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Abstract . 
In optimal control problems of switched systems, in 

general, one needs to find both optimal continuous in- 
puts and optimal switching sequences, since the system 
dynamics vary before and after every switching instant. 
In a previous paper, we proved that an optimal control 
problem can be posed as a two stage optimization prob- 
lem under some additional assumptions. In general, the 
two stage optimization problem is still difficult to solve 
analytically. In this paper, we develop a search algo- 
rithm to explore the solution of the two stage optimiza- 
tion problem and find useful suboptimal solutions. This 
algorithm is motivated by the idea of dynamic program- 
ming which studies the value functions. The algorithm 
is used to determine suboptimal solutions for general 
switched linear quadratic problems. 

1 Introduction 

A switched system is a hybrid system that consists 
of several subsystems and a switching law indicating 
the active subsystem at each time instant. Examples 
of switched systems can be found in chemical processes, 
automotive systems, and electrical circuit systems, etc. 

Optimal control problems of switched systems and 
hybrid systems have been attracting recently researchers 
from various fields in science and engineering and sev- 
eral new results have appeared in the literature. Some of 
them are primarily theoretical (see, e.g., [3, 12, 13, 161). 
For example, Sussmann has proved a maximum princi- 
ple for such problems in [13]. In [3, 161, Capuzzo Dol- 
cetta and Yong studied systems with switchings using 
dynamic programming approaches and proved the ex- 
istence and uniqueness of viscosity solutions. However, 
there were no efficient and constructive methodologies 
suggested in these papers for finding optimal solutions 
and there is a significant gap between theoretical results 
and their applications to real-world examples. 

The advent of high speed computers and efficient 
nonlinear optimization and search techniques has led to 
methodologies on solving hybrid optimal control prob- 
lems (see e.g., [l, 2, 6, 8, 9, 11, 141). For example, in 
[l], general formulations and algorithms for optimal con- 
trol of hybrid systems were given. In 191, a novel a l g e  
rithm using constrained differential dynamic program- 
ming was proposed for a class of discrete-time hybrid- 
state systems. It is worth mentioning that because 
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there are many different models and optimal control 
objectives for hybrid systems, these papers often differ 
greatly in their problem formulations and approaches. 
Switched systems, on the other hand, tend to be de- 
scribed by similar models and similar optimal control 
problem formulations have appeared in the literature. 
(e.g, [6, 8, 9, 11, 14, 151). For an optimal control prob- 
lem of a switched system, one needs to find both an opti- 
mal continuous input and an optimal switching sequence 
since the system dynamics vary before and after every 
switching instant. The problem of determining optimal 
solutions to such problems are in general very difficult. 
Most of the methods in the literature that we are aware 
of are based on some discretization of continuous-time 
space and/or discretization of state space into grids and 
use search methods for the resultant discrete model to 
find optimal/suboptimal solutions. But the discretiza- 
tion approaches may lead to computational combina- 
toric explosions and the solutions obtained may not be 
accurate enough. In view of this, in this paper, we will 
explore methods that are not based on discretizations. 

In a previous paper [15], we have proved that an 
optimal control problem can be formulated as a two 
stage optimization problem under some additional as- 
sumptions. In this paper, we will further investigate the 
two stage approach and develop numerical algorithms. 
We first translate the two stage optimization into a gen- 
eral algorithm. Then we focus on the first part of the 
algorithm (i.e., Step 1) and develop search algorithms 
for finding the optimal continuous input and optimal 
switching instants under the assumption that the num- 
ber of switchings and the order of active subsystems 
are already given. This actually gives us a suboptimal 
control for the original optimal control problem. Note 
that in many practical situations, we only need to study 
problems with fixed number of switchings and fixed or- 
der of active subsystems (e.g., the speeding up of a power 
train only requires switchings from gear 1 to 2 to 3 to 
4), so Step 1 itself is worth the attention as in such 
cases our solutions are indeed optimal. We will use an 
approach based on dynamic programmin motivated by 
the first and second-order method in [4, 8 to obtain the 
first and second derivatives of the value function with 
respect to the switching instants. Then, by using non- 
linear search methods, we will find optimal solutions. 
(Note that in [4, 51, the authors introduced a method 
to deal with discontinuities, but the method is only ap- 
plicable to fuel optimal and bang-bang types of control 
problems.) Specifically, we will apply the method to 
general switched linear quadratic problems. Note that 
some of the computations encountered in general opti- 
mal control problems can be avoided in such kind of 
systems. 
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2 Problem Formulation 

2.1 Switched Systems 

Switched systems 

Definition 2.1 (Switched System) A switched sys- 
t em  is a tuple S = ( 3 , V )  where 
0 3 = { f i  : R" x R" x R -+ R" , i E I }  with f i  describ- 
ing the vector field for the ith subsystem x = f i ( x , u ,  t ) .  
I = {1,2, .  . . , M }  is the set of indices of subsystems. 
0 V = ( I ,  E )  is a simple finite state machine which can 
also be viewed as a directed graph. I is the set of indices 
as defined above. Here I serves as the set of discrete 
states indexing the subsystems. E E I x I - {(it i)li E I }  
is a collection of events. If an event e = ( i , j )  takes 
place, the switched system will switch from subsystem i 
to j .  

In view of Definition 2.1, a switched system is a col- 
lection of subsystems which are related by a switching 
logic restricted by V. The continuous state x and the 
continuous input U satisfy x E R" and U E R". If 
a particular switching law has been specified, then the 
switched system can be described as 

d t )  = f q t , ( x ( t ) , u ( t ) d )  (1) 
i ( t )  = cp(z(t), i( t-) ,  t ) ,  (2) 

where cp : R* x I x R -+ I determines the active subsys- 
tem at time t. Note that (1)-(2) are used as the defini- 
tion of switched systems in some of the literature. Here 
we adopt Definition 2.1 rather than (1)-(2) because in 
design problems, in general, cp is not defined a priori and 
it is a designer's task to find a switching law. A salient 
feature of a switched system is that its continuous state 
z does not exhibit jumps at switching instants. 

Switching sequences 

For a switched system S, the inputs of the system 
consist of both a continuous input u(t) ,  t E [to,  t f ]  and a 
switching sequence. We define a switching sequence as 
follows. 

Definition 2.2 (Switching Sequence) For a 
switched system S ,  a switching sequence U in [ to ,  t f ]  is 
defined as 

U =  ((tO,eO),(tl,el),(tZ,ez),.'' , ( t K , e K ) ) ,  (3) 

with 0 5 K < 00, to  5 tl 5 t z  5 ... 5 t K  5 t f ,  and 

K = 0, D = ( ( to ,eo) ) . )  
W e  define C[to,tfl = {U'S in [to,  t f ] } .  W e  also define 

= ( e o , e l , e z , . - .  , e K ) .  (4) 

f?o = 20 E I ,  ek = ( i k - 1 ,  i k )  E E for IC = 1,2, . * , K .  (If 

an untamed switching sequence as 

A switching sequence U as defined above indicates 
that, if t k  < tk+l  , then subsystem i k  is active in 

is switched through at  instant t k  ('switched through' 
means that the system switches from subsystem ak-1 to 
i k  and then to i k + l  all at  instant t k ) .  For a switched 
system to be well-behaved, we generally exclude the un- 
desirable Zeno phenomenon, i.e., infinitely many switch- 
ings in finite amount of time. Hence in Definition 2.2, 

[ t k , t k + l )  ( [ t K , t f ]  if k = K ) ;  if t k  = t k + l ,  then i k  

we only allow nonZeno sequences which switch at most 
a finite number of times in [to,  t 1, though different se- 
quences may have different num6ers of switchings. We 
specify U E C[to,tf~ as a discrete input to  a switched 
system. 

2.2 An Optimal Control Problem 
Problem 2.1 For a switched system S = (3 ,V) ,  find 
a switching sequence U E E:[to,tfl and a n  input U E U = 
{piecewise continuous function U on [ t o ,  t f ]  with u(t)  E 
U 2 R", V t  E [to,  t f ] }  such that the cost functional 

tf 
J = 7CIMtf 1) + / L ( x ( t ) ,  uZL(t), t )d t  (5) 

t o  

is minimized, where t o ,  t f  and x ( t0 )  = xo are given, 

Problem 2.1 is a fixed final time, free final state 
problem. Although for a continuous-time system x = 
f (2, U ,  t )  there have been many methods for finding so- 
lutions for optimal control problems such as the calculus 
of variations method, the maximum principle and the 
Hamilton- J acobi- Bellman equation , et c . , the involve- 
ment of U makes the dynamics of the system vary in 
[to,  t f ] ,  so the problem is in general difficult to  solve. 

$ :R"  + R ,  L :R"  XR" XR-FR. 

2.3 Two Stage Optimization 

(U*,.*? for Problem 2.1 such that 
In eneral, we need to find an optimal control input 

Notice that for any given switching sequence U, Problem 
2.1 reduces to a conventional optimal control problem 
for which we only need to find an optimal continuous 
input U so as to minimize Ju(u) = J(o,u) .  In a pre- 
vious paper [15], we have proved the following lemma 
which provides a way to formulate (6) into a two stage 
optimization problem. 

Lemma 2.1 For Problem 2.1, if 
( I ) .  an optimal solution (u*,u*) exists and 
(2). for any given switching sequence D,  there exists a 
corresponding U* = u*(a) such that Ju(u) is minimized, 
then the following equation holds 

min J (o ,u)  = min minJ(a ,u) .  (7) 
~ € C [ , , , , , ] ,  U E U  u € q t , , t , ]  UEU 

The right hand side of (7) is a two stage optimiza- 
tion problem and the following two stage optimization 
method can be adopted for solving it. 
Two stage optimization method 

Stage 1: Fixing D ,  solve the inner minimization problem. 
Stage 2: Regarding the optimal cost for each D as a 
function J1 = Jl(a) = minuEU J(u, U ) ,  minimize J1  with 
respect to D E C[to , t f~ .  

We can implement the above method by the follow- 
ing algorithm. 
Two Stage Algorithm 

Step 1. (a) Fix the total number of switchings to be 
K and the order of active subsystems, let the minimum 
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value of J with respect to U be a function of the K 
switching instants, i.e., J1 = Jl(tl,tz, ... ,tK) for K 2 
0, and then find J1. 

Step 2. (a) Vary the order of active subsystems to find 
an optimal solution under K switchings. 

(b) Vary the number of switchings K to find an 
optimal solution for Problem 2.1. 

The above algorithm has high computational costs. 
In practice, we usually find suboptimal solutions for op- 
timal control problems with fixed number of switchings 
and fixed order of active subsystems by using Step 1 (In 
fact, in many practical situations we only need to study 
such problems.). Note that in Step 1, we consider the 
case of fixed number of switchings with fixed order of 
active subsystems. Step 1 can further be separated into 
two substeps (a) and (b); Step l(a) finds the optimal 
cost and optimal continuous input with fixed switching 
instants, and Step l(b) searches for optimal switching 
instants. 

In the following, we will focus on Step 1 of the above 
algorithm and search for both an optimal continuous in- 
puts and optimal switching instants, given fixed number 
of switchings and fixed order of active subsystems . In 
general, explicit representation of J1 is difficult to ob- 
tain, therefore we need to use optimization methods that 
do not require explicit representation of J1 to develop 
numerical methods. 

(b) Minimize J1 with respect to tl, t 2 ,  . . . , tK. 

3 A Dynamic Programming Approach 

In the following we develop a search algorithm for 
finding the optimal switching instants for Step 1 in the 
algorithm so as to minimize J1. This is motivated by the 
idea of the dynamic programming by studying the value 
functions. Note that in the following, the value func- 
tions we use may not be the optimal value functions un- 
der fixed switching sequences, except that in Section 4, 
they are indeed optimal for fixed switching sequences. 
Although some equations we will use is similar to the 
equations obtainable by the dynamic programming ap- 
proach, our purpose is only to use these equations to 
find the derivatives of the value function with regard to 
the switching instants and so the combinatoric explosion 
issue in dynamic programming will not be of concern 
here. 

We assume that the number of switchings is K and 
the order of subsystems is io, il, . . . , iK. In other words, 
the switching sequences we are interested in are of the 
form 

0 1  ( ( t o , i o ) , ( t i , ( i o , i i ) ) , . . .  ,(~K,(~K--I,~K)), (8) 

where to,  tl, . . . , t~ are yet unknown. We will search for 
optimal switching instants tl, 

In [5], based on a differential dynamical program- 
ming approach, the authors developed a method to deal 
with discontinuities and used it in fuel optimal and bang- 
bang type of control problems. Motivated by their ap- 
proach, first we will develop our search algorithm and 
identify the difficulties of the approach for solving gen- 
eral switched optimal control problems. In the next sec- 
tion, we will then focus on a special class of switched 

, tK (i.e., Step l(b)). 

systems, i.e, the general switched linear quadratic prob- 
lems, for which many difficulties can be avoided. 

Let us assume that we have a nominal control in- 
put u(t),t E [ t o , t f ]  and nominal switching instants 
tl, t a t .  , t K  (if possible, choose U ( . )  to be an optimal 
input corresponding to the current values of switching 
instants). Assume U(.) does not vary and we want to op- 
timize the cost by only varying the switching instants, 
the value function V o  at to (may not be the optimal 
value function) will then depend on 20, t o ,  tl , . . . , tK 
only. Similarly, the value function V i  at ti will depend 
on  ti), ti, ti+l,. . , tK only. 

For simplicity of notation, let's now consider the case 
of a single switching. The result for K switchings can be 
similarly derived. In the following derivation, we write 
a function with a superscript 0 whenever we consider 
the function for t E [to,tl) and write a function with 
a superscript 1 whenever we consider the function for 
t E [tl,tfl. Also we assume that all functions with su- 
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perscript -0 (resp. 1) are evaluated a t  tl - (,esp.. tl+) 
if they are to be evaluated at  tl .  First of all, I t  is not 
difficult to see-that 

Now if tl has a small variation dtl, we have 

V O ( Z 0 ,  t o ,  tl + dtl) 
ti+dti  

= v1 ( 4 t l  + dtl), tl + dtl) + lo 
= V1(2(tl), tl) + J" t o  LO(2, U, t)dt + V,d.(tl) 

Lo@, U ,  t )d t  

1 
+V,pt1 + LOdtl + - (dz( t l ) )TV, l ,dz ( t l )  2 

1 

1 1 
2 2 +-dt,LO,du(t1) + -L:dt: + O ( d t 4 )  (9) 

where 

By substituting (10) and (11) into (9), we obtain 

V0(Zo, t o ,  tl + dtl) 
VO(Z0, t o ,  tl) + (V,p  + &: + LO)dtl = 

n 1 '  
= VO(zo,to,tl) + q d t l  + - q t 1 d t :  2 + O ( d t ? )  (12) 

Now since V 1  (~( t l ) ,  tl) is the value function for fixed 
U ( - ) ,  we have the relationship 
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By differentiating (13), we can further have the following 
relations. 

With the help of (13), (14), (15), we can write &: 
and &:tl in the following forms. 

4; = 

&;tl = 

Once we know &:, &:tl, we can use the first or 
second-order search method of nonlinear programming 
to  optimize the switching instant (see [lo]). However, 
there are two difficulties associated with this approach. 
(a). These conditions are derived under the assumption 
that U ( - )  is not varying when optimizing (for at  least 
one iteration). Yet in most cases, when the switching 
instants vary, the control input would vary correspond- 
ingly. Therefore, this approach can only give us the 
optimal switching instants for the nominal U ( . ) .  

(b). In general, V,,V.?,Io, t i l  can only be determined 
after significant computational effort has been made. 

Problem (a) may be addressed by updating the U ( . )  
to  be the corresponding optimal input for the new 
switching instant at each new iteration. However, in this 
way, we still may not be able to find the optimal control 
input. For problem (b), we can find out the values for 
V1 at (x ( t l ) ,  t l )  by integration and obtain a numerical 
approximation of V i ,  (resp. V:?) by observing the vari- 
ation of V 1  (resp V2!)  with respect to  small variation of 
x. Similarly we can also find approximations for tio, ti1. 
Another way to deal with problem (b) is to use the dif- 
ferential dynamic programming approach introduced in 
[7]. With the above discussions in mind, our algorithm 
for a single switching can be summarized as follows. 
A Second-Order Search Algorithm 

Step 1. Choose nominal U ( - )  and switching instant tl .  
Step 2. Fix U ( - )  and calculate 6: and 

Step 3. Update ,yew = tl - (&:tl)-l&: (If ,yew is out- 
side [ to ,  t f ] ,  enforce it to be on the appropriate boundary 

Step 4. Update U ( . )  by finding optimal (or suboptimal) 
control input for the new switching sequence. 
Step 5. Repeat Step 2 to Step 4 until ~ ~ ( ~ ~ t l ) - l & ~ ~ ~ ~  is 
smaller than a given tolerance value E > 0. 

Of t f ] ) .  

4 Application to General Switched Linear 
Quadratic Problems 

In this section, we consider a special class of opti- 
mal control problems for switched systems, i.e., general 
switched linear quadratic problems. For this class of 
problems, the two difficulties mentioned in Section 3 can 
be avoided. First of all, we state the problem as follows. 

Problem 4.1 For a switched system S = (.F,V), with 
linear subsystems x = Aix + Biu,i = 1 , 2 , . - .  , M 
and a given untamed switching sequence aU = 
( i o ,  ( i o ,  i l ) ,  . . . , ( i ~ - 1 ,  i ~ ) ) ,  find the optimal switching 
instants t l , .  . . , tK and optimal control input U ( . )  such 
that the cost functional in general quadratic form 

1 
J = - z ( t f ) T Q p ( t f )  2 + M p ( t f )  + L f  + JI:'( t x T Q z  

1 
2 

+xTVu + --uTRu + Mx + Nu + W)dt 

i s  minimized, where t o ,  t f  and x(t0) = xo are given, 
Q f , Q  2 0 and R > 0. 

(18) 

Note that for general quadratic control of a linear 
system 2 = Ax + Bu, we can use the dynamic program- 
ming approach to obtain the following results. 

The optimal value function is 

1 
V * ( z ,  t )  = ,xTP(t)x + S( t ) x  + T ( t )  (19) 

where P( t )  = 

-P(t)  = 

-S( t )  = 

-T(t) = 

-L 

PT(t )  and 

Q + P ( t ) A  + ATP( t )  - (P( t )B  
+V)R-l(BTP(t) + V T )  (20) 

+VT) (21) 

+ N T )  (22) 

M + S( t )A  - ( N  + S(t)B)R-'(BTP(t)  

W - 5(N + S(t)B)R-l(BTST(t)  1 

and the optimal control is in the feedback form 

u(x( t ) ,  t )  = -K( t )x ( t )  - E( t )  (23) 

where 

K ( t )  = R-'(BTP(t) + V T )  (24) 
E(t)  = R-'(BTST(t) + N T )  (25) 

Focusing now on the general switched linear 
quadratic problem, assume that for any nominal switch- 
ing instants, we always choose U ( - )  in the form (23) 
which is optimal in this case. We can derive 4: and 
&:tl by modifying the derivation in Section 3. And this 
time we choose the nominal K ( - )  and E(.)  rather than 
U ( - )  to be fixed at each iteration of optimization (but 
be updated after the iteration). This can give us the 
flexibility of letting U ( - )  vary as a function of x since u 
depends on x now (see (23)). 
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The derivation of 5; and &?tl is as follows. Equa- 
tions (9)-(13) remains unchanged, while (14) and (15) 
will become 

1 '  1 
& t Z  = -(f 1 v,,-v,'f;--: 

4:t1 

--(Vjft + Lk)uS (26) 
- V , y  - vjt; - L; - (v,'f; + L;)u; 
( f 1 ) ' V y  + (vjf; + LS)fl - V;f; - L; 
-(Vjft + Lk)til (27) 

= 

= 

And consequently the form of &; is still the same as 
equation (16)and 

4:t1 

(fO - fl)'VJZ(fO - f l )  - ( V X  + L 3 f 0  - f l )  

+cc (f," - f 3  + L: - L:)f O 

+VJ@ - f;) + L: - L; + (VJf: + L0,)tiO 
-(VdfA + L;)(2u;fO + til). 

= 

(28) 

It can now be seen from the expressions of &: and 
&:tl that all terms necessary for the evaluation of them 
are readily available.. 

v,' = x'P1+S1 (29) 
= Pl (30) 

(31) U0 - - - k o z  - K o f o  - go 

U1 = -K1x-K1f l -E1  (32) 
= -K1 (33) 

where the functions with superscript 0 (resp. 1) are 
evaluated at t l-  (resp. tl+); x is continuous at t l;  
K O ,  K1, Eo, El can be represent as functions of P, S by 
substituting (20) and (21) into the differentiation of (24) 
and (25). 

Now that we have the expressions for 4; and &yt,  , 
we can modify the algorithm in Section 3 to find the 
optimal switching instants. Note here K(.)  and E( . )  are 
assumed to be fixed at each iteration, but U ( . )  varies as a 
function of x, therefore this algorithm is better than the 
one in Section 3. And for this specific problem, we can 
easily obtain the forms and values of V1, Vi?, tio , U1 , U: 
which avoids difficulty (b) at the end of Section 3. 

Example 4.1 Consider a switched system consisting of 
subsystem 1: 

.=[ 0 2 0  - l ] x + [  : ] U  

and subsystem 2: 

.= [ ; ] z + [  ; I u .  
Assume that to  = 0, t f  = 2 and the system swatches once 
at t = t l (0  5 tl 5 2) from subsystem 1 to 2. W e  want 
tolfind an optimal switching instant tl and an  optimal 

input U such that x(0)  = [l 13' and 4 2 )  is close to  [e e]' 
and the cost functional J = s,' u2( t )d t  is minimized. 

For this problem, we add to  J a penalty term 
; [ (21 (2 )  - e)2  + ( ~ ( 2 )  - e)'] and then consider the ex- 
panded cost functional JeZp.  B y  using the second-order 
search algorithm, we find that the optimal switching in- 
stant is tl = 1.0189 and the corresponding optimal cost 
i s  0.0063. The corresponding state trajectory and control 
input U ( . )  are shown in Figure l(a),(b). This numeri- 
cal solution is close to the theoretical optimal solution 
tyPt = 1, J::; = 0 and uOPt G 0. 

01 

0 15 

02 0 02 04  06  06 1 12 1 4  16 1 8  2 

(b) 

Figure 1: Example 4.1 (a) The state trajectory (b) The 
control u(t). 

Example 4.2 Consider a switched system consisting of 
subsystem 1: 

i = [  -2 0 4"+[ 0 
; ] U  

and subsystem 2: 

0.5 5.3 ' = [  -5.3 0 . 5 I x + [  Illu 
and subsystem 3: 

1 0  [ 0 1 . 5 ] 5 + [  ; ] U .  

Assume that t o  = 0, t j  = 3 and the system switches 
at t = tl from subsystem 1 to  2 and at t = t 2  from sub- 
system 2 to  3 (0 < ti < t 2  < 3). W e  want to find opti- 
mal switching instants t l ,  t 2  and an optimal input U such 
that x(0) = [4 4IT and 4 3 )  is close to  [-4.1437 9.3569IT 
and the cost functional J = s," u2( t )d t  is minimized. 

For this problem, we add to  J a penalty term 
[(XI (3) + 4.1437)2 + ( ~ ( 3 )  - 9.3569)2] and then consider 
the expanded cost functional Jezp.. B y  using the second- 
order search algorithm with inztial values tl = 0.8, 
t 2  = 1.8, after 24 iterations we find that the optimal 
switching instant is tl = 1.0187, t 2  = 2.0318 and the 
corresponding optimal cost is 0.0515. The correspond- 
ing state trajectory and control input U ( . )  are shown in 
Figure 2(a),(b). This numerical solution is close to the 
theoretical optimal solution typt = 1, tipt = 2, J::; = 0 
and u o p t  E 0. 
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xl:m - 4  fJg 
0 

2 02 

4 5 4 . 3 2  1 0 1  2 3 I "0 0 5  1 15 2 25 3 

X1  t 
(a) (b) 

Figure 2: Example 4.2 (a) The state trajectory (b) The 
control u(t). 

5 Conclusion 

In this paper, a search algorithm is developed to find 
optimal switching instants. The method is motivated by 
the method in [4, 51. The difficulties of the application 
of the algorithm are pointed out. For the special class 
of general switched linear quadratic problems, some of 
the difficulties can be addressed efficiently as we show 
in Section 4. 
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