervisor we assume an
initial marking for which that supervisor is defined: we do not
require a supervisor in to be defined for all initial markings
for which the supervisor given by our procedure is defined.

First consider the case when there are no initial constraints.
The proof is by contradiction. It shows that any marking for-
bidden by the deadlock prevention method also is forbidden by
any supervisor in . (Recall that our procedure forbids mark-
ings which will produce an empty active siphon in an for
some .)

Let be a marking of and the equivalent marking
in . Suppose that for the marking there is an empty ac-
tive siphon in . Because is valid, is a new siphon
which does not appear in ; is forbidden by iteration

, which adds the constraint that be controlled. Assume that
is not forbidden by some supervisor enforcing in that

all transitions of the active subnet are live and so there is an infi-
nite firing sequence enabled by such that every transition
of appears infinitely often in . Let be the marking
of equivalent to . According to Lemma 1.1, there is
a transition of such that in any possible firing se-

quence enabled by , after fires, there is an empty ac-
tive siphon of . Let such that appears
in . Let be the marking of that appears
while is fired, immediately after fires for the first time.
Also, let be the subsequence ofthat was fired so far, that is

. Let be the largest integer such that is
a valid marking of and the restriction of to is .
By Lemma 1.1, . Indeed, if is allowed to fire in

, there is an empty siphon for the marking , but
there is no valid marking of such that is empty. Now,
the fact that has an equivalent marking in but not
in shows that there is an empty active siphonin and
that does not appear in . Further on, the same idea as be-
fore is used, that a transition with the same property as
exists and, following this idea, an index is found such
that for the marking of there is an empty active siphon in

. This procedure is repeated and finally two cases may appear
(Lemma 1.1 applies for only) after the first transitions
of are fired, where is a finite number. Let denote the se-
quence that enumerates the firsttransitions of and let
be the marking reached by firing (that is, )
and the valid marking of which restricted to is .
Then: (a) there is an empty active siphon in ( or (b)
there is an empty active siphon in . Case (a) contra-
dicts the fact that every transition of appears infinitely often
in and enables , since after firings none of the transi-
tions in the postset of the empty siphon may fire again. Case (b)
leads to the same type of contradiction, because the sequence

is enabled by , where is the equivalent
marking of in and by construction every transition of

appears infinitely often in .
The case when there are initial constraints is similar to the

case when there are no such constraints if the procedure is never
in the situation that a constraint at step 3.b.ii of the procedure is
infeasible. This is always the case, as the assumption 1) of the
theorem implies that is nonempty. Indeed, if infeasibilities at
some steps 3.b.ii were possible, consider the first occurrence:
there is an active siphon which must be empty for all valid
markings, in order not to have a conflict with the initial con-
straints. Then, by the first part of the proof, there are no super-
visors in .

APPENDIX II
COMPUTATION OF THEACTIVE SUBNETS

The following algorithm computes the maximal active subnet
which does not contain the transitions in a set.

Input: The PN , its incidence matrix
and the set .

Output:The active subnet .

Let and
While do
1. Check whether the system of ,

, , and
is feasible.

2. If feasible then let be a solution;
and 9 . Else .

End while

Let and
While do
1. Check whether the system of ,

, , and
is feasible.

2. If feasible then let be a solution;
and 10 . Else .

End while

9kxk denotes the set of transitions t such that
x(i) 6= 0.

10kxk denotes the set of transitions t such that
x(i) 6= 0.
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The active subnet is ,
, ,

and is the restriction of to .
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