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AUTOMATED SYNTHESIS OF LIVENESS ENFORCING

SUPERVISORS USING PETRI NETS

Marian V. Iordache∗, John O. Moody†, Panos J. Antsaklis∗

Abstract

Given an arbitrary Petri net structure, which may have uncontrollable and unobservable transitions,

the liveness enforcement procedure presented here determines a set of linear inequalities on the marking

of a Petri net. When the Petri net is supervised so that its markings satisfy these inequalities, the

supervised net is proved to be live for all initial markings that satisfy the supervision constraints. Also

the supervision is proved to be maximally permissive for a large class of Petri nets, which includes the

fully controllable and observable Petri nets. Moreover, the supervisor supports specifications requiring

only some of the Petri net transitions to be live. The maximal permissivity typically applies also for this

case. The procedure allows automated synthesis of the supervisors. The sufficient conditions for which

our theoretical results are guaranteed to apply can be automatically verified.
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1 Introduction

1.1 Scope of the Paper

Liveness is a desirable quality of concurrent systems. Due to mutual interdependencies, such systems may
reach states of local or total deadlock. Deadlock means that some actions (or all, for total deadlock) are
impossible to pursue. A system is live when deadlock (both local and global) is impossible. Rather than
providing a method to verify whether a system is live, we provide a method which synthesizes a supervisor
such that the supervised system is live. We consider discrete event systems modeled as Petri nets. We
note that it is more natural to model concurrent systems as Petri nets rather than as finite automata.
Further on, we do not restrict the Petri net models. They are allowed to be unbounded, generalized and
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with uncontrollable and unobservable transitions. The approach is not dependent on the initial marking.
Instead, the set of initial markings for which liveness is enforced is characterized as the feasible set of a
system of linear marking inequalities. Thus the liveness supervisor produced by our approach is defined for a
set of initial markings, rather than for a single initial marking. Moreover, when the supervisor is maximally
permissive, enforcing liveness is impossible for all initial markings for which the supervisor is not defined.
Thus the method can also be used for liveness verification.

In some applications, some Petri net transitions may model undesirable behavior. Such transitions
should not be live. Thus, rather than supervising for liveness, we supervise for T -liveness, which is a
concept generalizing liveness: instead of requiring all transitions to be live, only the transitions in the set
T are to be live. Note that liveness is a special case of T -liveness. The liveness enforcing procedure can
be described as follows. Given a fully controllable and observable Petri net and a set T , the procedure
will provide a supervisor for T -liveness which typically is maximally permissive, or it will detect that T -
liveness is impossible, in which case the supervisor will enforce Tx-liveness, for Tx ⊆ T . Given a Petri net
with uncontrollable and/or unobservable transitions and a set T , the procedure will provide a supervisor
enforcing Tx-liveness, Tx ⊆ T ; if Tx 6= T then the procedure is unable to enforce T -liveness. A sufficient
condition which guarantees the supervisor to be maximally permissive can be easily tested. In particular,
in the case of fully controllable and observable Petri nets, the supervisor is guaranteed to be maximally
permissive in the case of liveness enforcement.

The disadvantages of our procedure are that termination is not guaranteed and that when the procedure
terminates the computations may be complex. However all computations are performed offline. Thus the
supervisor generated by the procedure is appropriate for real-time problems. It is possible to guarantee
termination, but this may come at the expense of permissivity. We give two variants of the procedure with
guaranteed termination. However these two variants are only useful for bounded Petri nets.

The method presents the conditions necessary to insure liveness enforcement as a set of linear marking
inequalities. This feature can be used directly in optimization problems, e.g., a linear program can be used
to determine the minimum number of resources a system requires such that deadlock can be avoided.

An interesting property of our method is that it solves a problem which cannot be solved with finite
automata based approaches. Indeed, by considering all possible initial markings, an automaton with an
infinite number of states is obtained. Note that this is not the case for the approaches which consider a
given initial marking and a bounded Petri net. Applications which may benefit from considering the initial
marking unknown are in the area of Flexible Manufacturing, as the initial marking corresponds to the number
of available resources.

1.2 Related Work

Previous results about enforcing liveness in Petri nets usually consider restricted classes of Petri nets. A
necessary and sufficient condition for the existence of liveness supervisors appears in [18]. A method for
liveness enforcement in a class of conservative ordinary Petri nets has been given in [5]; the approach is
not maximally permissive. The approach of [5] has been recently extended to generalized Petri nets in [15].
Polynomial complexity has been proved, however the considered Petri nets are conservative and the approach
is not maximally permissive. A liveness enforcing approach for a restricted class of ordinary Petri nets is
given in [19]. Another liveness enforcing approach appears in [20]; it is based on the coverability graph, and
hence the initial marking is required. In [7] the authors consider enforcing liveness based on the unfolding
of a Petri net. Unfolding is an efficient technique of searching the reachability graph. The approach of [7]
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is limited to bounded Petri nets and the initial marking must be known. Our approach is most related to
the deadlock prevention procedure we presented in [10, 8], and its improvement in [9]. While our former
procedure prevented deadlock but was not guaranteed to enforce liveness, the procedure of this paper is
guaranteed to enforce liveness.

The liveness enforcement procedure of this report is iterative, at every iteration correcting new deadlock
situations. Using iterations to correct deadlock situations has also been used in [12]. In our procedure we
employ supervisory control based on place invariants [13, 22], which is an established method in the supervi-
sory control of Petri nets. We also use a transformation to almost ordinary Petri nets and a transformation
to asymmetric choice nets. The first transformation was inspired by a similar transformation in [12]. A
transformation to free choice nets, which is a particular class of asymmetric choice nets, has been used in
[17]. In [17] it is shown that liveness enforcing policies of a free choice equivalent of a Petri net can be used to
enforce liveness in the original Petri net. Our interest for asymmetric choice nets stems from a generalization
of the Commoner’s Theorem for asymmetric choice nets [2]. Thus liveness in an asymmetric choice Petri
nets can be related to siphon control. Our approach involves the computation of a special class of minimal
siphons. Methods of siphon computation have been given for instance in [11, 3, 6].

1.3 Paper Structure

The document is organized as follows. Section 2 reviews basic Petri net properties and describes the nota-
tions which are used throughout the paper. Section 3 presents some deadlock and liveness properties. We
emphasize the supervisory control aspect of enforcing liveness and preventing deadlock and we derive signif-
icant consequences of a known result. Thus we derive Corollary 3.2 which is the basis for better deadlock
tests, such as Proposition 3.4 and Proposition 3.5. In Theorem 3.2 we prove a fundamental result for our
method. A consequence of Theorem 3.2 is Proposition 3.6, which gives a necessary condition and a sufficient
condition for T -liveness in a class of Petri nets. In section 4 we present preliminaries to our methodology.
The supervisory technique used by our method, supervisory control based on place invariants [13, 22], is
outlined in section 4.3. Transformations from generalized Petri nets to ordinary Petri nets and to asymmetric
choice Petri nets are presented in sections 4.1 and 4.2. The siphon control approach (largely a particular
case of the supervision based on place invariants) is given in section 4.4. Section 5 defines the liveness en-
forcement procedure and the operations which are involved. The procedure for liveness enforcement is stated
in section 5.4. Illustrative examples are given in section 5.6. Section 6 gives the formal characterization of
the procedure. The analysis of the procedure is complex, so in section 6.1 we provide some basic properties
characterizing the procedure or the operations involved by it. These properties are also used to derive our
main results. The main results are given in section 6.2. Theorem 6.2 proves that the procedure does enforce
liveness and Theorem 6.3 proves that for a large class of Petri nets the procedure is not more restrictive
than any other liveness enforcing supervisor. Section 6.2.3 contains results that show that by (possibly)
compromising the performance of the procedure, termination can be guaranteed. We conclude with some
significant special cases and remarks in section 6.3.

This is an almost self-contained report. The liveness enforcement procedure of this report is essentially
a modification of the deadlock prevention method presented in our previous technical report [9]. Thus a
significant part of the material of [9] resembles or is included in this report. The new material of this
report is included in the following sections. Section 3.3 includes Theorem 3.2, which is essential for our
liveness enforcement approach. Section 4.2 describes the asymmetric choice transformation. Section 5 is the
adaptation for liveness enforcement of the similar section in [9], except for section 5.3, which contains new
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material. Compared to [9], some results of section 6 needed new proofs or restatements due to the new form
of the procedure; also, new technical results have been added. The main theoretical results for the liveness
enforcing procedure are given in section 6.2, where the termination results are essentially the same as in [9].

2 Review of Some Petri Net Basic Properties

We assume the reader to be familiar with Petri net fundamentals. Petri net surveys may be found in [16],
[14] and [4]. In this section we introduce our conventions and notations.

A Petri net structure is a quadruple N = (P, T, F, W ) where P is the set of places, T the set of

transitions, F ⊆ (P × T ) ∪ (T × P ) is the set of transition arcs and W : F → N \ {0} is a weight
function. A marking µ of the Petri net structure is a map µ : P → N. A Petri net structure N with
initial marking µ0 is called a Petri net, and will be denoted by (N , µ0). For simplicity, we may denote
sometimes by Petri net a Petri net structure.

It is useful to consider a marking both as a map and as a vector. These requirements are not necessarily
conflicting, because vectors can be seen as maps defined on an arbitrary finite set domain [16], instead
of {1, 2, . . .m}, as is customary. The marking vector is defined to be [µ(p1), µ(p2), . . . µ(pn)]T , where
p1, p2, . . . pn are the places of the net enumerated in a chosen (but fixed) order and µ the current marking.
The same symbol µ will denote a marking vector. The marking vector of a Petri net may be regarded as the
state variable of the Petri net. An equivalent way of saying that place p has the marking µ(p) is that p has
µ(p) tokens.

Figure 1 could be used to illustrate the graphical representation of Petri nets. A token is represented by
a bullet. The marking vector in figure 1(b) is [0, 1, 1]T . An arc weight is indicated near the arc when it is
not one. For instance, in figure 1(b) W (p3, t1) = 2 and W (t2, p2) = 4.

The preset of a place p is the set of incoming transitions to p: •p = {t ∈ T : (t, p) ∈ F}. The postset

of a place p is the set of outcoming transitions from p: p• = {t ∈ T : (p, t) ∈ F}. p is a source place if
•p = ∅ and a sink place if p• = ∅. Similar definitions apply for transitions. They are also extended for sets
of places or transitions; for instance, if A ⊆ P , •A =

⋃
p∈A

•p, A• =
⋃

p∈A

p•.
We use µ[t to denote that µ enables the transition t and µ[t > µ′ to denote that µ enables t and if t

fires, then the marking becomes µ′. The marking µ′ is reachable from µ if there is a sequence of markings
µ1, . . . µk, µk = µ′, and a sequence of transitions ti1 , . . . tik

s.t. µ[ti1 > µ1[. . . tik
> µ′. The set of reachable

markings of a Petri net (N , µ) (i.e. the set of markings reachable from the initial marking µ) will be denoted
by R(N , µ).

In a Petri net N = (P, T, F, W ) with m places and n transitions, the incidence matrix is an m × n

matrix defined by D = D+ − D−, where the elements d+
ij and d−ij of D+ and D− are

d+
ij = W (tj , pi) if (tj , pi) ∈ F and d+

ij = 0 otherwise;
d−ij = W (pi, tj) if (pi, tj) ∈ F and d−ij = 0 otherwise.
The incidence matrix allows an algebraic description of the marking change of a Petri net:

µk = µk−1 + D · uk (1)

where uk is called firing vector, and its elements are all zero excepting uk,i = 1, where i corresponds to
the transition ti that fired. We will denote by firing vector also a vector x associated with a sequence of
transitions that have fired, whose entries record how often each transition appears in the sequence. If x is
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the firing vector of the transition sequence that led the Petri net from the marking vector µ0 to µk:

µk = µ0 + D · x (2)

A vector x is called place invariant if xT ·D = 0. A vector x is called transition invariant if D ·x = 0.
The support of a transition invariant x is ||x|| = {tj ∈ T : x(j) 6= 0}.

A Petri net (N , µ0) is said to be deadlock-free if for any reachable marking µ there is an enabled
transition. (N , µ) is in deadlock if no transition is enabled at marking µ.

Let (N , µ0) be a Petri net. A transition t is said to be live if ∀µ ∈ R(N , µ0) ∃µ′ ∈ R(N , µ) such that t

is enabled by µ′. A transition t is dead at marking µ if no marking µ′ ∈ R(N , µ) enables t. (N , µ0) is said
to be live if every transition is live.

A nonempty set of places S ⊆ P is called a siphon if •S ⊆ S• and trap if S• ⊆ •S. In particular,
S = P may be siphon. An empty siphon with respect to a Petri net marking µ is a siphon S such that∑
p∈S

µ(p) = 0. The attribute “empty” refers to the fact that S has no tokens. A siphon has the property that

if for some marking it is empty, it will be so for all subsequent reachable markings. A trap has the property
that if at some marking it has one token, then for all subsequent reachable markings it will have at least
one token. See figure 1 for siphon examples. In figure 1(a), {p1, p3} and {p2, p4} are traps. S is a minimal

siphon if there is no other siphon S′ (by definition, S′ 6= ∅) such that S′ ⊂ S.

3 Deadlock and Liveness Properties of Petri Nets

This section introduces certain liveness and deadlock properties, focusing on their relation to structural prop-
erties of Petri nets and supervision. Throughout this section all transitions are considered to be controllable
and observable.

3.1 Intrinsic Properties

A Petri net N = (P, T, F, W ) is ordinary if ∀f ∈ F : W (f) = 1. We will refer to slightly more general Petri
nets in which only the arcs from places to transitions have weights equal to one. We are going to call such
Petri nets PT-ordinary, because all arcs (p, t) from a place p to a transition t satisfy the requirement of an
ordinary Petri net that W (p, t) = 1.

Definition 3.1 Let N = (P, T, F, W ) be a Petri net. We call N PT-ordinary if ∀p ∈ P, ∀t ∈ T, if (p, t) ∈
F then W (p, t) = 1.

The methodology of our work depends on a well known necessary condition for deadlock [16], namely
that a deadlocked ordinary Petri net contains at least one empty siphon. It can easily be seen that the proof
of this result also is valid for PT-ordinary Petri nets.

Proposition 3.1 A deadlocked PT-ordinary Petri net contains at least one empty siphon.

An example is shown in figure 1(a). Proposition 3.1 shows that deadlock might be prevented if it can be
ensured in a nonblocking way that no siphon ever loses all its tokens. The condition in Proposition 3.1 is
only necessary. The example of figure 1(c) illustrates that the condition of Proposition 3.1 is not sufficient
and figure 1(b) that the result is not applicable to Petri nets more general than PT-ordinary.

5

Marian V. Iordache, John O. Moody and Panos J. Antsaklis, “Automated Synthesis of Liveness Enforcing 
Supervisors Using Petri Nets," Technical Report isis-00-004, Dept. of Electrical Engr., Univ. of Notre Dame, 
October 2000.



(a) (b) (c)

3p 4

5

p

t t
1

p

p

2

2

3

1

1t 2

3t

4t

2p

p3

t 1

t 2

t 3
p1

p

t

4p3p

p21
t

p

2

2

3

4

Figure 1: (a) A deadlocked PT-ordinary Petri net. An empty siphon is {p1, p4, p5}. (b) A deadlocked Petri
net with no empty siphon which is not PT-ordinary. (c) A deadlock-free Petri net (for the marking displayed)
with an empty siphon – {p1, p3}.

Definition 3.2 Let N be a Petri net and MI be a set of initial markings. A siphon S is said to be
controlled with respect to MI if ∀µ0 ∈ MI , ∀µ ∈ R(N , µ0):

∑
p∈S

µ(p) ≥ 1.

A controlled siphon contains for all reachable markings at least one token. A trap controlled siphon

is a siphon that includes a trap. Recalling the trap property, for all markings such that the trap has one
token, the siphon is controlled.

We define an invariant controlled siphon as a siphon S of a Petri net N with the property that N
has a place invariant x such that for all i = 1, 2, . . . |P |, if x(i) > 0 then pi ∈ S. It is easy to show that for
all initial markings µ0, such that xT µ0 ≥ 1, the siphon S is controlled.

In particular, a siphon which contains a controlled siphon is controlled. Therefore in a Petri net such
that all minimal siphons are controlled, all siphons are controlled. Also, by Proposition 3.1, a PT-ordinary
Petri net is deadlock-free if all its siphons are controlled. This is may not be true for more general Petri
nets. Proposition 3.1 has been generalized in [2] for Petri nets which are not PT-ordinary (but see also
Proposition 3.2 and comments in [8]). We do not use that result. Instead we transform generalized Petri
nets to PT-ordinary Petri nets (refer to section 4.1) and then use Proposition 3.1. Another drawback of
Proposition 3.1 is that it is not effective for Petri nets which are not repetitive. We define the repetitive
Petri nets in section 3.2 and then we give new results which are adequate for the Petri nets which are not
repetitive.

Loss of liveness is a less severe form of deadlock, where some actions can no longer happen while others
may still be possible. Deadlock implies loss of liveness. An empty siphon is a necessary and not a sufficient
condition for deadlock, while for loss of liveness it is a sufficient but not a necessary condition. Commoner’s
Theorem states that in an ordinary free choice net N , if there are dead transitions for a marking µ, then
there is a reachable marking µ′ ∈ R(N , µ) such that a siphon is empty ([16] p.103). We include later in the
section a generalization to asymmetric choice nets as Theorem 3.2.

3.2 Conditions for Deadlock Prevention and Liveness Enforcement

Definition 3.3 Let N = (P, T, F, W ) be a Petri net, M the set of all markings of N and U ⊆ M. A
supervisory policy Ξ is a function Ξ : U → 2T that maps to every marking a set of transitions that the
Petri net is allowed to fire. The markings in M\ U are called forbidden markings.
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We denote by R(N , µ0, Ξ) the set of reachable markings when (N , µ0) is supervised with Ξ. It is known
that if (N , µ0) is live, then (N , µ) with µ ≥ µ0 may not be live. The same is true for deadlock-freedom, as
shown in figure 2. The following result shows that if liveness is enforcible at marking µ or if deadlock can
be prevented at µ, then this is also true for all markings µ′ ≥ µ.

We say that deadlock can be prevented in a Petri net N if there is an initial marking µ0 and a
supervisory policy Ξ such that (N , µ0) supervised by Ξ is deadlock-free. Similarly, we say that liveness can
be enforced in N if there is an initial marking µ0 and a supervisory policy Ξ such that (N , µ0) supervised
by Ξ is live.

Proposition 3.2 If a supervisory policy Ξ which prevents deadlock in (N , µ0) exists, then for all µ ≥ µ0

there is a supervisory policy which prevents deadlock in (N , µ). The same is true for liveness enforcement.

Proof: Let µ1 ≥ µ0. A supervisory policy for (N , µ1) is Ξ1 defined as follows:

Ξ1(µ + µ1 − µ0) =

{
Ξ(µ) ∩ Tf(µ) for µ ∈ R(N , µ0)
∅ otherwise

where Tf (µ) denotes the transitions enabled by the marking µ, apart from the supervisor. 2
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Figure 2: A Petri net which is live for the initial marking µ0 shown in (a) and not even deadlock-free for the
initial marking µ ≥ µ0 shown in (b).

Definition 3.4 [14] A Petri net is said to be (partially) repetitive if there is a marking µ0 and a firing
sequence σ from µ0 such that every (some) transition occurs infinitely often in σ.

The following lemma seems to be necessary for the sufficiency proof of Theorem 3.1, which is a known
result. The authors are unaware of a reference in which Lemma 3.1 or the sufficiency proof of Theorem 3.1
appear. We prove the lemma as we need it in order to prove a number of other results, including Corollary 3.2.
A related proof appears in [16] at page 70.

Lemma 3.1 Let N = (P, T, F, W ) be a Petri net of incidence matrix D. Assume that there is an initial
marking µI which enables an infinite firing sequence σ. Let U ⊆ T be the set of transitions which appear
infinitely often in σ. There is a nonnegative integer vector x such that Dx ≥ 0, x(i) 6= 0 ∀ti ∈ U and
x(i) = 0 ∀ti ∈ T \ U , where ti denotes the transition corresponding to the i’th column of D.
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Proof: Consider firing σ and let µ0 be the marking reached after all transitions which appear finitely often
in σ have fired. Let σ = σ0σ1σ2 . . . σk . . . such that each σk is finite, for all k ≥ 1 each of the transitions in
U appears in σk, and µI [σ0 > µ0. Then let µ1, µ2, . . . be defined as follows: µk−1[σk−1 > µk for all k ≥ 1.

Let Vn be a nonempty set of the form Vn = {y ∈ N
n :6 ∃yi ∈ Vn, y 6= yi, y ≥ yi or y ≤ yi}. Next it is

proved by induction that Vn is finite (i.e. it cannot have infinitely many elements). Assume that any Vn−1 is
finite. Then, let ys,n ∈ Vn; Vn ⊆ ⋃

k,u

Ck,u, where Ck,u = {y ∈ N
n : y(jk) = u, y(ik) > ys,n(ik), 6 ∃yi ∈ Vn, y 6=

yi, y ≥ yi or y ≤ yi}, is defined for 0 ≤ u < ys,n(jk) and k = 1, 2 . . . n(n − 1) corresponds to the possibilities
in which ik 6= jk, 0 ≤ ik, jk ≤ n can be chosen. The induction assumption implies that each Ck,u is finite,
because the component jk of the vectors is fixed and only the remaining n− 1 can be varied. So Vn is finite.

Let M be recursively constructed as follows: initially M0 = {µ0}; for all i, Mi = Mi−1 ∪ {µi} if
6 ∃y ∈ M : y ≥ µi or y ≤ µi and else Mi = Mi−1. The previous paragraph showed that ∃n0 ∈ N: ∀k > n0,
Mk = Mn0 . Let M = Mn0 and M̃ = {y ∈ N

n : ∃yx ∈ M, y ≤ yx}. Both are finite sets.
Here it is shown that 6 ∃i, j, 0 ≤ i < j, such that µi ≤ µj leads to contradiction. Assuming the contrary,

∀k > 0 ∃yx ∈ M such that µk+n0 ≤ yx and µk+n0 6= yx. If y ∈ N
n, yx ∈ M and yx ≥ y, then for u such

that u 6≥ yx and u 6≤ yx either y ≤ u or both y 6≤ u and y 6≥ u; for u such that u 6≥ y and u 6≤ y either
yx ≥ u or both yx 6≤ u and yx 6≥ u. Let M(1) be constructed in a similar way as M, but starting from
M(1)

0 = (M∪ {y}) \ {u ∈ M : u ≥ y}, where y = µ1+n0 , and using µn0+i instead of µi for M(1)
i . For the

same reason the construction ends in finitely many steps. Also, M(1) ⊆ M̃ and ∃n0,1 such that ∀k > 0
∃yx ∈ M such that µk+n0,1 ≤ yx and µk+n0,1 6= yx. So we can continue in the same way with M(2), . . .M(j),
also subsets of M̃. However these operations cannot be repeated infinitely often: j ≤ |M̃|, because M(j)

contains at least one element from M̃ \
j−1⋃
i=1

M(i). (This is so because y ≤ u, y 6= u, u ∈ M(i) ⇒ y /∈ M(i),

also u ∈ M(i) \ M(i−1) ⇒ ∃v ∈ M(i−1): v ≥ u, hence ∃u ∈ M(i): y ≤ u implies ∃v ∈ M: y ≤ v.) So,
M(j+1) cannot be constructed for some j, which implies µ1+n0,j 6≤ u, ∀u ∈ M(j), which is a contradiction.

Therefore ∃j, k, j < k, such that µj ≤ µk. Let qj and qk be the firing count vectors: µj = µ0 + Dqj and
µk = µ0 + Dqk; let x = qk − qj . Then µk − µj ≥ 0 ⇒ Dx ≥ 0, and by construction x ≥ 0, x(i) > 0 ∀ti ∈ U

and x(i) = 0 ∀ti ∈ T \ U . 2

Theorem 3.1 [14] A Petri net is (partially) repetitive if and only if a vector x of positive (nonnegative)
integers exists, such that D · x ≥ 0, x 6= 0.

In general it may not be possible to enforce liveness or to prevent deadlock in an arbitrary given Petri
net. This may happen because the initial marking is inappropriate or because the structure of the Petri net
is incompatible with the supervision purpose. The next corollary characterizes the structure of Petri nets
that allow supervision for deadlock prevention and liveness enforcement, respectively. It shows that Petri
nets in which liveness is enforcible are repetitive, and Petri nets in which deadlock is avoidable are partially
repetitive. Part (b) of the corollary also appears in [18].

Corollary 3.1 Let N = (P, T, F, W ) be a Petri net.

(a) Initial markings µ0 exist such that deadlock can be prevented in (N , µ0) if and only if N is partially
repetitive.

(b) Initial markings µ0 exist such that liveness can be enforced in (N , µ0) if and only if N is repetitive.
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Proof: (a) If deadlock can be avoided in (N , µ0) then µ0 enables some infinite firing sequence σ, and by
definition N is partially repetitive.

On the other hand, if N is partially repetitive, then by Theorem 3.1 there is a nonnegative vector x,
x 6= 0 such that Dx ≥ 0. Let σx be a firing sequence associated to a firing vector q = x and let q1 denote
the firing vector after the first transition of σx fired, q2 after the first two fired, and so on to qk = q. The
incidence matrix D can be written as D = D+ − D−, where D+ and D− correspond to the weights W (t, p)
and W (p, t), respectively. If the rows of the D− are dT

1 , dT
2 , . . ., dT

|P |, then a marking which enables σx is

µ0(pi) = −min(0, min
j=1...k

dT
i qj) i = 1 . . . |P | (3)

At least one deadlock prevention strategy exists for µ0: to allow only the firing sequence σx, σx, σx, . . . to
fire. This infinite firing sequence is enabled by µ0 because µ0 + Dx ≥ µ0 and µ0 enables σx.

(b) The proof is similar to (a). 2

Let Ξ denote a supervisory policy. Let R(N , µ0, Ξ) denote the set of reachable markings from initial
marking µ0, when (N , µ0) is supervised by Ξ. A vector x ∈ S ⊆ R

n has maximum support if no other
vector in S has more nonzero entries than x. The minimum support is similarly defined.

Corollary 3.2 Consider a Petri net N = (P, T, F, W ) which is not repetitive. Then at least one transition
exists such that for any given initial marking it cannot fire infinitely often. Let TD be the set of all such
transitions. There are initial markings µ0 and a supervisory policy Ξ such that ∀µ ∈ R(N , µ0, Ξ), no
transition in T \ TD is dead.

Proof: There is an integer vector x ≥ 0 with maximum support such that Dx ≥ 0, which means that for all
integer vectors w ≥ 0 such that Dw ≥ 0, ‖w‖ ⊆ ‖x‖. Indeed if y ≥ 0, z ≥ 0 are integer vectors and Dy ≥ 0,
Dz ≥ 0, then D(z + y) ≥ 0 and so y + z ≥ 0 and ‖y‖, ‖z‖ ⊆ ‖y + z‖.

If tj ∈ T can be made live, there is a marking that enables an infinite firing sequence σ such that tj

appears infinitely often in σ. Therefore by Lemma 3.1 ∃y ≥ 0 such that Dy ≥ 0 and y(j) > 0. Since x has
maximum support, ‖y‖ ⊆ ‖x‖ and so tj ∈ ‖x‖. This proves that all transitions that can be made live are in
‖x‖. Therefore TD is nonempty. Next, the proof shows that all transitions in ‖x‖ can be made live, which
implies that T \ TD = ‖x‖.

Let σx be a firing sequence associated with x, i.e. every ti ∈ T appears x(i) times in σx. Then there is
a marking µ0 given by equation (3) which enables the infinite firing sequence σx, σx, σx, . . .. Also, we may
choose Ξ to restrict all possible firings to the former infinite firing sequence, so all transitions in ‖x‖ can be
made live. 2

In Corollary 3.2, TD is nonempty. Otherwise, since all transitions from T \ TD could simultaneously be
made live, this would imply that N is repetitive, which is a contradiction. A special case is T \ TD = ∅,
when the Petri net is not even partially repetitive, and so deadlock can not be avoided for any marking.

It was already shown that only repetitive Petri nets can be made live. The corollary above shows that
the set of transitions of a partially repetitive Petri net can be uniquely divided in transitions that can be
made live and transitions that cannot be made live. So the liveness property of partially repetitive Petri
nets is that all transitions that can be live are live.
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3.3 A Characterization of Petri Nets Based on Subnets which Can Be Made

Live, in View of Deadlock Prevention and Liveness Enforcement

We denote by an active subnet a part of a Petri net which can be made live by supervision for appropriate
markings. In the following definition we use the notations from Corollary 3.2.

Definition 3.5 Let N = (P, T, F, W ) be a Petri net, D the incidence matrix and TD ⊆ T be the set of
all transitions which cannot fire infinitely often given any initial marking. NA = (PA, T A, FA, WA) is an
active subnet of N if PA = T A•, FA = F ∩{(T A ×PA)∪ (PA ×T A)}, WA is the restriction of W to FA

and T A is the set of transitions with nonzero entry in some nonnegative vector x which satisfies Dx ≥ 0.
The maximal active subnet of N is the active subnet NA = (PA, T A, FA, WA) such that T A = T \ TD.
A minimal active subnet has the property that the vector x defining it has minimum support.

Definition 3.6 Given an active subnet NA of a Petri net N , a siphon of N is said to be an active siphon

(with respect to NA) if it is or includes a siphon of NA. An active siphon is minimal if it does not include
another active siphon (with respect to the same active subnet.)

Proposition 3.3 A siphon which contains places from an active subnet is an active siphon with respect to
that subnet.

Proof: Using the notations from Definition 3.5, let S be a siphon such that S ∩ PA 6= ∅. •S ⊆ S• implies
that •S ∩ T A ⊆ S • ∩T A. If t ∈ T A and for some p ∈ P : t ∈ p•, then p ∈ PA, by Definition 3.5. Hence
S •∩T A ⊆ (S∩PA)• and so S •∩T A = (S∩PA)•∩T A. Note also that •(S∩PA)∩T A ⊆ •S∩T A. Therefore
•S ⊆ S• implies •(S ∩ P A) ∩ T A ⊆ (S ∩ P A) • ∩T A, which proves that S ∩ PA is a siphon of NA. 2

The significance of the active subnets for deadlock prevention can be seen in the following results. First
we prove a technical result.

Lemma 3.2 Let NA = (PA, T A, FA, WA) be an active subnet of N . Given a marking µ of N and µA its
restriction to NA, if t ∈ T A is enabled in NA, then t is enabled in N .

Proof: By definition, there is an nonnegative integer vector x ≥ 0 such that Dx ≥ 0 (D is the incidence
matrix) and x(i) > 0 for ti ∈ T A and x(i) = 0 for ti ∈ T \T A. This implies that there are markings such that
the transitions of T A can fire infinitely often, without firing other transitions (see proof of Corollary 3.1.) If
t is not enabled in N , there is p ∈ •t such that p /∈ PA (the • operators are taken with respect to N , not
NA,) since t is enabled in NA. Note that p /∈ PA implies •p ∩ T A = ∅. If •p = ∅, t cannot fire infinitely
often, which contradicts the definition of T A, since t ∈ T A. If tx ∈ •p, the transitions of T A cannot fire
infinitely often without firing tx, which again contradicts the definition of T A. Therefore t is also enabled in
N . 2

Note that in a repetitive Petri net all siphons are active with respect to the maximal active subnet. The
next result is a generalization of the well known Proposition 3.1.

Proposition 3.4 Let NA be an arbitrary, nonempty, active subnet of a PT-ordinary Petri net N . If µ is a
deadlock marking of N , then there is at least one empty minimal active siphon with respect to NA.
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Proof: Since µ is a deadlock marking and N = (P, T, F, W ) is PT-ordinary, ∀t ∈ T ∃p ∈ •t: µ(p) = 0. The
active subnet is built in such a way that if the marking µ restricted to the active subnet enables a transition
t, then µ enables t in the total net (Lemma 3.2.) Therefore, because the total net (N , µ) is in deadlock,
the active subnet is too. In view of Proposition 3.1, let s be an empty minimal siphon of the active subnet.
Consider s in the total net. If s is a siphon of the total net, then s is also a minimal active siphon; therefore
the net has a minimal active siphon which is empty. If s is not a siphon of the total net: •s \ T A 6= ∅. Let S

be the set recursively constructed as follows: S0 = s, Si = Si−1 ∪ {p ∈ •(•Si−1 \ Si−1•) : µ(p) = 0}, where
µ is the (deadlock) marking of the net. In other words S is a completion of s with places with null marking
such that S is a siphon. By construction S is an active siphon and is empty for the marking µ. Hence an
empty minimal active siphon exists. 2

The practical significance of Proposition 3.4 is that it provides a support for doing deadlock prevention,
since deadlock is not possible when all active siphons with respect to a nonempty active subnet cannot
become empty. A less restrictive condition is given in the next result.

Proposition 3.5 Deadlock is unavoidable for the marking µ if for all minimal active subnets NA there is
an empty active siphon with respect to NA.

Proof: For any empty (active or not) siphon, all transitions in the postset of that siphon are empty.
Therefore for all active minimal subnets, some of their transitions are dead. If deadlock is avoidable, after
some transitions firings a marking can be reached which enables σxσx . . ., where σx is a finite firing sequence.
Let q be the firing count vector for σx. Then Dq ≥ 0. If the active subnet for q is minimal, we let x = q,
but if it is not, there is x such that ‖x‖ ⊂ ‖q‖, x 6= 0, x ≥ 0, Dx ≥ 0 and the active subnet associated to
x is minimal. But it must be an active siphon with regard to that active subnet, therefore not all of the
transitions of ‖x‖ can fire, which implies that not all of the transitions of σx can fire, which is a contradiction.

2

The previous result supports maximally permissive deadlock prevention. Deadlock is avoidable in a PT-
ordinary Petri net as long as it can be insured that for all allowed markings, there is a minimal active subnet
such that all minimal active siphons have a token. The usage of Proposition 3.5 for maximally permissive
deadlock prevention has been demonstrated in section 6.4.3 of [9].

An asymmetric choice net is a Petri net N = (P, T, F, W ) with the property that ∀p1, p2 ∈ P ,
p1 • ∩p2• 6= ∅ ⇒ p1• ⊆ p2• or p2• ⊆ p1•. The following new result can be seen as the correspondent for
T-liveness of a previous result for liveness in [2]. However, note that even for liveness the next result is
stronger, as it relates the dead transition to an empty siphon.

Theorem 3.2 Consider a PT-ordinary asymmetric choice Petri net N and a marking µ such that a transition
t is dead. Then there is µ′ ∈ R(N , µ) such that S is an empty siphon for the marking µ′ and t ∈ S•.

Proof: In an asymmetric choice Petri net, •p1 ∩ •p2 6= ∅ implies p1• ⊆ p2• or p2• ⊆ p1•. Therefore given
n places such that pi • ∩pj• 6= 0, ∀ i, j ∈ {1, 2, . . . n}, we have pi1• ⊆ pi2• ⊆ . . . pin•, where i1, . . . in are
distinct and ij ∈ {1, 2, . . . n} for all j = 1 . . . n.

Let •t = {p1, . . . pn}, where the notation is chosen such that p1• ⊆ p2• ⊆ . . . pn•. We prove first that
∃µ1 ∈ R(N , µ) and ∃j ∈ {1, . . . n} such that ∀µx ∈ R(N , µ1): µx(pj) = 0. Assume the contrary. Let µ1 = µ

and i be the least number in {1, . . . n} such that ∃µi,1 ∈ R(N , µ1): µi,1(pi) = 0 (i exists, for t is dead and
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N is PT-ordinary). Then ∃µi,2 ∈ R(N , µi,1): µ1,2(pi) ≥ 1. If ∀µi,3 ∈ R(N , µi,2): µi,3(pi) ≥ 1, then let
µ1 = µi,2, let i be the least integer in {1, . . . n} such that ∃µi,1 ∈ R(N , µ1): µi,1(pi) = 0 and repeat the
operation above. Note that i is increasing, and so after at most n such steps we find that ∃µi,3 ∈ R(N , µi,2):
µi,3(pi) = 0. (Otherwise we would have a reachable marking enabling t.) From µi,2(pi) ≥ 1 and µi,3(pi) = 0
we infer that ∃µi,4 ∈ R(N , µi,2) and ∃ti ∈ pi• such that µi,4 enables ti. Note that ti ∈ pj• ∀j = i . . . n,
so µi,4(pj) ≥ 1 ∀j = i . . . n. By the choice of i, µi,4(pj) ≥ 1 ∀j = 1 . . . i − 1. Therefore µi,4 enables t.
Contradiction.

Therefore, ∃µ1 ∈ R(N , µ) and ∃j ∈ {1, . . . n} such that ∀µx ∈ R(N , µ1): µx(pj) = 0. We recursively use
this property to construct S. Note that all transitions in •pj are dead for µ1. Let S0 = ∅ and S1 = {pj}.
We recursively construct S by generating S2, . . . Sn+1 and the markings µ2, . . . µn+1. Si for i ≥ 1 is such
that all transitions in •Si are dead for some marking µi. The construction in a iteration is as follows.
Let µi+1 ∈ R(N , µi) such that ∀t ∈ •(Si \ Si−1) ∀µx ∈ R(N , µi+1) ∃p ∈ •t: µx(p) = 0. Then we let
Si+1 = Si

⋃
tx∈•(Si\Si−1)

{p ∈ •tx : ∀µx ∈ R(N , µi+1) : µx(p) = 0}. There is n such that Sn+1 = Sn, for the

Petri net has a finite number of places. We let S = Sn and µ′ = µn. Since pj ∈ S, t ∈ S•. By construction
S is a siphon, S is empty for µ′, and µ′ ∈ R(N , µ). 2

In general we may not want all transitions to be live. For instance some transitions of a Petri net may
model faults and we want to insure that some other transitions are live. This is the reason for the following
definition.

Definition 3.7 Let (N , µ0) be a Petri net and T a subset of the set of transitions. The Petri net is said to
be T-live if all transitions t ∈ T are live.

Note that a live transition is not the opposite of a dead transition. That is, a transition may be neither
live nor dead. Indeed, a transition is live if there is no reachable marking for which it is dead. Note also
that T-liveness corresponds to liveness when the set T equals the set of transitions.

Definition 3.8 Let N be a Petri net, T a subset of the set of transitions and NA = (PA, T A, FA, WA)
an active subnet. We say that NA is T-minimal if T ⊆ T A and T A 6⊆ T A

x for any other active subnet
NA

x = (PA
x , T A

x , FA
x , WA

x ) such that T ⊆ T A
x .

In general the T-minimal active subnet is not unique. However, as shown in the next Proposition, any
T-minimal active subnet can be used to characterize T-liveness.

Proposition 3.6 Given a PT-ordinary asymmetric choice Petri net N , let T be a set of transitions and NA

a T -minimal active subnet which contains the transitions in T . If all the minimal siphons with respect to
NA are controlled (i.e. they cannot become empty for any reachable marking), the Petri net is T -live (and
T A-live). If the Petri net is T -live, there is a T -minimal active subnet NA such that all minimal active
siphons with respect to NA are controlled.

Proof: Assume that no active siphon becomes empty. If there is a reachable marking such that a transition
t ∈ T A is dead (and T ⊆ T A), by Theorem 3.2 there is a reachable marking such that a siphon S is empty
and t ∈ S•. However t ∈ S• implies S∩P A 6= ∅, and by Proposition 3.3 S is an active siphon. Contradiction,
for S is empty.
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Let NA
i denote a T -minimal active subnet, i = 1 . . . k, where k is the number of T -minimal active subnets.

If there is a reachable marking µ such that an active siphon Si is empty, let Ti = S • ∩T A
i , where T A

i is the
set of transitions of NA

i . Because Si is active, Ti is nonempty; because Si is empty, the transitions of Ti are
dead. Assume that there is an infinite firing sequence σx such that all transitions of T appear infinitely often
in σx and after a part of σx is fired, (let µx be the marking reached) all T -minimal active subnets NA

i have
an empty active siphon Si. Let σ be the remaining part of σx which is enabled by µ. All transitions of T

appear infinitely often in σ. Therefore, by Lemma 3.1, there is x ≥ 0 such that Dx ≥ 0 (D is the incidence
matrix) and T ⊆ ‖x‖. However, ‖x‖ does not contain all transitions of any of the T -minimal subnets NA

i :
Ti ⊆ ‖x‖ \ T A

i , for i = 1 . . . k. This implies that ‖x‖ defines another T -minimal active subnet, which is a
contradiction. 2

4 Preliminaries to the Liveness Enforcing Method

4.1 A Transformation of Petri Nets to PT-ordinary Petri Nets

We are interested in using a transformation to PT-ordinary Petri nets because Propositions 3.1 and 3.4 in
section 3 apply to PT-ordinary Petri nets. We use a modified form of the similar transformation from [12],
and we call it the PT-transformation. Let N = (P, T, F, W ) be a Petri net. Transitions tj ∈ T such that
W (p, tj) > 1 for some p ∈ •tj may be split (decomposed) in several new transitions:

The transition tj is split in m = n(tj) transitions: tj,0, tj,1, tj,2, . . . tj,m−1, where n(tj) = max{W (p, tj) :
(p, tj) ∈ F}. Also, m − 1 new places are added: pj,1, pj,2, . . . pj,m−1. The connections are as follows:

(i) •pj,i = tj,i, tj,i• = pj,i and pj,i• = tj,i−1, for i = 1 . . .m − 1

(ii) •tj,i = {p ∈ •tj : W (p, tj) > i}, for i = 0 . . . m − 1

(iii) tj,0• = tj•

Note that tj resembles very much tj,0: tj,0 has all the connections of tj plus one additional transition
arc. After the split is performed, we denote tj,0 by tj.

The PT-transformation consist in splitting all transitions t such that W (p, t) > 1 for some p ∈ •t. In
this way the transformed Petri net is PT-ordinary. A few properties are apparent:

|pj,i • | = | • pj,i| = 1 i = 1 . . .m − 1 (4)

|tj,i • | = 1 i = 1 . . .m − 1 (5)

We use the convention that a split transition tj is also a transition of the PT-transformed net, since we
denote tj,0 by tj .

Let PT be the set of places of the transformed net. To a marking µ of the original net we associate in
the transformed net a marking µT such that µT (p) = µ(p) ∀p ∈ P and µT (p) = 0 ∀p ∈ PT \ P .

Firing of an unsplit transition tj in the original net corresponds to firing the same transition in the
transformed net. Firing of a split transition tj in the original net corresponds in the transformed net to
firing the sequence tj,m . . . tj,1, tj. For similar initial markings µ and µT (see above) the firing sequence σT

corresponds to a firing sequence σ, such that every split transition tj in σ is replaced in σT by its components
tj,m . . . tj,1, tj , and firing σ in N produces a similar marking µ′ to the marking µ′

T reached by firing σT in
the transformed net.
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Figure 3: Illustration of the PT-transformation. (a) Original net and (b) transformed net.
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Figure 4: Illustration of the transition split: (a) initial configuration; (b) the effect of the PT-transformation;
(c) initial configuration; (d) the effect of the AC-transformation.

Figure 3 shows an example in which the transition t1 is split in t1,1 and t1, and the transition t2 is split
in t2,1, t2,2 and t2. Firing t1 in the original net corresponds to firing t1,1 and t1 in the transformed net, and
firing t2 in the original net corresponds to firing t2,2, t2,1 and t2 in the transformed net. Another example
is the Petri net of figure 7(a), which is changed as shown in figure 7(b) after it is PT-transformed. The
transition t2 is replaced by t2,1 and t2, and t3 by t3,1 and t3.

4.2 Transformation of Petri nets to asymmetric choice Petri nets

Let N = (P, T, F, W ) be a Petri net and N ′ = (P ′, T ′, F ′, W ′) be the transformed Petri net, where P ⊆ P ′,
T ⊆ T ′. The idea of the transformation is as follows. Given the transition t, pi ∈ •t and pj ∈ •t such that
pi• 6⊆ pj• and pj• 6⊆ pi•, remove t from either the postset of pi or that of pj by adding an additional place
and transition. The idea is illustrated in figure 4(c-d). Note that the operations correspond to a modified
form of transition split operations (section 4.1).

Algorithm of the AC-Transformation

Input: N and optionally M ⊆ P ; the default value of M is M = P .

Output: N ′

Initialize N ′ to be identical with N .
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For every t ∈ T with | • t| > 1 do

1. Construct U = {(pi, pj) ∈ P × P : pi ∈ •t, pj ∈ •t, pi• 6⊆ pj • and pj• 6⊆ pi•}.
2. if U is empty, then continue with the next iteration.

3. Let Q := ∅.
4. For every (pi, pj) ∈ U

(a) A place p ∈ {pi, pj} ∩ M is selected. If two choices are possible:

i. p = pi (or p = pj) if pi (or pj) has been previously selected for another element of U .

ii. otherwise p is chosen such that p appears in other element of U . If both pi and pj satisfy
this property, select p ∈ {pi, pj} such that |p • | = max{|pi • |, |pj • |}.

iii. if none of pi and pj appears in another element of U , select p ∈ {pi, pj} such that
|p • | = max{|pi • |, |pj • |}.

(b) If a place p could be selected (i.e. if {pi, pj} ∩ M 6= ∅) then Q := Q ∪ {p}
5. For all p ∈ Q, delete from N ′ the transition arc (p, t) and add a new place p′ and a new transition

t′ such that •t′ = {p}, t′• = {p′}, p′• = {t}, W ′(p, t′) = W ′(t′, p′) = 1 and W ′(p′, t) = W (p, t).

We call the transformation to asymmetric choice Petri nets AC-transformation. The operation in
the step 5 of the algorithm is a transition split. The transition split of the AC-transformation is slightly
different from the transition split of the PT-transformation in section 4.1.

The second argument of the algorithm, M , is used by the liveness enforcement procedure in order to
select the transitions which the algorithm splits. Indeed, in general there are many ways in which to choose
which transitions to be split such that the transformed net is with asymmetric choice. It will be seen that
the liveness enforcement procedure selects M such that the place invariants created in previous iterations
are not modified by the AC-transformation.

4.3 Petri Net Supervisors Based on Place Invariants

We outline here results from [13, 22] for supervisors based on linear constraints, in the particular case of fully
controllable and observable Petri nets. The results of this section still apply for Petri nets with uncontrollable
and unobservable transitions, if the desired constraints are admissible.

4.3.1 Fully Controllable and Observable Petri Nets

The control problem considered here is to enforce a set of nc linear constraints to prevent reaching undesired
markings in a Petri net. The constraints are written in a matrix form:

L · µp ≤ b (6)

where L is an integer nc × n matrix (nc - the number of constraints, n - the number of places of the given
Petri net), b is an integer column vector and µp denotes a marking vector.

Let µc be a vector of nc nonnegative slack variables, defined as:

µc = b − L · µp (7)
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Let µc0 be the slack variables that correspond to the initial marking µp0, that is µc0 = b − Lµ0. Let q be
the firing vector associated with the transitions that led the Petri net from µp0 to µp and Dp the incidence
matrix, that is µp = µp0 + Dq. So we see that µc = b − L · (µp0 + Dp · q), which also can be written as:

µc = µc0 + (−LDp) · q (8)

Therefore µc may be regarded as a marking of some additional control places, where the extended (super-
vised) Petri net has a marking vector µ = [µT

p , µT
c ]T , and an incidence matrix D = [DT

p , DT
c ]T , and where

Dc = −LDp.
In the supervised net, initial markings µp0 such that L ·µp0 > b cannot be considered, since equation (7)

shows that in this case µc0 will not be nonnegative. When the constraints are initially satisfied, the initial
marking of the control places may be chosen according to equation (7), and therefore the constraints will
remain satisfied for any reachable marking, since the Dc part of the incidence matrix prevents any firings
which would attempt to make any of the elements of µc negative.

The way the constraints are enforced prevents only forbidden markings to be reached, so the supervisor
is maximally permissive. The next theorem summarizes the construction above:

Theorem 4.1 Let a plant Petri net with controllable and observable transitions, incidence matrix Dp and
initial marking µp0 be given. A set of nc linear constraints Lµp ≤ b are to be imposed. If b − Lµp0 ≥ 0 then
a Petri net controller (supervisor) with incidence matrix Dc = −LDp and initial marking µc0 = b − Lµp0

enforces the constraint Lµp ≤ b when included in the closed loop system D = [DT
p , DT

c ]T . Furthermore, the
supervision is maximally permissive.

Proof: See [13, 22]. 2

Because Dc = −LDp, every row of [L, I] is a place invariant of the incidence matrix of the closed loop
system, D.

4.3.2 Petri Nets with Uncontrollable and Unobservable Transitions

Uncontrollable and/or unobservable events of the plant correspond to uncontrollable and/or unobservable
transitions in the Petri net model of the plant. Uncontrollable events cannot be inhibited and unobservable
events cannot be observed. As the Petri net supervisor is implemented in the form of control places connected
to the plant Petri net, we need to make sure that no control place ever attempts to inhibit an uncontrollable
transition enabled in the plant Petri net, and no control place marking is varied by firing unobservable
transitions. The constraints Lµ ≤ b which satisfy this requirement are called admissible constraints.
Note that the admissibility of a constraint may depend on the initial marking of the Petri net. (For instance,
all constraints are admissible in the trivial case with null initial marking.) In this paper we are interested in
constraints which are admissible for all initial markings. It can easily be seen that Lµ ≤ b is admissible for
all initial markings if and only if the following equations of [13] are true:

LDuc ≤ 0 (9)

LDuo = 0 (10)

where Duc and Duo denote the columns of the incidence matrix which correspond to uncontrollable and
unobservable transitions, respectively. From the viewpoint of this paper all linear constraints that have
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matrices L that satisfy the conditions above are admissible. Such constraints may be enforced as in sec-
tion 4.3.1. Constraints Lµp ≤ b which do not satisfy (9) and (10) may be transformed to a new set of
constraints L′µp ≤ b′ such that (i) L′ satisfies (9) and (10), and (ii) ∀µp ∈ N

np : L′µp ≤ b′ ⇒ Lµp ≤ b.
Unless ∀µp ∈ N

np : L′µp ≤ b′ ⇔ Lµp ≤ b, this approach of enforcing Lµp ≤ b may not be maximally
permissive. Note that enforcing linear constraints is maximally permissive in the case of fully controllable
and observable Petri nets (Theorem 4.1). Algorithms which transform linear constraints to admissible linear
constraints are given in [13].

4.4 Siphon Control Based on Place Invariants

Proposition 3.1 showed that in a PT-ordinary Petri net deadlock is not possible if all siphons are controlled.
This suggests that all siphons should be made controlled siphons. An easy way to make a siphon controlled
is to create a place invariant to control the siphon. This is done below by adding an additional place to the
original Petri net. Early references of this approach for siphon control are in [1, 5]. This section presents it
as a special case of the supervision method based on place invariants (section 4.3). The operations described
here do not depend on the fact that the structure they are applied to is a siphon, so they are described in
more general terms.

4.4.1 Case 1: All Transitions are Controllable and Observable

Let N = (P, T, F, W ) be a Petri net. Given a set of places S,
∑
p∈S

µ(p) ≥ 1 is the desired control policy.

This constraint can be enforced using the methodology of invariant based supervision of [13, 22], outlined
in section 4.3, which yields an additional place C, called control place. The place invariant created is x,
such that x(i) = 1 for pi ∈ S, x(iC) = −1 and x(i) = 0 for all other indices, where iC is the row index of C

in the closed loop incidence matrix. This invariant corresponds to the equation

µ(C) =
∑
pk∈S

µ(pk) − 1 (11)

where the constant −1 results from the initial marking of the control place. There are several particular
cases:

(a) •C = ∅ and C• 6= ∅: no transition increases the marking of S and there are transitions which decrease
the marking of S. In this case C alone makes up a minimal siphon which cannot be controlled (see
also [13], p.87-88).

(b) C• ⊆ •S (in particular C• = ∅): no transition can make S token free. Also, C• ⊆ •S if and only if
S is a trap. Therefore when S is also a siphon, it is (trap) controlled for all initial markings µ0 that
satisfy

∑
p∈S0

µ0(p) ≥ 1.

(c) •C = ∅ and C• = ∅: the marking of S cannot vary, and so there is a place invariant x such that
x(i) = 1 for all pi ∈ S and x(i) = 0 otherwise.

Case (a) detects transitions that cannot be made live when S is a siphon (Corollary 3.2). Case (b) shows the
case when S does not need control. Note that the method depends only on structural properties of the Petri
net. That is, it does not detect whether S does not need control for some initial markings, but it detects
only the case when S does not need control for all initial markings µ0 such that

∑
p∈S

µ0(p) ≥ 1. Therefore the

17

Marian V. Iordache, John O. Moody and Panos J. Antsaklis, “Automated Synthesis of Liveness Enforcing 
Supervisors Using Petri Nets," Technical Report isis-00-004, Dept. of Electrical Engr., Univ. of Notre Dame, 
October 2000.



method when applied to a siphon that is not a trap, but includes a trap, always produces a control place.
The reason that this is correct is that there are nonzero initial markings of the siphon such that the included
trap has null marking; hence the siphon is not trap controlled for such markings.
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Figure 5: Siphon Control Examples. Connections to control places are dashed.

In figure 5(a) there is a single minimal siphon, {p1, p2, p4, p5, p6, p7}. The siphon includes a trap {p4, p5, p6, p7},
but it is not trap controlled because the marking of the trap is 0. The control place C prevents firing t1,
which would empty the siphon. In figure 5(b) the original Petri net has two minimal siphons, {p3, p2, p5}
and {p1, p3, p4, p5, p6}. Their control places are C1 and C2, respectively. C1 is an example of case (a). Also,
the control place C that results by controlling the minimal siphon {p2, C2} satisfies •C = ∅ and C• = ∅.

By Theorem 4.1, the way in which the constraint
∑
p∈S

µ0(p) ≥ 1 was enforced is maximally permissive.

Therefore, because the enforcement of this constraint on a siphon by definition makes the siphon controlled,
there is no other more permissive way to control a siphon. This is not the only way to provide maximally
permissive control of a siphon; however, any other way is equivalent. An important quality of this technique
is that the closed loop remains a Petri net.

4.4.2 Case 2: Transitions Uncontrollable and/or Unobservable are Present

Let D be the incidence matrix of a Petri net, and let Duo and Duc be D restricted to the columns of unob-
servable and respectively uncontrollable transitions. In order that the constraint lT µ ≥ b be admissible, the
supervisor enforcing it should not need to detect unobservable transitions or inhibit enabled uncontrollable
transitions, and so the constraint is required to satisfy lT Duo = 0 and lT Duc ≥ 0. There are methods that
allow to transform a constraint in a another constraint, in general more restrictive, which satisfies the last
two requirements. Two such methods can be found in [13]. Yet we will choose to use a different method in
section 5.2.6. When a desired constraint

∑
p∈S

µ(p) ≥ 1 is inadmissible, it can be transformed to a constraint

of the form lT µ ≥ b. In both section 5.2.6 and [13], b = 1 (in [13] consider the construction of Lemma
4.10). Therefore the admissible form of the constraint

∑
p∈S

µ(p) ≥ 1 is
∑
p∈S

αpµ(p) ≥ 1. The algorithm of the

section 5.2.6 is guaranteed to find a solution to this problem if any of the form lT µ ≥ b exists.
Note that the transformation to admissible constraints is not always possible. There are cases when

this is impossible because of limited information due to unobservable transitions and/or limited ability to
control firing transitions can make impossible the task to design a supervisor which guarantees that the
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marking satisfies a certain constraint. Unlike the approach of the case of section 4.4.1, which corresponds to
maximally permissive siphon control, this approach is suboptimal in general. Note that when the admissible
constraint is obtained in the form

∑
p∈S

αpµ(p) ≥ 1 with all αp positive integers, the control of S is maximally

permissive, in the sense that the only forbidden markings are the markings for which µ(p) = 0 ∀p ∈ S.
The method from section 5.2.6 finds admissible constraints of the form

∑
p∈S

αpµ(p) ≥ 1, with αp nonnegative

integers, maximizing the number of coefficients αp which are nonzero. That method is guaranteed to find a
solution with all αp positive whenever such a solution exists.

Note also that this is not the exact way we do the control of siphons in the case of uncontrollable
and unobservable transitions. The liveness enforcement procedure needs to take in account more than just
admissibility constraints. Refer to section 5.2.6 for the details.

5 The Liveness Enforcing Method

5.1 Introduction to the Method

The method we introduce in this paper produces supervisors enforcing liveness. In some cases it might not
be desirable to enforce that all transitions of a Petri net are live, but rather that only some of them are live
(for instance transitions modeling system faults are not desired to be live). Our method solves a problem
more general than liveness, in which the objective is to insure that the transitions in a given set T are live.
In this context we have introduced in Definition 3.7 the concept of T -liveness.

Given a target Petri net N0, the liveness enforcing procedure generates a sequence of asymmetric choice
PT-ordinary Petri nets, N1, N2, . . . Nk, increasingly enhanced for liveness. N1 is N0 transformed to be
PT-ordinary and with asymmetric choice. The other Petri nets are largely obtained as follows: in each
iteration i the new minimal active siphons of Ni are controlled, and then, if needed, transitions are split for
the PT and/or the AC transformation. Thus the iteration i produces the asymmetric choice PT-ordinary
net Ni+1. The active siphons (see Definition 3.6) of each Ni are taken with respect to an active subnet NA

i

computed for every iteration i. Recall, for each controlled siphon a linear marking inequality is enforced.
Let Liµ ≥ bi be the total set of constraints enforced in Ni. Because Nk is the last Petri net in the sequence,
it has no uncontrolled active siphons. Therefore, in view of Proposition 3.6, the transitions of the active
subnet of Nk are live for all initial markings which satisfy Lkµ ≥ bk. Finally, the constraints defined by
(Lk, bk) can be easily translated in constraints in terms of the markings of N0; these constraints define the
supervisor for liveness enforcement in N0.

The user is allowed to transfer to the procedure foreknowledge about the Petri net. This is done by
using initial constraints. For instance, if an invariant lT µ = c is true for all initial markings used, the
constraints [l,−l]Tµ ≥ [c,−c]T are part of the initial constraints. The usage of initial constraints LIµ ≥ bI

could benefit problems in which one of the following is true: (a) the procedure should not generate constraints
which require LIµ 6≥ bI , (b) less complex supervisors can be obtained if the procedure takes in account that
markings such that LIµ 6≥ bI are never reached for all initial markings for which the liveness enforcement
supervisor will be used, and (c) convergence help is needed. Case (a) occurs when the liveness enforcing
procedure is applied to the closed loop Petri net resulted from a supervision based on place invariants; in
this case the initial constraints specify the equations which the markings of the control places of the target
Petri net must satisfy.

The liveness enforcement procedure is defined in section 5.4. The sections preceding section 5.4 define
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in detail operations performed by the procedure. Sections 4.1 and 4.2 have shown how the Petri nets are
transformed to be PT-ordinary and with asymmetric choice. Sections 4.3 and 4.4 have shown how constraints
are enforced and how siphons are controlled. The precise way in which the constraints are generated is
considered in section 5.2. In some occasions, initial constraints may be needed to help the procedure converge
or to indicate place invariant constraints on the target net. Initial constraints are considered in section 5.2.5.
The active subnet NA

i of the iteration i is usually a T -minimal active subnet, but the method may take a
smaller subnet in the following cases. The initial constraints may conflict with constraints that the procedure
wants to enforce. When a siphon constraint, due to the initial constraints, cannot be enforced, all transitions
connected to the siphon are considered to be dead. Therefore they cannot be in the active subnet. A similar
situation appears in the case of uncontrollable and unobservable transitions, when no admissible constraint
can be found to control a siphon. In this case the procedure considers that all transitions connected to the
siphon cannot belong to the active subnet. The computation and the updating of the active subnet is shown
in section 5.3.

5.2 Generating Marking Constraints

The liveness enforcement procedure gradually restricts the sets of acceptable markings. To each minimal
active siphon corresponds a linear inequality expressing the requirement that the siphon is not empty. As
more and more siphons are controlled, the set of acceptable markings is restricted. In section 5.2.1 we
consider the form of the place invariants associated to control places. Section 5.2.2 considers the case when
the control of a siphon does not require a control place. Section 5.2.3 shows the way in which the procedure
constructs the sets of constraints. Section 5.2.4 defines the implicitly controlled siphons. In section 5.2.5 we
show how the initial constraints on the target net are changed by transition splits. Finally, section 5.2.6
considers the details of transforming constraints to admissible constraints.

5.2.1 The enforced place invariants

Consider a siphon S. When the approach of section 4.4 is used, the control place C which results enforces
a constraint of the form

∑
p∈S

αpµ(p) ≥ 1, where αp ≥ 0. When all transitions of S are controllable and

observable: αp = 1 ∀p ∈ S. The supervision based on place invariants creates the following place invariant
for C: µ(C) =

∑
p∈S

αpµ(p)− 1. The Petri net considered in an iteration is PT-ordinary and with asymmetric

choice. However, by adding control places, the net may no longer be PT-ordinary or with asymmetric
choice. Therefore the liveness procedure PT-transforms the Petri net in order that the next iteration will
work on a PT-ordinary net. The control places and the PT-transformation may cause the Petri net not to
be with asymmetric choice. Therefore the AC-transformation is applied. The PT-transformation and the
AC-transformation may change the place invariant of a control place. Proposition 6.8 proves that a place
invariant µ(C) =

∑
p∈S

αpµ(p) − 1 is transformed to

µ(C) +
r∑

z=1

µ(pz) +
k∑

i=1

mi−1∑
j=1

jµ(pi,mi−j) =
∑
p∈S

αpµ(p) − 1 (12)

The notations are as follows. k and mi are determined before the transition split: k = |C • |, mi = W (C, ti)
∀ti ∈ C•. For the places pi,j resulted by splitting the transitions ti ∈ C•, we use the notations of section 4.1.
Note that for ti such that mi = 1 there are no places pi,j . The places pz are the places resulting from the
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AC-transformation which satisfy • • pz = C. In particular, if ∀ti ∈ C•: mi = 1 and the AC-transformation
does not generate places pz such that • • pz = C (for instance, this may happen when the Petri net remains
with asymmetric choice after adding C) the place invariant is not changed

µ(C) =
∑
p∈S

αpµ(p) − 1 (13)

Assume that a control place C is added to Ni, and so at the end of the iteration i the enforced place invariant
is (12). By Proposition 6.9(c), the form of the place invariant stays the same in all Ni+1, Ni+2, . . .. Therefore
no update is necessary in a iteration j for constraints added in previous iterations.

5.2.2 Constraints which do need control place enforcement

There are siphons S such that if
∑
p∈S

µ0(p) ≥ 1 for the initial marking µ0, then
∑
p∈S

µ(p) ≥ 1 for all reachable

markings µ. Such a siphon does not need control. Also the form of the constraint is not changed to the
form (12). Instead it remains the same in all further iterations, by Proposition 6.9(c). In order to reduce the
complexity of the supervisor, the case when a desired constraint does not need a control place is identified
(see section 4.4.1). No control place is added in such a case. Therefore, instead of having a single set of
constraints Lµ ≥ b we have two: Lµ ≥ b and L0µ ≥ b0. The constraints Lµ ≥ b define the supervisor. The
constraints L0µ ≥ b0 are the constraints such that whenever the initial marking satisfies them, all reachable
markings do. In consequence, the supervision for liveness enforcement of the target net requires enforcing
Lµ ≥ b and choosing an initial marking µ0 such that L0µ0 ≥ b0 and Lµ0 ≥ b.

An example of siphon which does not require control is {C1, C2} in figure 8. Example 5.3 also shows how
the constraints (L0, b0) are obtained.

5.2.3 Constructing the constraints of (L, b) and (L0, b0)

Equation (12) shows that control places enforce inequalities of the form∑
p∈S

αpµ(p) ≥ 1 (14)

Section 5.2.2 showed that the inequalities which do not need control place enforcement have the same form.
Consider an inequality of the form (14) which is added in the iteration number i. Note that S in (14) may
contain control places added in the previous iterations i− 1, i− 2, . . ., 1. To reduce the number of variables,
the constraints in (L, b) and (L0, b0) are not specified directly in the form of (14). Instead, by repeated
substitutions of the expressions giving the marking of a control place, the inequality is written in the form
lT µ ≥ c, where the entries of l corresponding to control places are null. (We substitute a control place
marking by its expression of the form (12).) Then, for convenience, we drop the null columns of l which
correspond to control places and take µ with respect to the places which are not control places. This is how
the inequalities Lµ ≥ b are obtained. The inequalities L0µ ≥ b0 are similarly obtained from the inequalities
which do not need control place enforcement.

The Petri nets N1, N2, . . . have an increasing number of places. So the dimension of the marking vector
µ is also increasing. The new places which are added in an iteration are control places and places resulted
by applying transition splits. For each new place the matrices L and L0 need a new column. Because the
columns corresponding to control places are always null, we omit them in our examples.

Finally note that the purpose of the liveness enforcing procedure is to provide constraints in terms of the
marking of the target net N0. The constraints of the net Nk, denoting the net of the last iteration of the
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procedure, are translated to constraints of N0 by removing all columns of L and L0 which do not correspond
to places of N0.

5.2.4 Implicitly controlled siphons

Any marking µ which does not satisfy Lµ ≥ b and L0µ ≥ b0 is said to be a forbidden marking. A
marking is valid if not forbidden and if all control place markings satisfy the proper invariant equations
(12). Consider that the current iteration of the algorithm has the number i and that currently a new siphon
S of Ni is considered for control. It is desired that the siphon never becomes empty, that is

∑
p∈S

µ(p) ≥ 1 is

always true. We say that S is (implicitly) controlled if the latter inequality is satisfied for all markings
µ which satisfy Lµ ≥ b and L0µ ≥ b0. For a controlled siphon a control place is not necessary and no new
constraint in (L0, b0) needs to be added.

5.2.5 Initial constraint transformation

The constraints which are already enforced in the target net N0 (due to the structure of N0) are called
initial constraints, because they are not produced by the liveness enforcement procedure and they exist
when the procedure is started. This section considers the way initial constraints should be transformed
before the first iteration. As mentioned earlier in section 5.2.1, a constraint enforced in a iteration stays
enforced for the following iterations, by Proposition 6.9(c). However this property is not always true for the
initial constraints, since N0 may not be PT-ordinary and with asymmetric choice (while all Ni, i ≥ 1, are
so.)

To state the problem, assume that the marking constraints L0µ ≥ b0 are always true ∀µ ∈ R(N0, µ0),
∀µ0 ∈ MI , where MI is some set of initial markings. Let N1 be the Petri net at the beginning of iteration
one, that is N1 is N0 PT-transformed. By Proposition 6.9(c), if some constraint L′µ ≥ b′ is enforced in N1

for all valid initial markings of some set M′, it stays enforced in all other nets Ni obtained in the following
iterations, for all valid initial markings with restriction to the places of N1 in M′. However, because of the
PT and AC transformations, it may not be true that L0µ ≥ b0 is enforced in N1 for all valid initial markings
with restriction to the places of N0 in MI . Fortunately, the constraints L0µ ≥ b0 can be transformed in a
form which is true in N1. The transformation appears in Proposition 6.9(a) and (b). (Note that it is not
technically correct to say that L0µ ≥ b0 is enforced in both Nu and Nv, for some u 6= v, since the markings in
Nu and Nv have different dimensions; for the sake of simplicity, we mean that µ in L0µ ≥ b0 is the marking
restricted to the places of the net in which L0µ ≥ b0 has been originally written.)

Let t1, t2, . . . tk be the transitions of N0 which are split to obtain N1. Using the notations from the
section 4.1, the transformed constraints L′

0µ ≥ b′0, which are true in N1, are obtained from L0µ ≥ b0 by

substituting µ(p) with µ(p) +
r∑

z=1
µ(pz) +

k∑
i=1

mi−1∑
j=1

jµ(pi,mi−j) for all places p of N0, where mi = 0 if p /∈ •ti
and mi = W (p, ti) otherwise; pz are the places created by the AC-transformation such that • • pz = p. We
see, the substitution of µ(p) is simply µ(p) when no transitions in the postset of p are split and no places
pz appear. In particular, when no transitions of N0 are split, we have N1 equal to N0, and the constraint
L0µ ≥ b0 remains unchanged.
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5.2.6 Transforming Constraints to Admissible Constraints

In this section we consider the way in which the procedure uses the approach of section 4.4.2. We are to find
the nonnegative integers αp of the inequality ∑

p∈S

αpµ(p) ≥ 1 (15)

such that the constraint satisfies a number of requirements, which we specify in this section. The admissibility
requirement appears because the final constraints Lµ ≥ b which define the supervisor of N0 are to be
admissible. Thus we are to obtain the coefficients αp such that the constraint of Lµ ≥ b which reflects (15) is
admissible in N0. This operation is necessary in order to insure that all constraints of Lµ ≥ b are admissible
in N0, while admissibility is needed to enforce Lµ ≥ b with the invariant based approach of section 4.3.1.

Let a be the vector with zero elements for places not in S and αp for the places p; then (15) can be
written as aT µ ≥ 1. Let d be a column vector defined as follows d(i) = 1 if pi is in the active subnet and
d(i) = 0 otherwise. It is required that:

aT d > 0 (16)

Thus, enforcing that S is controlled, guarantees that the restriction of S to the active subnet is a controlled
siphon of the active subnet whenever (16) is true. Note that this is always the case when the siphon control
approach of section 4.4.1 is used (that is, when no transformation to an admissible constraint is necessary.)
We also require that at least two of the coefficients αp are nonzero.

Let Ds be the restriction of the current incidence matrix D to the columns of the new transitions resulted
by split operations in all previous iterations. An additional constraint is

aT Ds ≤ 0 (17)

The last requirement ensures that the control place C which results by enforcing (15) satisfies C /∈ tj,i• for all
transitions tj,i resulted by splitting some transition tj . This requirement is necessary for Proposition 6.2(b).
Note that this proposition proves that the requirement is always satisfied in the case when the siphon control
approach of section 4.4.1 is used (that is, when no transformation to an admissible constraint is necessary.)

As shown in section 5.2.3, the marking of the control places µc can be expressed only in terms of the
marking of the other places, µp, and so we have an equation: µc = Uµp − g, where U is a matrix and g

an integer vector. [µT
c , µT

p ]T can be obtained from µ by applying to µ a permutation π; let az be a after
applying the permutation π and let az = [aT

c , aT
p ]T (where ac is the restriction of az to µc). Equation (15)

can be written as
aT

z [UT , I]T µp ≥ 1 + aT
c g (18)

If Duc and Duo are the restrictions of the incidence matrix of N0 to the uncontrollable and unobservable
transitions, the admissibility requirements are (see section 4.3.2):

aT NrDuc ≥ 0
aT NrDuo = 0

(19)

where Nr is obtained from [UT , I]T as follows. Let V be [UT , I]T with the rows permuted according to
π−1. Then Nr is the restriction of V to the columns which correspond to the places of N0. Let an be the
restriction of a to the places which resulted through transition split, let Pn = {p : an(p) 6= 0} and Tn = •Pn.
As a transition split property, each place p ∈ Pn has exactly one input transition, which is in Tn. Let Dsn be
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the restriction of Ds to the columns which correspond to Tn. Note that an does not affect (19). (This can
be seen from the fact that aT

z times the restriction of [UT , I]T to the columns corresponding to the places in
N0 does not depend on an.) Then we can choose an such that:

aT Dsn = 0 (20)

The advantage of doing this would be that the control place C will result with less connections, and so
perhaps less siphons in the next iteration. The following algorithm finds the coefficients αp. The algorithm
does not fail if a solution of the form (15) exists.

Input: N′ = (P0, T0, F0, W0), P - the set of places at the current iteration, PA ⊂ P the set of places of
the active subnet at the current iteration, Lµ ≥ b and L0µ ≥ b0 - the current constraints restricted to the
markings of N0, and the siphon S.

Output: An admissible constraint (15).

1. Let α be the restriction of a to the places p ∈ S.

2. Initialize α to αp = 1 ∀p ∈ S.

3. If (19) is satisfied then exit and declare
∑
p∈S

µ(p) ≥ 1 admissible constraint.

4. Let R be the set of transitions which correspond to the constraints of (19) not satisfied by α.

5. If initial constraints have been given then1

(a) For each t ∈ R

i. If the system of inequalities µ(p) ≥ W0(p, t) ∀p ∈ •t, Lµ ≥ b, L0µ ≥ b0, µ ≥ 0 and µ integer
vector is infeasible, then R = R \ {t}

(b) If R = ∅ then exit and declare
∑
p∈S

µ(p) ≥ 1 admissible.

6. Keep in (19) only the constraints which correspond to transitions in R. Then write (17), (19) and (20)
as Za ≥ 0 and then as V α ≥ 0, where V is the restriction of Z to the columns corresponding to the
places p ∈ S.

7. Let f = TRUE and A = ∅.
8. While f is TRUE

(a) Check2 the feasibility of
∑
i/∈A

x(i) ≥ 1 for x ≥ 0 and V x ≥ 0.

(b) If infeasible, f = FALSE.

(c) Else let A = A ∪ {p ∈ P : x(p) 6= 0}
9. If A ∩ P A = ∅ or |A| < 2 then declare siphon control failure and exit.3

10. Let Y α ≥ b be the constraints V α ≥ 0 and α(i) ≥ 1 ∀i ∈ A.

11. Solve the linear integer program min
α

∑
α(i) subject to Y α ≥ b and return α.

1without initial constraints the step below will not reduce R
2The feasibility check involves solving a linear program
3|A| denotes the number of elements of A
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5.3 The Computation of a T-minimal Active Subnet

The active subnet of a Petri net is defined in Definition 3.5. It can be easily found once all transitions which
cannot be made live under any circumstances are identified. Let D be the incidence matrix and i the index
of such a transition which cannot be made live. Corollary 3.2 shows that for all rational vectors x ≥ 0 such
that Dx ≥ 0: x(i) = 0. It also shows that if x(j) > 0, the transition of index j can be made live. Based on
this idea, a polynomial complexity algorithm which computes the active subnet is given below. The usage
of the input Z, which normally is the empty set, is discussed later in this section.

Input: The Petri net N0 = (P0, T0, F0, W0) and its incidence matrix D; a nonempty set of transitions
T ⊆ T0; an optional set Z (default is Z = ∅) of transitions which cannot be made live for reasons other than
structural.

Output: The active subnet NA = (PA, T A, FA, WA).

1. Check the feasibility of Dx ≥ 0 subject to x ≥ 0, x(i) ≥ 1 ∀ti ∈ T and x(i) = 0 ∀ti ∈ Z.

If feasible then let x0 be a solution; T A = minactn(T0, x0, D, T )

else T A = maxactn(T0, D, T , Z) (no T -minimal solution exists, and so an approximation is
constructed)

2. The active subnet is NA = (PA, T A, FA, WA), PA = T A•, FA = F0 ∩ {(T A × PA) ∪ (P A × T A)} and
W A is the restriction of W0 to FA.

minactn(T0, x0, D, T )

Let M = ‖x0‖ and xs = x0.

For ti ∈ M \ T do

Check feasibility of Dx ≥ 0 subject to x ≥ 0, x(i) = 0, x(j) = 0 ∀tj ∈ T0 \ M and x(j) ≥ 1
∀tj ∈ T .

If feasible then let x∗ be a solution; M = ‖x∗‖ and xs = x∗.

Return ‖xs‖

maxactn(T0, D, T , Z)

Let M = T and xs = 0|T0|×1

While M 6= ∅ do

Check feasibility of Dx ≥ 0 subject to x ≥ 0,
∑

ti∈M

x(i) ≥ 1 and x(i) = 0 ∀ti ∈ Z.

If feasible then let x∗ be a solution; M = M \ ‖x∗‖ and xs = x∗ + xs.

Else M = ∅.

N = minactn(T0, xs, D, T ∩ ‖xs‖)

Return N
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In the cases when the procedure detects that it is unable to control certain siphons, all transitions which
belong to that siphons are marked to be removed from the active subnet. Considering all such transitions
marked by the liveness enforcement procedure, let Z be the set of their indices in D, the incidence matrix.
Then the active subnet is computed by using Z as input for the algorithm above. Using a nonempty set
Z adds to the feasibility problems of the algorithm above the additional constraints that x(j) = 0 ∀j ∈ Z.
The set Z may also be used to specify transitions which are not desired to be live (for instance transitions
modeling system faults.)

Because of the iterative nature of the liveness enforcement procedure, the active subnet needs to be
reevaluated in every iteration. In general, the algorithm above needs to be used only once, to compute
NA

0 . The active subnet NA
1 and usually the other active subnets NA

2 , NA
3 , . . . can be computed by simply

repeating the changes done to Ni−1 in NA
i−1, i = 1, 2, . . .. (The procedure changes Ni−1 by adding control

places and splitting transitions.) Such an update of the active subnets is summarized by the following
algorithm.

Input: NA
i−1 = (PA

i−1, T
A
i−1, F

A
i−1, W

A
i−1), Ni = (Pi, Ti, Fi, Wi) and the sets Σ(t), denoting for each t ∈ Ti−1

which has been split the set of the new transitions in Ti \ Ti−1 which appeared by splitting t.

Output: NA
i = (PA

i , T A
i , FA

i , WA
i ).

1. T A
i = T A

i−1 ∪ {t ∈ Ti : ∃tu ∈ T A
i−1 and t ∈ Σ(tu)}

2. The active subnet is NA
i = (PA

i , T A
i , FA

i , WA
i ), PA

i = T A
i •, FA

i = Fi ∩ {(T A
i × PA

i ) ∪ (P A
i × T A

i )} and
W A

i is the restriction of Wi to FA
i .

The way above of updating the active subnets is applied for all iterations which do not mark new
transitions to be removed from the active subnet. This is a very common situation. For instance this is always
true for all problems with no initial constraints on the target net and no uncontrollable and unobservable
transitions. In Proposition 6.5 we show that the result of the update is indeed an active subnet.

We include other details about the computation of active subnets in the appendix of [8].

5.4 The Liveness Enforcing Procedure

Input: The target Petri net N0, a nonempty set of transitions T and a possibly empty set of initial constraints
(LI , bI).

Output: Two sets of constraints (L, b) and (L0, b0) (T -liveness is enforced for all initial markings µ0 such
that Lµ0 ≥ b, L0µ0 ≥ b0 when (N0, µ0) is supervised according to Lµ ≥ b.)

Procedure:

A. (L0, b0) is initialized to (LI , bI) and (L, b) to be empty. N0 is transformed to be PT-ordinary, as shown
in section 4.1, and then to be with asymmetric choice, as shown in section 4.2. The transformed net
is N1. The initial constraints (L0, b0), if any, are transformed as shown in section 5.2.5. Let i = 1. If
not previously defined, let X = ∅.

B. T -minimal active subnets of N0 and N1 are computed such that they do not contain transitions in
X . If no such T -minimal active subnets exist, an approximation is taken as shown in section 5.3,
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such that the active subnets contain only a subset of T and no transitions of X . If no such nonempty
approximations exist, the procedure terminates: even deadlock prevention is impossible for the given
N0 and X .

C. For i ≥ 1 do (the initial Petri net of the iteration i is Ni; the active subnet is NA
i .)

1. If no new uncontrolled minimal active siphon is found, the next step is D. (A siphon S is uncon-
trolled if

∑
p∈S

µ(p) ≥ 1 is not implied by Lµ ≥ b and L0µ ≥ b0)

2. For every new uncontrolled minimal active siphon S:

Let C be the control place which would result by controlling the siphon, and let lT µ ≥ c be
the inequality

∑
p∈S

µ(p) ≥ 1 written in the form derived in section 5.2.3. First, the approach

of section 4.4.1 is considered for the control of S through C.

(a) If C• ⊆ •S, then S does not need supervision and C is not added to Ni. The constraint (l, c)
is added to (L0, b0). The next step is C.2.c.

(b) If C• 6⊆ •S then

i. If (l, c) is an inadmissible constraint (because of uncontrollable and/or unobservable tran-
sitions), C is added to the net as shown in section 4.4.2 and section 5.2.6; (l, c) is set to
the obtained admissible constraint, expressed without reference to the marking of the
control places (section 5.2.3).

ii. Else, if (l, c) is admissible, C is added according to the method of section 4.4.1.

In both cases (i) and (ii) (l, c) is included in (L, b), except when the approach of the sec-
tions 4.4.2 and 5.2.6 fails to find an admissible constraint. When this failure occurs, all
transitions of S• are included in X , (X → X ∪S•), being marked as transitions which cannot
be prevented (by the supervisor) to become dead. The active subnet, when updated in step 6,
will not include these transitions.

(c) It is checked that the system of L0µ ≥ b0 and Lµ ≥ b is feasible. (This is always the case
when the procedure has no initial constraints (L0, b0) in step A.) If the system is infeasible,
all transitions of S• are marked as dead, that is X → X ∪ S•, and the procedure will take it
in account in step 6. Also, C is removed from Ni and (l, c) is removed from (L0, b0) or (L, b).

3. If the Petri net is no longer PT-ordinary, the Petri net is PT-transformed (section 4.1.)

4. If the Petri net is no longer with asymmetric choice, the Petri net is AC-transformed according to
the algorithm of section 4.2, where the second argument M is taken to be the set of the control
places added in the current iteration.

5. The matrices L and L0 are enhanced with new columns, each column corresponding to one new
place resulted in the steps 3 and 4.

6. The active subnet is updated according to the changes made in the total net in the steps 2(b),
2(c), 3 and 4, such that the transitions of X do not appear in the active subnet. If the new active
subnet is empty, the procedure cannot even prevent deadlock and so it terminates.

7. Let T A be the set of transitions of the active subnet. If an infeasibility occurred at a step C.2.c
of the current iteration, X → T0 \T A and the procedure is restarted at the step A with this value
of X .
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8. The final nets of the iteration i are denoted by NA
i+1 and Ni+1. The next step is C.1.

D. The constraints (L, b) and (L0, b0) are modified to be written only in terms of the marking of the target
net N0. This is done by removing the columns of L and L0 corresponding to places not in N0 (see
section 5.2.)

E. The constraints (L, b) and (L0, b0) are considered for simplifications, to remove redundant constraints.

F. The supervisor of N0 is built according to the constraints (L, b), as shown in section 4.3.

5.5 Remarks

1. The purpose of the procedure is to produce two sets of linear constraints on the marking of the target
net and in the form Lµ ≥ b and L0µ ≥ b0, where L and L0 are integer matrices and b and b0 are
integer column vectors. For all initial markings µ0, such that Lµ0 ≥ b and L0µ0 ≥ b0, T -liveness in
the closed loop Petri net is guaranteed for the condition of Theorem 6.2. When infeasibility occurs in
a step C.2.c, the supervisor enforces T ′-liveness, for some T ′ ⊂ T .

2. The procedure is allowed to start with initial constraints in (L0, b0). The user can employ initial
constraints of (L0, b0) to tell the procedure that in his application all reachable markings µ satisfy
L0µ ≥ b0. Another usage could be to specify place invariant properties of the net.

3. The procedure assumes that the initial constraints which are given to it are already enforced in the
Petri net. This is not a real restriction, as linear marking constraints can easily be enforced by using
the invariant based supervision of [13, 22].

4. The difference between the constraints (L, b) and (L0, b0) is that (L, b) need to be enforced by super-
vision, while (L0, b0) need not. (L0, b0) are guaranteed by the structure of the original Petri net in
closed loop with the supervisor enforcing (L, b) for all initial markings µ0 of the original Petri net that
satisfy L0µ0 ≥ b0 in addition to Lµ ≥ b. The procedure is allowed to start with initial constraints of
the type (L0, b0), to which it may add other constraints, as necessary. However, without reducing the
generality (see section 6.3.1), no initial constraints of the form (L, b) are allowed.

5. The new minimal active siphons of Ni+1, i ≥ 1, can be computed without computing all minimal active
siphons. As shown in Proposition 6.10, each new minimal active siphon contains at least a control place
added in iteration i to Ni or a place from PA

i \ PA
i+1.

6. Note that liveness enforcement corresponds to T = T0 and it makes sense for repetitive Petri nets. In
this case the T -minimal active subnet is the maximal active subnet, which is equal to the total Petri
net.

5.6 Illustrative Examples

Example 5.1 (Verification) The Petri net of figure 6(a) is live for all total markings greater than two. We
use this Petri net in order to illustrate how the liveness enforcement procedure is also useful for verification
purposes.

Because the Petri net is not with asymmetric choice, the AC-transformed Petri net is shown in figure 6(b).
Since liveness is to be enforced and the Petri net is repetitive, the active subnet is the maximal active subnet,
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Figure 6: Example 5.1: (a) the target net N0, (b) N1 and (c) N2.

which equals N1. There is a single minimal active siphon: {p1, p2, p3}. The control place C thus results.
The constraint µ(p1)+µ(p2)+µ(p3) ≥ 1 is added to (L, b). At the second iteration, there is a single minimal
siphon: {C, p1,1}. This siphon does not need control, as we are in the situation of step C.2.a of the procedure.
Thus the constraint µ(C)+µ(p1,1 ≥ 1 can be written as µ(p1)+µ(p1,1)+µ(p2)+µ(p3) ≥ 2, which is added to
(L0, b0). At the third iteration no new active siphon appears, so the procedure terminates. The inequalities
at the step D are: µ(p1) + µ(p2) + µ(p3) ≥ 1 (in (L, b)) and µ(p1) + µ(p2) + µ(p3) ≥ 2 (in (L0, b0)). The first
inequality is redundant and so removed. Therefore the procedure terminates with empty (L, b) and with

µ(p1) + µ(p2) + µ(p3) ≥ 2 (21)

in (L0, b0). By Theorem 6.2, whenever the initial marking satisfies (21), the Petri net is live. 2

Example 5.2 (T-liveness enforcement) Consider the Petri net of figure 7(a), which is not PT-ordinary
and not with asymmetric choice. Three transitions cannot be made live, for any marking: t1, t2, t3. The
purpose is to enforce T -liveness, where T = {t4, t5}.

The first iteration begins with the PT and AC-transformed net N1. There is a single minimal active
siphon, {p1, p2, p3}. A control place C1 is added to the total net (figure 7(d)). The active subnets are shown
in figure 7(c). The inequality associated with C1 is µ(p1) + µ(p2) + µ(p3) ≥ 1, so at the end of this iteration
L = [1, 1, 1, 0, 0] and b = 1. Due to the subsequent AC-transformation, the invariant introduced by C1 has
the form µ(C1) = µ(p1) + µ(p2) + µ(p3) − µ(p1,2) − µ(p2,2) − µ(p3,2).

In the second iteration, {p1, p2, p2,1, p3,1, p1,2, p2,2, p3,2, C1} is the only new minimal active siphon. The
siphon is uncontrolled, since µ(p1)+µ(p2)+µ(p2,1)+µ(p3,1)+µ(p1,2)+µ(C1) ≥ 1, that is 2µ(p1)+2µ(p2)+
µ(p3) + µ(p2,1) + µ(p3,1) ≥ 2, is not implied by µ(p1) + µ(p2) + µ(p3) ≥ 1. The control place C2 which is
added is also a source place. The procedure terminates, since at the third iteration there is no new minimal
active siphon. The resulting matrices L and b after the step D are:

L =

[
1 1 1
2 2 1

]
b =

[
1
2

]
There is one redundant constraint, so the final constraints are L = [2, 2, 1] and b = 2. The supervised net is
shown in figure 7(f). By Theorem 6.2 it is T -live for all initial markings µ0 such that Lµ0 ≥ b. Moreover,
by Theorem 6.3, the supervision is maximally permissive. 2

Example 5.3 (Liveness enforcement) Consider the repetitive Petri net of figure 8(a), where t1 is
unobservable. In the first iteration there are two minimal siphons: {p1, p3} and {p2, p3}. Consider the
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Figure 7: Example 5.2: (a) N0; (b) N1; (c) NA
1 , the same as NA

2 and NA
3 ; (d) N2; (e) N3 before the split

of t1; (f) the final Petri net supervised for T -liveness

siphon {p1, p3}. The marking constraint µ(p1)+µ(p3) ≥ 1 is not admissible, so the approach of section 4.4.2
is used for the control. The resulting admissible constraint is 2µ(p1) + µ(p3) ≥ 1. The control place C1 is
added according to this constraint, and the place invariant µ(C1) = 2µ(p1) + µ(p3)− 1 results. Similarly C2

enforces 2µ(p2)+ µ(p3) ≥ 1 on {p2, p3} and µ(C2) = 2µ(p2)+ µ(p3)− 1. The matrices L and b after the first
iteration are:

L =

[
2 0 1
0 2 1

]
b =

[
1
1

]
In the second iteration there is a single new minimal siphon, {C1, C2}. The control place which would
result by enforcing µ(C1) + µ(C2) ≥ 1 is C3 such that C3• = ∅. Therefore, {C1, C2} does not need control,
according to the step 2a of the procedure. µ(C1) + µ(C2) ≥ 1 is written as 2µ(p1) + 2µ(p2) + 2µ(p3) ≥ 3,
and so

L0 =
[

2 2 2
]

b0 =
[

3
]

The procedure terminates, since there is no new uncontrolled siphon in the third iteration. The supervised
net is shown in figure 8(b). Liveness is enforced for all initial markings such that Lµ0 ≥ b and L0µ0 ≥ b0.
Moreover, by Theorem 6.3, the supervisor is maximally permissive. 2

Example 5.4 (Initial constraints) Consider the Petri net of figure 9 and assume that the initial constraint
µ(p1)+µ(p2)+µ(p3)+µ(p4)+µ(p5) ≤ 1 is given. This constraint could result, for instance, from the initial
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Figure 8: Example 5.3: (a) N0; (b) the final Petri net supervised for deadlock-freedom
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Figure 9: Example 5.3: (a) N0; (b) the Petri net after the first iteration at the first run; (c) after the first
iteration at the second run.

markings which are of interest in some application using this Petri net. The constraint is correct, as if
satisfied for µ, it is satisfied for all markings reachable from µ. At the first iteration, the active subnet equals
N0 and there are two minimal active siphons: {p1, p3} and {p2, p3}. The control places C1 and C2 are added
to the net. They enforce µ(p1) + µ(p3) ≥ 1, and µ(p2) + µ(p3) ≥ 1, respectively.

At the second iteration there are two new minimal active siphons: {p2, C1} and {p1, C2}. The two siphons
require the same inequality for their control: µ(p1) + µ(p2) + µ(p3) ≥ 2. However this conflicts with the
initial constraint. Therefore we have a failure at the step C.2.c of the procedure. Thus the parameter X

from the procedure become X = {t1, t2, t3, t4}, and the procedure is restarted, according to the step C.7.
At the second run of the procedure, because of X , the active subnet has the set of transitions T A

0 = {t5, t6}.
There are two minimal active siphons: {p1, p3, p4, p5} and {p2, p3, p4, p5}. Controlling them results in the
two control places C1 and C2 (figure 9(c)).

At the second iteration of the second run there are no new minimal active siphons. Therefore the
procedure terminates with

L =

[
1 0 1 1 1
0 1 1 1 1

]
b =

[
1
1

]

31

Marian V. Iordache, John O. Moody and Panos J. Antsaklis, “Automated Synthesis of Liveness Enforcing 
Supervisors Using Petri Nets," Technical Report isis-00-004, Dept. of Electrical Engr., Univ. of Notre Dame, 
October 2000.



and
L0 =

[
−1 −1 −1 −1 −1

]
b0 =

[
−1

]
where the constraints (L0, b0) reflect the initial constraints (see step A). The supervised Petri net is T -live
for T = {t4, t5}, and is the same as the Petri net of figure 9(c). Also, the supervision is maximally permissive
with respect to T -liveness enforcement. 2

6 Properties

6.1 Basic Properties of the Method

6.1.1 Introduction and Notations

In the liveness enforcement procedure, we start with a Petri net N0 = (P0, T0, F0, W0) that may not be PT-
ordinary or with asymmetric choice. New Petri nets Ni = (Pi, Ti, Fi, Wi), i ≥ 1, are derived in the iterative
process. The only operations of an iteration that modify the structure of the total net are the addition of a
new control place (section 4.4) and transition split (sections 4.1 and 4.2). In general the modifications done
in an iteration are such that Ni can be regarded as a subnet of Ni+1. In other words Ni+1 is Ni enhanced
with a network of new places and transitions connected to the existing transitions Ti.

The notations of Petri nets which are used are: N0 = (P0, T0, F0, W0) – the initial Petri net, N1 =
(P1, T1, F1, W1) – N0 PT-transformed, Ni = (Pi, Ti, Fi, Wi) – the Petri net produced by iteration i − 1 for
i ≥ 2 and NA

i = (PA
i , T A

i , FA
i , WA

i ) – the active subnet of Ni.
When a transition is split, one or more of its input arcs are replaced by a sequence of places and

transitions. Note that a split transition is not removed from the Petri net (see sections 4.1 and 4.2.) Firing a
split transition in the initial net is equivalent to firing it together with the sequence of replacing transitions
in the transformed net. Let TR be the set of transitions which are created by transition split. Also, let PR

be the set of places generated by transition split. Then for every Ni the set of places is Pi = P0 ∪PR ∪C and
the set of transitions is Ti = T0 ∪ TR, where C is the set of control places which were added in the iterations
1, 2, . . . i.

We also need notations to specify the transition sequences of Ni which resulted by successive splits of
a single transition of N0. To state the problem, recall that our procedure recursively finds new deadlock
possibilities in a Petri net Ni, then improves it to remove them and a new Petri net Ni+1 results. However
we are ultimately interested in enforcing liveness in N0. The places which result by transition splits do not
have an equivalent in N0, therefore we are especially interested in markings of Ni for which these places have
zero marking. Let Mi denote the set of markings of Ni with this property. From such markings of Ni we
may not be able to fire directly a transitions t which also appears in N0. If so, the reason is that t has been
split in one or more of the iterations 1, 2, . . . i − 1, and hence the new transitions created by split must fire
first. Therefore we want to characterize the sequences σ such that t appears once in σ, no other transitions
of N0 appear in σ and ∃µ1, µ2 ∈ Mi such that µ1[σ > µ2.

For instance, a transition t of N0 is first split in the first iteration because of the PT-transformation,
and so t1, t2, t3, result. In the second iteration t1 and t2 are split because of the PT-transformation and
the new transitions are t1,1, t1,2, and t2,1, t2,2. In the third iteration t is again split but with regard to
the AC-transformation; the transition t0,1 results. We know that by firing the sequence t3t2t1t in N2 we
have the same effect as by firing t in N0. Also, firing t3t2,2t2,1t2t1,2t1,1t1t in N3 corresponds to firing t

in N0, but the same may be true for other orderings in a sequence of these transitions, for instance for
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t3t2,2t1,2t2,1t2t1,1t1t. Also in N4 firing t0,1 must occur before firing t, but otherwise is not at all restricted by
firing any of t3, t2,2, t1,2, t2,1, t2t1,1, t1. So in N4 we have even more ways to define the transition sequence.

Thus, because of the nature of the split operation, we need to specify sets of transition sequences, and
this is done by listing sequentially sequences and groups of sequences, where in each group the sequences can
fire asynchronously. A group is included between braces. For instance, given the transitions t1, t2, t3 and t4,

{t1, t2t3}t4
defines the sequences t1t2t3t4, t2t1t3t4 and t2t3t1t4; the notation denotes that t1 and the sequence t2t3 can
fire asynchronously, but t4 can fire only after all of t1 and t2t3 have fired.

We define PR,m to be the set of places which appeared by transition splits in the iterations m, m + 1,
. . . k − 1. The following algorithm defines the set of transition sequences Σm,k which resulted by successive
splits in the iterations m, m + 1, . . . k − 1 of a single transition t of Nm.

Input: t, a transition of Nm, Nm and PR,m.

Output: Σm,k

n = 1, I = {1}, Σ1 = t

While I 6= ∅ do

For all i ∈ I do
Let tx be the first transition in Σi.
If | • tx ∩ PR,m| = 0 then

I := I \ {i}
else if | • tx ∩ PR,m| = 1 then

Let ty be the transition such that {ty} = •(•tx ∩ PR,m).
Σi := tyΣi

else if | • tx ∩ PR,m| = j > 1 then
Let ty1, . . . tyj be the transitions such that {ty1, . . . tyj} = •(•tx ∩ PR,m).
I := (I ∪ {n + 1, . . . n + j}) \ {i}
Σn+1 := ty1, . . . Σn+j := tyj

Σi := {Σn+1, . . .Σn+j}Σi

n := n + j

end if
end for

end while

Σm,k = Σ1

We will denote by σm,k(t) an arbitrary transition sequence of Σm,k. In particular, σ0,k(t) considers split
transitions with respect to the original Petri net N0 instead of Nm. Note that a sequence σm,k(t) is defined
to contain t, and it ends with t. Important properties of the sequences σ0,k(t) are given in Propositions 6.13
and 6.14.

The postset and the preset operations may generate confusion when we consider more Petri nets Ni at the
same time, as they share common transitions and places. Therefore, we introduce the following notations:

1. x•i is x• evaluated in Ni, where x ∈ Pi ∪ Ti.

2. •ix is •x evaluated in Ni, where x ∈ Pi ∪ Ti.
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6.1.2 Properties

Proposition 6.1 Let NA
k and Nk be the the active subnet and the total subnet after iteration number k−1.

(a) Pk ⊆ Pk+1 and Tk ⊆ Tk+1 for all k ≥ 0.

(b) Any p ∈ Pk \ PA
k has in Nk the property that •p ⊆ Tk \ T A

k .

(c) Consider the step 2 of an iteration and let C be a control place added to the total net with regard to a
minimal active siphon that contains the siphon S of the active subnet, NA

k . Then S is controlled by C

in the active subnet (considered as an independent net.)

Proof: (a) By construction, control places are added to the total net and new places may be created by
transition split. In this way Pk+1 = Pk∪Ck∪PS,k, where Ck is the set of control places added in iteration k and
PS,k is the set of places resulted from transition split in iteration k. Also, by construction, when a transition
t is split, it is not removed (section 4.1), but new places and transitions are added; so Tk+1 = Tk ∪Ts, where
Ts is the set of transitions resulted through transition split in the iteration k.

(b) Immediate consequence of the construction of the active subnet.
(c) The incidence matrix of the active subnet can be obtained from the total subnet by removing the

columns and rows corresponding to transitions and places which are not in the active subnet. Also, the
constraint matrix la in the active subnet is the restriction to the places of the active subnet of the constraint
l. Therefore by enforcing the constraint of l in the total net, and then by removing the transitions which
do not belong to the active subnet, the same connections for the control place C are obtained as in the case
when la is enforced directly in the active subnet (see section 4.3). Because enforcing la ensures that S is
controlled (section 4.4.2), the conclusion follows. 2

Several properties also related to transition splitting are given in the next two propositions.

Proposition 6.2 Let C be the set of control places added up to the iteration m. Then: (a) •P0∩(Tm\T0) = ∅,
(b) •C ∩ (Tm \ T0) = ∅ and (c) ∀t ∈ (Tm \ T0): |t • | = 1.

Proof: (a) The property is obvious just by inspecting the transition split operation: for m = 1 the property
is true, and for m > 1 it also is true since (i) transitions from a split operations are only in the preset of the
new places resulted through the split and (ii) transition splits for m > 1 are only due to adding new control
places, so the transitions connected to P0 remain the same throughout all iterations.

(b) and (c). Note that (c) is a consequence of (b): the only way a transition can get a new place in its
postset is by adding control places. Then if (b) is true, all transitions in Tm \ T0 keep their original postset,
and since the transitions t from split replacements are originally produced with |t • | = 1 (section 4.1), (c) is
verified.

The siphon control method for uncontrollable and unobservable transitions (section 4.4.2) is constructed
such that property (b) is true for all controls places which are added using it. However it remains to be
proved that the property is true when the more usual siphon control method (section 4.4.1) is used.

The proof is by induction. Assume that the property is true for all control places added so far, and let k

be the current iteration number. Then for all transitions t ∈ (Tk \T0): |t• | = 1. We assume by contradiction
that adding the control place C with regard to a siphon S connects C to t such that C ∈ t• and t ∈ (Tk \T0).
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This implies that t increases the marking of S when it is fired; however, before adding C, |t • | = 1, so t

cannot increase the marking of S unless t ∈ S• and t /∈ •S. But this contradicts that S is a siphon. 2

Proposition 6.3 For every iteration index i:

(a) If P A
i ∩ P0 = ∅ then NA

i is empty.

(b) Let t ∈ T0. If tx ∈ σ0,i(t) and tx ∈ T A
i then every transition of σ0,i(t) preceding tx is in T A

i , where a
transition ty of σ0,i(t) precedes tx if ∃t1 . . . tn ∈ σ0,i(t) such that tx ∈ tn • •, . . . t1 ∈ ty • •.

(c) Let C be the set of control places of Ni, that is all the control places which were added in iterations
1, 2, . . . i− 1. There is no siphon S of the total net or of the active subnet such that S ⊆ Pi \ (P0 ∪ C).

Proof: (a) P A
i ∩P0 = ∅ ⇒ •P0 ∩T A

i = ∅, so T0∩T A
i = ∅. Recall, the transitions which are not in the active

subnet cannot fire infinitely often. Note that Ti \ T0 are transitions resulted from transition split. However,
by split transition construction, there is no cycle in which only transitions from Ti \ T0 appear and none
of the transitions from Ti \ T0 can be a source transition. Therefore the transitions in Ti \ T0 cannot fire
infinitely often. Hence, T A

i is not a subset of Ti \ T0, so T A
i = ∅.

(b) A transition belongs to the active subnet if markings exist such that it can fire infinitely often. To
prove the conclusion, it is enough to prove that tu ∈ σ0,i(t) and tu ∈ • • tx imply that tu is in the active
subnet. This can be shown as follows: ∃p ∈ PS (where PS is the set of places resulted from transition split
operations) such that tu ∈ •p and tx ∈ p•. Since | • p| = 1 (see the transition split operation) tu must be
able to fire infinitely often.

(c) Let PS be the set of places resulted from transition split: PS = Pi \ (P0 ∪ C). The proof is a direct
consequence of the splitting method (section 4.1). Thus, p ∈ PS cannot be a source place in the total net,
while the active subnet cannot anyway have source places. Further on, if PSx is the set of places from the
replacement of tx ∈ T0 in Ni, there are no cyclic structures only made up of places in PSx. Also, because
(• • PSx \ PSx) ∩ PS = ∅ and (PSx • • \ PSx) ∩ PS = ∅ there is no cyclic structure only made up of places in
PSx and other places from PS . The same justification also applies to the active subnet. 2

The algorithm of the AC-transformation in section 4.2 is obvious in the case when the second argument
M satisfies M = P . However when M ⊂ P the algorithm should not be in the situation that at step 4 no
choice can be made, as {pi, pj} ∩ M = ∅. If this happens, the final Petri net N ′ is not asymmetric choice.
The next result proves that the liveness enforcement procedure uses the AC-transformation in a right way.

Proposition 6.4 The step C:4 of the liveness enforcing procedure produces an asymmetric choice net.

Proof: Let C be the set of the control places added in the current iteration and i the number of the iteration.
Let PR be the set of places resulted in the PT-transformation of the step C:3 and let N be the Petri net
obtained after the step C:3. We consider the algorithm of the AC-transformation and show that in the step 4,
{pi, pj} ∩ M 6= ∅. (Note that M = C in the step C:4.) In order to do this we show that if pi • ∩pj• 6= ∅,
pi• 6⊆ pj• and pj• 6⊆ pi•, then {pi, pj} ∩ C 6= ∅. In this proof the • operator is taken with respect to N .

Let pl and pj be such that pl •∩pj• 6= ∅, pl• 6⊆ pj• and pj• 6⊆ pl•. Note that pl, pj /∈ PR, because p ∈ PR

⇒ |p • | = 1 (see section 4.1). Since Ni is PT-ordinary, the postset of any place p ∈ Pi is unchanged by
the operations done in the iteration i, in particular by the PT-transformation. Therefore, since Ni is with
asymmetric choice, it is also true in N that ∀pu, pv ∈ Pi: pu•∩pv• 6= ∅ ⇒ pu• ⊆ pv• or pv• ⊆ pu•. Therefore
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not both pl and pj are in Pi. Since they cannot be in PR, it follows that {pi, pj} ∩ C 6= ∅. Therefore the
outcome of the AC-transformation is an asymmetric choice Petri net, for there is always a possible choice at
the step 4 of the AC-transformation algorithm. 2

The next proposition considers the update of the active subnets as described in section 5.3. It shows that
the update produces indeed an active subnet.

Proposition 6.5 Consider the update algorithm described in section 6.5. The algorithm produces an active
subnet.

Proof: Using the notations from the algorithm, we are to prove that if NA
i−1 is an active subnet then NA

i

also is. Let Di−1 and Di be the incidence matrices of Ni−1 and Ni. By Definition 3.5, there is x ≥ 0
such that Di−1x ≥ 0 and T A

i−1 = ‖x‖. The modifications of Ni−1 are done in two stages: first the control
places are added and then transitions are split. After control places are added, the new incidence matrix is
D′

i−1 = [DT
i−1, (LiDi−1)T ]T , where Li denotes the new inequalities Liµ ≥ bi enforced with control places in

the iteration i − 1. The liveness procedure adds only constraints such that Li ≥ 0. Therefore D′
i−1x ≥ 0.

After the transitions to be split are split, the new incidence matrix is Di. Let PR be the new places which
appeared by transition split and let N ′

i−1 be the Petri net corresponding to D′
i−1. There is a marking µ

and a sequence σ such that all transitions of ‖x‖ appear infinitely often in σ, no other transitions than ‖x‖
appear in σ and µ enables σ in N ′

i−1. Let µi be a marking of Ni such that µi(p) = µ(p) for all places p

of N ′
i−1 and µi(p) = 0 for all other places (i.e. those in PR). Then µi enables σi−1,i(σ). The transitions

which appear infinitely often in σi−1,i(σ) are the transitions in T A
i . By Lemma 3.1 there is x∗ ≥ 0 such that

Dx ≥ 0 and ‖x‖ = T A
i . Therefore NA

i is an active subnet. 2

Proposition 6.6 Given a PT-ordinary Petri net, let S be (i) a (minimal) siphon, or (ii) a (minimal) active
siphon.

(a) Assume that after adding some control places the net is no longer PT-ordinary. If some arbitrary
transition t is split, then S remains a (minimal) siphon in case (i), or a (minimal) active siphon in case
(ii).

(b) Assume that a transition t is split with regard to the AC transformation. Let p′ and t′ be the new
place and transition obtained by splitting t and N ′ the Petri net after the split. Let S′ = S ∪ {p′} if t ∈ •S
and t 6∈ S • |N ′ , and S′ = S otherwise. Then S′ is a (minimal) siphon in case (i), or a (minimal) active
siphon in the case (ii).

Proof: (a) See Proposition 6.4 in [9].
(b) We only consider the less obvious case when t ∈ •S and t 6∈ S • |N ′ . Let N be the Petri net before

splitting t. Note that S′• = S • ∪{t′} and •S′ = •S ∪ {t′}. Therefore •S′ ⊆ S′•. So S′ is a siphon. Assume
that s′ ⊂ S′ is another siphon. There are two cases: p′ /∈ s′ and p′ ∈ s′. We show that both cases lead to
the conclusion that the siphon S is not minimal in N . If p′ /∈ s′, then •s′ is the same in N and N ′ (t′ /∈ •s′)
and s′• in N and N ′ may differ only by t′. Therefore s′ is also a siphon of N . Since p′ /∈ s′: s′ ⊆ S.
However s′ ⊂ S, because s′ = S and •S \ S • |N ′ 6= ∅ contradict that s′ is a siphon of N ′. If p′ ∈ s′, then let
s = s′ \ {p′}; •s′ = •s ∪ {t′} and s′• = s • ∪{t′} imply •s ⊆ s•, so s is a siphon of N and by construction
s ⊂ S. Therefore S′ is minimal if S is minimal.

The same proof can be used to show that if S is a (minimal) siphon of the active subnet of N , then S′ is
a (minimal) siphon of the active subnet of N ′. Now we assume that S is an active siphon. Let s be a siphon
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of NA (the active subnet of N ) such that s ⊆ S. Let s′ be defined the same way as above. Then s′ is also a
siphon of N ′A. But s′ ⊆ S′, so S′ is an active siphon of N ′. If S′ is not a minimal active siphon, let S′

1 ⊂ S′

be an active siphon. If p′ /∈ S′
1, then S′

1 is also an active siphon of N , and so S is not minimal, as S′
1 ⊆ S

and S′
1 6= S (S cannot be a siphon of N ′ because •S \ S • |N ′ 6= ∅). Else, if p′ ∈ S′

1, then S′
1 \ {p′} is an

active siphon in N , and from S′
1 \ {p′} ⊂ S it can be seen that S is not a minimal active siphon. Therefore

if S is a minimal active siphon, S′ also is. 2

The last result shows that the transition split operation does not change the siphons of a Petri net and
their type, when done with regard to a PT-transformation. When done with regard to an AC-transformation,
the transition split operation may change the siphons by adding some of the new places to them, however
without changing their type. Note that during the iterations, if S is a siphon of Ni and i ≥ 1, it is not
possible to split t ∈ •S in view of the AC-transformation (see the proof of Proposition 6.4). Therefore we
have the following result.

Corollary 6.1 Let S be a (minimal) siphon of Ni. Then S is a (minimal) siphon of Ni+1. Furthermore,
assume that no transitions are marked to be removed from the active subnet in the iteration i. Then if S is
a (minimal) active siphon in Ni, S also is a (minimal) active siphon in Ni+1.

Proof: The proof results immediately by successively applying Proposition 6.6 for every transition split
and by the observation that no transition in Ti is split in view of the AC-transformation (see the proof of
Proposition 6.4). 2

Since the transition split operations modify the Petri net, it is important to establish how the invariants
of a Petri net are changed.

Proposition 6.7 Let lT µ ≥ b be true for all markings reachable from a set MI of markings of Ni. Let
PR be the set of places resulted through transition split in iterations i through j − 1 and µ0 be a marking
of Nj such that µ0(p) = 0 ∀p ∈ PR and µ0 ∈ MI . For all markings µ reachable from µ0 and such that
µ(p) = 0 ∀p ∈ PR, lT µ ≥ b is satisfied. The notations µ0r and µr denote the markings µ0 and µ, respectively,
restricted to the places of Ni.

Proof: This is a direct consequence of the following facts: (a) lT µ ≥ b is enforced in Ni for all markings
reachable from markings in MI ; (b) Let t ∈ Ti, which is found split in Nj . Firing the entire split replacement
sequence of t in Nj , modifies the marking of the places of Pi in the same way as firing the transition t in Ni

(see sections 4.1 and 4.2.) 2

Proposition 6.8 Assume that a number of constraints are enforced on a PT-ordinary Petri net N . Let C

be the control place added to enforce the constraint lT µ ≥ b, that is µ(C) = lT µ − b. Let t1, t2, . . . tk be all
transitions such that W (C, ti) = mi > 1. Next, the closed loop Petri net is transformed in a PT-ordinary
Petri net N ′ as shown in section 4.1. Then C enforces:

µe(C) +
k∑

i=1

mi−1∑
j=1

jµe(pi,mi−j) = lT µ − b (22)

in the PT-transformed Petri net, where µ is the marking vector µe restricted to N and the usual notations
of section 4.1 are used.
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Furthermore the AC-transformation of section 4.2 is applied to N ′, with the parameter M equal to the
set of control places added to N . Then C enforces:

µe(C) +
r∑

z=1

µe(pz) +
k∑

i=1

mi−1∑
j=1

jµe(pi,mi−j) = lT µ − b (23)

where p1, p2 . . . pr are all places created by the AC-transformation which satisfy • • pz = C and µ is the
marking vector µe restricted to N .

Proof: For the first part, see Proposition 6.6 in [9]. The second part results in a similar way, by noticing
that the choice of M ensures that for all transitions split in view of the AC-transformation, all new places
px which appear satisfy • • px = Cy for some control place Cy . 2

The last result shows that the PT-transformation done to an intermediary Petri net, in which only
the new control places cause the Petri net not to be PT-ordinary, does not affect the enforced inequalities.
Indeed, equation (22) implies that lT µ ≥ b is still true in the PT-transformed net. This is also true about the
equation (23). As Proposition 6.8 applies to the PT-transformation and the AC-transformation performed
by the liveness procedure in each iteration, it follows that the enforced inequalities stay enforced after these
two transformations are applied.

Further on we prove a more general result. We consider an inequality or a set of inequalities to be
enforced with respect to a set of initial markings MI if they are true for all markings reachable from the
markings in MI .

Proposition 6.9 Assume that lT µ ≥ b (or lT µ = b) is enforced in a Petri net N for all initial markings in
a set MI.

(a) Consider that a transition tx is split in view of the PT-transformation and let N ′ be the Petri net after
tx is split. Consider the inequality (equality) lT1 µ ≥ b (or lT1 µ = b), where lT1 µ is obtained as follows: for all

places p which in N satisfy p ∈ •tx and W (p, tx) = mp > 1, replace µ(p) in lT µ with µ(p)+
mp−1∑
i=1

iµ(px,mp−i),

where px,i are the places resulted by splitting tx (section 4.1). Then lT1 µ ≥ b (lT1 µ = b) is enforced for all
initial markings µ0 such that µ0(px,i) = 0 for all places px,i and µ0|N ∈ MI.

(b) Consider that a transition tx is split in view of the AC-transformation. Let p′ and t′ be the new place
and transition which result. Then the inequality (equality) becomes lT1 µ ≥ b (lT1 µ = b), where l1(p) = l(p) for
all p 6= p′ and l1(p′) = l(px), where •t′ = {px} and lT1 µ ≥ b (lT1 µ = b) is enforced for all initial markings µ0

such that µ0(p′) = 0 and µ0|N ∈ MI.
(c) Let Pl = {p : l(p) 6= 0}. Assume that N satisfies: ∀p ∈ Pl ∀t ∈ •p: W (p, t) = 1. Consider applying the

PT-transformation and then the AC-transformation, the latter with the parameter M such that M ∩ Pl = ∅.
Let N ′ be the obtained Petri net. Then lT µ ≥ b (lT µ = b) is enforced in N ′ for all initial markings µ0 such
that µ0(p) = 0 if p is not in N and µ0|N ∈ MI .

Proof: (a) We denote by µ′ any of the markings of N ′ and by µ the markings of N . Let f be a map such

that if f(µ′) = µ, then µ(p) = µ′(p) ∀p 6∈ {p ∈ •tx : W (p, tx) ≥ 1} and µ(p) = µ′(p) +
mp−1∑
i=1

iµ(px,mp−i)

∀p ∈ {p ∈ •tx : W (p, tx) ≥ 1}. Note that lT1 µ′ = lT f(µ′). Let TR be the set of new transitions resulted
through the split. Note that µ′

1[t > µ′
2 implies f(µ′

1) = f(µ′
2) for t ∈ TR, and µ′

1[t > µ′
2 for t 6∈ PR implies

f(µ′
1)[t > f(µ′

2). Let µ′
0 be a marking such that µ′

0(p
′) = 0 and µ′

0|N ∈ MI . Let σ′ be an arbitrary firing
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Figure 10: Example for Proposition 6.10

sequence and σ its projection to the transitions of N . Then µ′
0[σ

′ > µ′
1 implies f(µ′

0)[σ > f(µ′
1). But

f(µ′
0) = µ′

0|N , therefore lT f(µ′
1) ≥ b and so lT1 µ′

1 ≥ b. Since the sequence σ′ is arbitrary, the conclusion
follows.

(b) Let N ′ be the transformed net. We denote by µ′ any of the markings of N ′ and by µ the markings
of N . Let f be a map such that if f(µ′) = µ, then µ(p) = µ′(p) ∀p 6= px and µ(px) = µ′(p′) + µ′(px). Note
that lT1 µ′ = lT f(µ′). Also µ′

1[t
′ > µ′

2 implies f(µ′
1) = f(µ′

2), and µ′
1[t > µ′

2 for t 6= t′ implies f(µ′
1)[t > f(µ′

2).
Further on the proof can be done exactly as at part (a): µ′

0 is chosen as at (a), in the same way an arbitrary
sequence σ′ is considered and then the conclusion follows.

(c) This is a consequence of (a) and (b). Indeed, by (a) the PT-transformation does not change lT µ ≥ b

(lT µ = b) as no transition t ∈ Pl• is split. Also by (b) the AC-transformation does not change lT µ ≥ b

(lT µ = b), as the new places px added by the transformation must satisfy • • px ∈ M . 2

The importance of Proposition 6.9 is that it shows how the enforced constraints are modified by transition
split operations. Furthermore, part (c) shows that the constraints of the form (L0, b0) are not changed by
the iterations of the liveness procedure. They may be changed only by the first PT-transformation and the
first AC-transformation used before the first iteration, where the change which may occur is described by
the parts (a) and (b) of the proposition.

The next proposition is significant for the efficiency of the implementation of the step C:2 of the procedure.
It shows that since in each iteration i we look for new minimal active siphons, it is enough to seek only the
minimal active siphons which contain the new control places added in the previous iteration and the places
of P A

i \ PA
i+1. Note that PA

i \ PA
i+1 6= ∅ may occur due to the steps C:2b and C:2c of the procedure, when

the target Petri net has uncontrollable and unobservable transitions or when (tight) initial constraints are
given. The next result is useful: the implementation of the procedure does not need to compute all minimal
active siphons (which could be computationally expensive.)

Proposition 6.10 The new minimal active siphons of Ni+1, i ≥ 1, contain at least one of the control places
added in the iteration number i, or one of the places of PA

i \ PA
i+1.

Proof: By construction (step C.4 of the procedure and the algorithm in section 4.2), if the place p resulted
from a transition split of the AC-transformation of the iteration i, then there is a control place C added
in the same iteration such that • • p = C. Thus any siphon which contains a place resulted from the AC-
transformation of the iteration i must also contain a control place added in the iteration i. For the rest the
proof is similar to that of Proposition 6.8 in [9]. 2

An example is given in figure 10. Consider that the Petri net from the figure is N0 and that t2 and t4

are uncontrollable. As N0 is PT-ordinary, N1 = N0. Note that PA
1 = {p2, p3, p4, p5}. S = {p1, p2, p3, p4, p5}

is an active siphon, but it is not minimal. However S′ = {p1, p2, p3} is minimal and active. Because of
the uncontrollable transitions, the control of the siphon S′ fails. Therefore N2 = N1, but PA

2 is reduced
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to {p4, p5}. S is a minimal active siphon in N2, while S′ is no longer active. Note that S, which is a new
minimal siphon of N2, contains the places p2 and p3, which are in PA

1 \ PA
2 .

In the next definition we will denote by valid markings those markings in which the invariant relations
associated with every control place hold and in which places obtained by transition split have the marking
0. Also we define equivalence of markings, which is an equivalence relation on the Petri nets N1, N2, N3, ...
generated in each iteration. A class of equivalence contains the valid markings of the nets Nk which have
the same marking for the places p ∈ P0.

Definition 6.1 Let Ni, (Li, bi) and (Li0, bi0) be the Petri net and respectively the sets of constraints, all at
the beginning of iteration i ≥ 1, or for the initial Petri net, in which case i = 0. Let C be the set of control
places that were added beginning with iteration one and PR = Pi \ (P0 ∪ C). A marking µ of Ni is said to be
a valid marking if µ(p) = 0 ∀p ∈ PR, Liµe ≥ bi and Li0µe ≥ bi0, where µe is a marking of N0 such that
µe(p) = µ(p) ∀p ∈ P0, and the marking of the control places satisfies the invariants they enforce.

The definition above applies also for N1, where in case that no initial constraints exist, the remaining
requirement for µ to be a valid marking of N1 is µ(p) = 0 ∀p ∈ PR. When we refer to a marking µ of N0, µ

is always valid when the procedure starts with no constraints in (L0, b0). Otherwise, µ is valid if it satisfies
the constraints stated at the beginning of the procedure.

A Petri net Ni may have empty siphons for a marking that is valid. Indeed, the definition of valid
markings does not require the new siphons of Ni not to be empty. Previous siphons cannot be empty for
a valid marking, because of the constraints Liµe ≥ bi and Li0µe ≥ bi0 which encode this requirement for
previous siphons.

Definition 6.2 Let µe be a valid marking of N0 and µ a valid marking of Ni. If µe(p) = µ(p) ∀p ∈ P0, then
µe and µ are said to be equivalent markings. Moreover, two valid markings µi of Ni and µj of Nj also
are called equivalent markings if they have the same equivalent marking in N0.

The way in which equivalence is defined implies that if two markings are equivalent they must also be
valid. Equivalence is not defined for markings that are not valid.

Proposition 6.11 Any valid marking of Ni has at most an equivalent marking in Nj for 0 ≤ i < j. Every
valid marking of Nj has a unique equivalent marking in Ni when 0 ≤ i < j.

Proof: This is Proposition 6.9 of [9], whose proof still applies. 2

Proposition 6.12 The equivalence of markings is an equivalence relation.

Proof: The proof is immediate by checking the symmetry, reflexivity and transitivity of the relation. 2

Proposition 6.13 Let µ be a valid marking of Nk, σ an enabled firing sequence and t ∈ T0. Assume that t

appears in σ. Then all transitions of σ0,k(t) other than t appear in σ before the first occurrence of t in σ; let
s be the sequence in which they appear before the first occurrence of t in σ. There is a subsequence s0 of s

such that the sequence s0t equals a σ0,k(t).

Proof: Let PR be the set of places resulted through split operations in the iterations 1 . . . k−1. The marking
µ is valid, so t cannot be fired unless the places •t∩PR are marked, and they cannot become marked by firing
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other transitions in TR except •(•t ∩ PR), which are all transitions of σ0,k(t). Next, let Tx1 = •(•t ∩ PR).
The transitions of Tx1 cannot fire unless the places •Tx1 ∩ PR are marked, which cannot happen unless the
transitions in •(•Tx1 ∩ PR) fire before. Let Tx2 = •(•Tx1 ∩ PR). We continue in the same way until we get
Txk = ∅. Hence all transitions of σ0,k(t) other than t appear in σ before the first occurrence of t in σ.

Given a transition ti, we let Tx(ti) = •(•ti ∩ PR). Let t1 be the last transition from Tx(t) which appears
in s before t. Let t2 be the last transition from (Tx(t) ∪ Tx(t1)) \ {t1} which appears in s before t1. Let
t3 be the last transition from (Tx(t) ∪ Tx(t1) ∪ Tx(t2)) \ {t1, t2} which appears in s before t2. We continue

this way until tm such that (Tx(t)∪
m⋃

i=1

Tx(ti)) \ {t1, t2, . . . tm} = ∅. Let s0 be the sequence tm, tm−1, . . . t1, t.

The construction of s0 is in accord with the algorithm defining σ0,k(t), therefore s0 is a sequence of the form
σ0,k(t). 2

Corollary 6.2 Let s be a transition sequence which contains t ∈ T0. Assume that s is not longer than a
sequence σ0,k(t). If s is enabled by a valid marking of Nk, s is a sequence σ0,k(t).

Proposition 6.14 If a valid marking of Nk enables a sequence σ0,k(t), then it enables all sequences σ0,k(t).

Proof: Let σ1 and σ2 be two sequences σ0,k(t) such that σ1 is enabled by the marking µ and σ2 is not.
Let σ2 = t1t2 . . . tmt. Consider firing σ2 from the marking µ. As σ2 is not enabled, there is i < m such
that after firing t1t2 . . . ti−1, the transition ti is not enabled. Let µi be the reached marking. Let PR be the
set of places resulted by transition split in the iterations 1, 2, . . . k − 1. Note that ∀p ∈ •ti ∩ PR, µi(p) = 1,
for σ2 cannot be a sequence σ0,k(t) unless the transitions in •(•ti ∩ PR) precede ti in σ2, and ti is the only
transition in the postset of •ti∩PR (see the split transition construction.) Therefore ∃pi ∈ Pk \PR such that
µi(pi) = 0. Note that by Proposition 6.2(a) and (b) firing any transition of σ0,k(t) different than t never
increases the marking of a place in Pk \ PR. Thus, if we allow the markings to go negative, we can fire the
remaining transitions titi+1 . . . tm, and so reach a marking µm such that µm(pi) < 0. Since σ1 contains the
same transitions as σ2 but in a different order, (let σ1 = t′1t

′
2 . . . t′mt) after firing the first m transitions of σ1

from µ, the same marking µm is reached. As µm(pi) < 0, it follows that σ1 is not enabled by µ, which is a
contradiction. 2

In what follows we state a number of results which we have been derived for the deadlock prevention pro-
cedure of [9] and which still apply for the liveness procedure. The results are useful for a good understanding
of the liveness procedure. Most of them are also used in the proofs of the main results in section 6.2.

Proposition 6.15 Let µi and µk be two markings of Ni and Nk, i < k.

(a) µi and µk are equivalent markings if and only if they are valid and ∀p ∈ Pi, µi(p) = µk(p).

(b) Assume that µi and µk are equivalent. Let t be an arbitrary transition of Ni. If σi,k(t) is enabled in
Nk, then t is enabled in Ni.

(c) If Si is an active siphon of Ni and µk(p) = 0 ∀p ∈ Si, then µk is not a valid marking of Nk. However,
if µi(p) = 0 ∀p ∈ Si, µi may be a valid marking of Ni.

(d) Consider that the original Petri net has controllable and observable transitions. If µi is a valid marking
and it does not have an equivalent marking in Nk, j exists, such that i ≤ j < k, Nj has a marking µj

equivalent to µi and Nj has an empty active siphon with respect to µj.
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(e) If µi and µk are equivalent, t ∈ T0, µi[σ0,i(t) > µ′
i and µk[σ0,k(t) > µ′

k then µ′
i and µ′

k are equivalent.

Proof: This result is Proposition 6.12 in [9]; the proof does not change. 2

Proposition 6.16 Let µi,1 and µj,1 be two equivalent markings of Ni and Nj, i < j. If µi,2 and µj,2 are
two other equivalent markings of Ni and Nj and a transition t exists, such that µi,1[t > µi,2 in Ni, then
µj,1[σi,j(t) > µj,2 in Nj.

Proof: This result is Proposition 6.13 in [9], whose proof applies without changes. 2

Corollary 6.3 Let µ(1) and µ(2) be two markings of N0 such that µ(1)[t > µ(2) (where t ∈ T0) and satisfying
the constraints produced by the procedure after termination: Lµ(1) ≥ b, L0µ

(1) ≥ b0, Lµ(2) ≥ b, µ(1)[t > µ(2).
Then the markings µ

(1)
k and µ

(2)
k of Nk equivalent to µ(1) and respectively to µ(2) are defined for any k, µ

(1)
k

enables σ0,k(t) and µ
(1)
k [σ0,k(t) > µ

(2)
k .

Proof: This is Corollary 6.1 in [9]. The proof does not change. 2

Theorem 6.1 The following statements are true:

(a) Let σi be an arbitrary firing sequence of Ni and σj = σi,j(σi) the corresponding firing sequence in Nj ,
i < j. If µj is a marking of Nj that enables σj, then the marking µi of Ni such that µi(p) = µj(p)
∀p ∈ Pi enables σi. Also if µi[σi > µ′

i and µj [σj > µ′
j then µ′

i(p) = µ′
j(p) ∀p ∈ Pi.

(b) Assume that the procedure does not start with initial constraints, or if it does, all valid markings µ of
N0 have the property that exists µ′ ≥ µ, µ′ has an equivalent marking in Nk. Let σ be an arbitrary
transition sequence of N0 and σk = σ0,k(σ) the corresponding sequence in Nk. If a valid marking µ of
N0 exists which enables σ, a valid marking µk of Nk exists which enables σk.

(c) In the conditions of part (b), if some marking µ′
k of Nk exists which enables σk, then a marking of Nk

exists which enables σk and which also is valid.

Proof: This is Theorem 6.1 in [9], whose proof applies without modification. 2

Theorem 6.1(a) showed that if i < j and µi, µj are equivalent markings of Ni and Nj , then a firing
sequence σi is always enabled by µi in Ni, when its counterpart σj = σi,j(σ) is enabled by µj in Nj . The
converse generally is not true. However, it is true for the particular case when i = 0, because N1 differs from
N0 only by the fact that N1 is the PT and AC-transformed version of N0.

Proposition 6.17 Every valid marking µ of N0 has an equivalent marking µ′ in N1. Moreover, if µ and µ′

are equivalent, σ is a transition sequence enabled by µ and σ′ = σ0,1(σ), then µ′ enables σ′.

Proof: This is Proposition 6.14 in [9], whose proof still applies. 2

The next proposition considers the constraints (L0, b0) at a iteration i. It shows that even though they
are not enforced by control places, they are satisfied by the Petri nets resulted in subsequent iterations.

Proposition 6.18 Let (Li, bi) and (L0,i, b0,i) be the constraints (L, b) and (L0, b0) at the end of the iteration
i. Let (L′, b) and (L′

0, b0) be (Li, bi) and (L0,i, b0,i) restricted to the places of N0. Let µ0 be an arbitrary initial
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marking of N0 satisfying L′
0µ0 ≥ b0 and L′µ0 ≥ b. Then, if (N0, µ0) is supervised according to L′µ ≥ b, for

all reachable markings µ: L′
0µ ≥ b0.

Proof: Assume the contrary. Let µx be a reachable marking such that L′
0µx 6≥ b0, µx is reached by firing

t from µy, and L′
0µy ≥ b0. Let l′1µ ≥ b1 be one of the constraints of (L′

0, b0) which are not satisfied by µx.
Let (l1, b1) be the constraint which appeared in some iteration j ≤ i such that its restriction is (l′1, b1). This
means that for every marking µ of Nj such that l1µ ≥ b1: l1µz ≥ b1 ∀µz ∈ R(Nj , µ). Let µx,j and µy,j be
the valid marking of Nj equivalent to µx and µy. Then by Proposition 6.16: µy,j[σ0,j(t) > µx,j. As µx,j is
valid, l1µx,j ≥ b1 ⇒ l′1µx ≥ b, which contradicts the initial assumption. 2

6.2 Main Results

This section proves that the procedure enforces liveness in Theorem 6.2. Maximally permissivity (under
appropriate conditions) is proved in Theorem 6.3. An extension for maximally permissivity in a case when this
is not guaranteed by Theorem 6.3 is given in section 6.2.2. Termination results are provided in Theorem 6.5
and Theorem 6.6. The termination results assume certain modifications of the procedure, as described in
section 6.2.3.

Throughout the section we use the notations from the description of the procedure in section 5.4 and
the notations defined in section 6.1.1. That is, in every iteration i the active subnet is denoted by NA

i =
(P A

i , T A
i , FA

i , WA
i ) and the total net Ni = (Pi, Ti, Fi, Wi), σi,j(σ) a replacement sequence in Nj of the

transition sequence σ of Ni, i < j and σi,j(t) a replacement sequence in Nj of the transition t of Ni.

6.2.1 Success and Permissivity Results

Lemma 6.1 Assume that the procedure terminates in k − 1 iterations and that NA
k is nonempty. Then Nk

is T A
k -live for all valid initial markings.

Proof: In every iteration, the new minimal active siphons are controlled in step 2 of the procedure. The
procedure terminates when Nk is asymmetric choice and all minimal active siphons are controlled. Since Nk

is PT-ordinary and NA
k is T A

k -minimal, Nk is T A
k -live for all valid initial markings by Proposition 3.6. 2

Theorem 6.2 Assume that the procedure terminates. Let N0 = (P0, T0, F0, W0) be the original Petri net,
T ⊆ T0 the parameter passed to the procedure as the set of transitions which are to be live and Nk the net
produced by the last iteration. Let (L, b) and (L0, b0) denote the two sets of constraints generated by the
procedure. If NA

k is nonempty, then the original net N0 in closed loop with the supervisor enforcing Lµ ≥ b

is Tx-live for all initial markings µ0 of N0 such that Lµ0 ≥ b and L0µ0 ≥ b0, where Tx = T A
k ∩T0. Moreover,

if no siphon control failures occurred in the steps C:2(b) and (c) of the procedure, the closed loop is Ty-live
for Ty = T A

0 ∩ T and the initial markings µ0 satisfying Lµ0 ≥ b and L0µ0 ≥ b0.

Proof: By construction, every marking of the original Petri net N0 which satisfies the constraints has an
equivalent marking in Nk such that all active siphons of Nk are not empty. For such a marking Nk is T A

k -live,
by Lemma 6.1.

Assume that from a good initial marking µ0 of N0, the closed loop net (let it be NS) reaches a marking
µ such that the transition t ∈ T0 ∩ T A

k is dead. We show that this leads to contradiction.
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Let µ0,k and µk be the equivalent markings of µ0 and µ in Nk. Because µk is valid, by Lemma 6.1
µk enables a transition sequence σ in Nk which includes the transitions of σ0,k(t). Let TR be the set of
transitions that appeared by split transition operations in all iterations. Let C be the set of control places.
Revisiting the transition split operation (section 4.1) and by Proposition 6.2(b), firing any t ∈ TR always
reduces the marking of some places in P0 ∪ C and firing t ∈ T0 (note that T0 = Tk \ TR) may increase the
marking of some places in P0 ∪ C. Because the total marking of P0 ∪ C is finite, σ must include transitions
t ∈ T0. Let t1 be the first transition in T0 that appears in σ. By Proposition 6.13, σ contains a σ0,k(t1). Since
all transition of σ before t1 are in TR, and firing them only decrease markings of P0 ∪ C, σ0,k(t1) is enabled
by µk, since it is enabled after firing the transitions that precede it in σ. Let t2 be the next transition of σ

in T0. Similarly, σ0,k(t1)σ0,k(t2) is enabled by µk. We continue this way and eventually find tj in σ and in
T0 such that tj = t. We have that µk enables σ0,k(t1)σ0,k(t2) . . . σ0,k(tj). But this implies that µ enables
t1t2 . . . tj (by Theorem 6.1(a)), and since tj = t, t is not dead in NS , which is a contradiction.

If no siphon control failures occur, the active subnets employed in the following iterations are not recom-
puted, but updated as discussed in section 5.3. Therefore T A

0 ⊆ T A
k and so T A

0 ⊆ Tx, which implies that NS

also is Ty-live, for Ty = T ∩ T A
0 and µ0 satisfying Lµ0 ≥ b and L0µ0 ≥ b0. 2

Note that T -liveness cannot be enforced if T 6⊆ T A
0 , for if this is the case, the structural properties of the

net do not allow some of the transitions of T to be live. If the problem is well formulated and thus T -liveness
is possible, the procedure will enforce T -liveness if no siphon control failures occur. This always is the case
for Petri nets without uncontrollable and unobservable transitions, assuming that the initial constraints are
not preventing the enforcement of T -liveness (that is, assuming that the liveness enforcement problem is well
formulated).

The assumptions of Theorem 6.2 are that the procedure terminates and that the final active subnet NA
k

is not empty. The next result characterizes the cases when the procedure terminates and it does not enforce
T -liveness. It shows that when there are no uncontrollable and unobservable transitions, if the procedure
does not enforce T -liveness, T -liveness is impossible, given the initial constraints (if any are given). Note
that NA

k empty implies that even deadlock prevention is impossible, if no uncontrollable and unobservable
transitions are present.

Proposition 6.19 T -liveness is not enforcible in N0 for any initial marking if T 6⊆ T A
0 . Furthermore, in

the conditions of Theorem 6.2, if N0 has no uncontrollable and unobservable transitions and T 6⊆ T A
k , then

T -liveness is not enforcible in N0 for any initial marking.

Proof: The first part is a consequence of Corollary 3.2, as the algorithm of section 5.3 does not fail to find
a T -minimal active subnet if such a subnet exists. The second part is a consequence of Lemma 6.2, as we
show in what follows. For the second part we assume T ⊆ T A

0 and T 6⊆ T A
k . Consider that in iteration j

the first siphon control failure occurs. The failure occurs because there is an active siphon Sx of Nj which
due to the initial constraints must be empty for all valid markings. Using the same idea as in the proof
of Theorem 6.3, no transition t ∈ Sx• can be live in Nj for valid initial markings; so there are transitions
in T A

j ∩ T0 which cannot be made live in Nj , namely the transitions tx such that ∃t ∈ σ0,j(tx): t ∈ Sx•.
Let Tl ⊂ T A

j be the set of all transitions which can be made live in Nj . As in the proof of Theorem 6.3,
T ⊆ Tl is not possible, as it would imply that NA

0 is not T -minimal. (Indeed there is a firing sequence σl

in which only the transitions of Tl appear infinitely often and there is µ0 which enables σl in Nj . We may
assume µ0 to be valid. If µ0 is not valid, there is a finite sequence σx and the valid marking µ′

0 such that
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µ′
0[σx > µ0, and we can let σ′

l = σxσl. Further on we continue as in the proof of Theorem 6.3). Therefore
T \ Tl 6= ∅. Next we assume there is an infinite sequence σ of N0 including infinitely often all transitions of
T and enabled by a marking µ0, such that µ0 and all reachable markings obtained by firing σ satisfy the
initial constraints. Then σj = σ0,j(σ) is enabled by µ0,j , the marking equivalent to µ0 in Nj , and µ0,j as
well as the other markings reached by firing σj satisfy the initial constraints. (Indeed, this can be easily
verified for the markings generated by σ1 = σ0,1(σ) in N1; for σj it results from the facts that the initial
constraints have the same form in N1, N2, . . ., Nj (by Proposition 6.9(c)), and the marking of the places P1

in Nj depends only on firing transitions in T1.) Therefore the transitions which appear infinitely often in σj

should be a subset of Tl. This contradicts T \ Tl 6= ∅. Therefore not all transitions of T can be made live in
N0. 2

As shown in section 4.4, the siphon control approach used by the procedure enforces inequalities of
the form

∑
p∈S

αpµ(p) ≥ 1 in order to control a siphon S, where αp are nonnegative integers. When all

transitions are controllable and observable, αp = 1 ∀p ∈ S. The coefficients αp may have other values when
uncontrollable and unobservable transitions are present. The next two results are proved for the case when
for all controlled siphons S, the enforced constraint satisfies αp 6= 0 ∀p ∈ S. The requirement is always
satisfied for the Petri nets with controllable and observable transitions. The meaning of the requirement is
that all minimal active siphons S are maximally permissive controlled (that is, only the markings µ which
satisfy µ(p) = 0 ∀p ∈ S are forbidden.)

Lemma 6.2 Assume that for all minimal active siphons S controlled by the procedure in the iterations 1 . . . i

(i ≥ 1) the enforced constraint has the form
∑
p∈S

αpµ(p) ≥ 1, where αp are positive integers. Let S be an

active siphon of Ni+1 which does not appear in Ni. Let µi+1 be a valid marking of Ni+1 and µi the equivalent
marking in Ni. Assume that S is empty for the marking µi+1. Let ts be an arbitrary transition of Ni with
the property that there is a transition t ∈ S• of Ni+1 such that ts = t or ts is split in Ni+1 and t appears in
a transition replacing sequence σi,i+1(ts). If ∃µ ∈ R(µi) such that µ[ts > µs, then (Ni, µs) has at least one
empty active siphon.

Proof: Let C be the set of control places added to Ni+1. The set of places which result through transition
split is PR = Pi+1 \ (Pi ∪ C). Note that given an arbitrary firing sequence σx of Ni, if µi+1[σi,i+1(σx) > µx,
as µi+1 is valid, µx(p) = 0 ∀p ∈ PR. Let σ be the firing sequence that was used to reach µ: µi[σ > µ.
Consider firing σ in (Ni, µi) and σ′ = σi,i+1(σ) in (Ni+1, µi+1). The only reason for σ′ not to be enabled in
Ni+1 by the marking µi+1 would be that a control place prevents it.

If σ′ is not enabled, σ = σ1t1σ2, µi[σ1 > µ1, µi+1[σi,i+1(σ1) > µ′
1, µ1 enables t1, but µ′

1 does not enable
σi,i+1(t1). This corresponds to the following: Ni has an active siphon S1 which is controlled in Ni+1 with C1

and µ′
1(C1) does not allow σi,i+1(t1) to fire. Hence t1 ∈ C1• was satisfied when C1 was added to Ni. This

implies t1 ∈ S1•. Firing σi,i+1(t1) in Ni+1 produces the same marking change for the places in Pi as firing t1

in Ni. Since σi,i+1(t1) is not allowed by µ′
1(C1) to fire, firing t1 from µ1 empties S1. Indeed, otherwise firing

σi,i+1(t1) would not empty S1 and so µ′
1(C1) would allow it. Since t1 is fired in the sequence σ = σ1t1σ2, S1

is an empty active siphon of (Ni, µs).
If σ′ is enabled by µi+1, let µ′ be the marking reached: µi+1[σ′ > µ′. Because σ′ may contain only entire

replacement sequences of split transitions and µi+1 is a valid marking (which implies µi+1(p) = 0 ∀p ∈ PR),
µ′(p) = 0 ∀p ∈ PR. Also, µi+1 and µi are equivalent and σ′ = σi,i+1(σ), therefore µ(p) = µ′(p) ∀p ∈ Pi
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(Theorem 6.1(a)). Because S is a siphon, S empty for µi+1 implies S empty for all reachable markings, and
so for µ′ too. There are two cases: (a) ts is not split in Ni+1 and (b) ts is split.

(a) If ts is not split, •ts ∩PR = ∅. Further on, µ enables ts in Ni but µ′ does not enable ts in Ni+1, so in
Ni+1, •ts ∩C 6= ∅ and there is C ∈ •ts ∩C such that µ′(C) = 0. Let SC be the active siphon of Ni controlled
by C. ts was not split, so W (C, ts) was 1; ts enabled by µ, µ′(C) = 0 and ts ∈ C• ⇒ ts ∈ (SC•) \ (•SC).
Since SC ⊆ Pi and µ′(C) = 0,

∑
p∈SC

µ(p) = 1. Because ts is enabled by µ, firing ts empties SC , so there is an

empty active siphon in (Ni, µs).
(b) If ts was split, then ts was connected to one or more of the control places C of C, for only transitions

connected to such places are split, in view of the AC-transformation or of the PT-transformation. (This is so
because for all i ≥ 1 Ni is PT-ordinary and with asymmetric choice, and hence only the new added control
places can affect these properties). We let CS be the set of control places added to •ts in the iteration i. By
recalling the split transition operation (sections 4.1 and 4.2), it is easy to notice that t ∈ S• implies ∃C ∈ CS
such that C ∈ S. Let SC be the active siphon controlled by C. Since C ∈ S and S is empty,

∑
p∈SC

µ(p) = 1.

Since before the split of ts: C ∈ •ts, firing ts in Ni reduces the marking of SC , and since the total marking
of SC is one, SC becomes empty. 2

Note that Lemma 6.2 applies for i ≥ 1. It also applies for i = 0 when N1 = N0, that is when N0 is
PT-ordinary.

Theorem 6.3 Assume that for all minimal active siphons S the procedure is able to find admissible con-
straints of the form

∑
p∈S

αpµ(p) ≥ 1 with αp positive integers. Assume also that N1 has a single T -minimal

active subnet. The liveness enforcement procedure provides a supervisor not more restrictive than any su-
pervisor subject to the same initial constraints (if any initial constraints are given) which also enforces
T -liveness.

Proof: Let S be the set of supervisors satisfying the initial constraints and enforcing T -liveness. Note
that when we compare our procedure to another supervisor we assume an initial marking for which that
supervisor is defined: we do not require the supervisors in S to be defined for all initial markings for which the
supervisor given by our procedure is defined. We first consider the case when there are no initial constraints.

Note that (N0, µ0) cannot be made T -live if (N1, µ0,1) cannot be made T -live, where µ0,1(p) = µ0(p)
∀p ∈ P0 and µ0,1(p) = 0 ∀p ∈ P1 \ P0. Indeed, assume the contrary. Then µ0 enables an infinite transition
sequence σ in which all transitions of T appear infinitely often. But this implies that σ0,1(σ) is also enabled by
µ0,1, and therefore N1 is also T -live. Next we note that if (Ni, µ0,i) cannot be made T -live if (Ni+1, µ0,i+1)
cannot be made T -live, where µi+1,0 is the equivalent marking of µi,0. Indeed let σ be an infinite firing
sequence enabled by µi,0 such that all transitions of T occur infinitely often in σ. By Lemma 6.2, if σi,i+1(σ)
is not enabled in Ni+1, firing σ in Ni creates an empty active siphon, which contradicts the fact that all
transitions of T appear infinitely often in σ, as an empty active siphon imply that some of the transitions of
T are dead. (The contradiction results as follows. An empty active siphon implies a set of dead transitions
from the active subnet, Tx. Let Tx1 = {t ∈ T1 : ∃tu ∈ σ1,i(t) and tu ∈ Tx}. Using the same construction
as in the proof of Theorem 6.2, the projection of σ on T1 (let it be σ1) is enabled by µ1,0, where µ1,0 is the
restriction of µi,0 to the places of P1. Therefore we apply Lemma 3.1 for N1 and σ1, and using the notation
of Lemma 3.1, we let T A

x = ‖x‖. Note that T A
x defines an active subnet and T ⊆ T A

x , as all transitions of T

appear infinitely often in σ1. Since we are in the case with no initial constraints, the theorem assumptions
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imply no siphon control failures. Then, in view of the update algorithm of section 5.3, Tx1 ⊂ T A
1 . However

Tx1 ∩ T A
x = ∅, so T A

x is not a subset of T A
1 . This implies that T A

x defines another T -minimal active subnet
of N1, which contradicts the fact that there is a single T -minimal active subnet.)

The markings forbidden at every iteration i are those for which there are empty active siphons. Therefore
only some markings for which Ni cannot be T -live are forbidden at the iteration i. Assume that N0 can
be made T -live for a marking µ0 which does not satisfy all constraints Lµ ≥ b and L0µ ≥ b0. Let i be the
first iteration in which an inequality l′1µ ≥ b1 is added such that its restriction l1µ ≥ b1 to P0 is one of the
inequalities of Lµ ≥ b and L0µ ≥ b0 not satisfied by µ0. Therefore Ni cannot be made live for µ0,i, the
equivalent marking of µ0 in Ni. By the first part of the proof this implies that (N0, µ0) cannot be made
T -live, which is a contradiction. Therefore all liveness enforcing supervisors forbid the markings such that
Lµ 6≥ b or L0µ 6≥ b0.

The case when there are initial constraints is similar to the case when there are no such constraints if
the procedure is never in the situation that the constraints at step C.2.c of the procedure are infeasible. In
the case when infeasibilities at some steps C.2.c occur, consider the first occurrence. In view of the proof
of the paragraph above, such infeasibilities imply that T -liveness cannot be enforced for any initial marking
satisfying the initial constraints, and so there are no supervisors in S (S is empty.) Therefore, we can
conclude that the supervisor generated by the procedure is more permissive than any other supervisor in S
whenever it enforces T -liveness; when it does not, S is empty. 2

We note that in case of liveness enforcement, there is a single T -minimal active subnet, that is the whole
net, and therefore we have the following consequence.

Corollary 6.4 Assume that for all minimal active siphons S the procedure is able to find admissible con-
straints of the form

∑
p∈S

αpµ(p) ≥ 1 with all αp positive integers. When the procedure is used to enforce

liveness, the supervisor it provides is not more restrictive than any supervisor subject to the same initial
constraints (if any) which also enforces liveness.

Theorem 6.3 gives sufficient conditions for the T -liveness supervisor to be least restrictive. The com-
parison assumes that the other supervisors are subject to the same initial constraints. In particular, the
assumptions of the theorem are always true for Petri nets with controllable and observable transitions. There-
fore, whenever the procedure is used to enforce T -liveness, no uncontrollable and unobservable transitions
exist, the target Petri net has a single T -minimal active subnet and the procedure ends successfully, the
supervisor generated is maximally permissive (least restrictive). The procedure may not end successfully
when initial constraints are given and the initial constraints prevent enforcing T -liveness. Also, for some
Petri nets the procedure may not end at all, and therefore we consider section 6.2.3.

6.2.2 Extending Permissivity

Theorem 6.3 and Corollary 6.4 show that for a large class of Petri nets the procedure is least restrictive. The
natural question whether we can use our procedure to ensure least restrictiveness for an even larger class
of Petri nets has a positive answer, as we show in this section. We consider the case when the target Petri
net N0 has the T -minimal active subnets NA,1

0 , NA,2
0 , . . . NA,p

0 . Theorem 6.3 does not apply, as we have
p (p > 1) T -minimal subnets. However, it applies for T A,i

0 -liveness, as there is a single T A,i
0 -minimal active

subnet: NA,i
0 (we denote by T A,i

0 the set of transitions of NA,i
0 and i = 1 . . . p). Assume that the procedure

terminates for all i = 1 . . . p when used to enforce T A,i
0 -liveness. Let L(i)µ ≥ b(i) and L

(i)
0 µ ≥ b

(i)
0 be the
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generated constraints. Assume that we have ordered the T -minimal active subnets such that for 1 ≤ i ≤ u

the procedure had no siphon control failures when used for T A,i
0 -liveness, but for each u + 1 ≤ i ≤ p it had

some siphon control failures (0 ≤ u ≤ p). Let Ξ be the supervisor defined as follows. Ξ requires the initial
marking µ0 to be in the set M, where

M =
u⋃

i=1

{
µ : L(i)µ ≥ b(i)

∧
L

(i)
0 µ ≥ b

(i)
0

}
Also Ξ allows a transition to fire only if the next reached marking is in M.

Theorem 6.4 Assume that for each i = 1 . . . u, for all minimal active siphons S the procedure is able to find
admissible constraints of the form

∑
p∈S

αpµ(p) ≥ 1 with all αp positive integers. Assume also that for each

i = u + 1 . . . p the first siphon control failure occurs at the step C.2.c and that in all iterations previous to
the failure, for all minimal active siphons S the procedure is able to find admissible constraints of the form∑
p∈S

αpµ(p) ≥ 1 with all αp positive integers. Then Ξ is the least restrictive T -liveness enforcing supervisor.

Proof: Failures at the step C.2.c are only possible when initial constraints are given. The proof of Theo-
rem 6.3 applies, and so for the given initial constraints T A,i

0 -liveness cannot be enforced for all i = u+1 . . . p.
Let µ0 /∈ M, and assume that µ0 enables a firing sequence σ which includes all transitions in T infinitely
often. In the notations of Lemma 3.1, let T A = ‖x‖. Then T A defines an active subnet, and note that
T ⊆ T A. Since NA,i

0 , i = 1 . . . p, are all the T -minimal active subnets, there is j, 1 ≤ j ≤ p, such that
T A,j

0 ⊆ T A. If j ≤ u, we have contradiction, since by Theorem 6.3 not all transitions of T A,j
0 can be made

live for µ0 /∈ M, and so not all of them can appear in σ. If j > u we again have contradiction, since for all
initial markings satisfying the initial constraints not all transitions of T A,j can be made live. 2

6.2.3 Termination Results

The procedure, as defined, may not terminate for any Petri net structure. By analyzing cases in which
the procedure does not terminate, we considered two changes of the procedure which help termination. To
formally guarantee termination, we restrict the class of Petri nets to structurally bounded Petri nets and
assume that some bounds of the reachable marking space are known. This is a reasonable assumption
for Petri nets modeling real systems, because in general every quantity has some bound. For each of the
two changes, if the procedure is started with initial constraints (L0, b0) which bound the reachable space,
termination can been guaranteed. However note that the two changes we propose may help termination by
themselves, that is without using initial constraints (L0, b0), and not only for structurally bounded Petri
nets. A Petri net N is structurally bounded [14] if for all initial markings µ0, R(N , µ0) is bounded.

6.2.3.1 Modification A In every iteration, all constraints are stored only in the form restricted to the
places of the target net N0. That is, when a new constraint lT µ ≥ c is added to (L, b) or (L0, b0), it is first
restricted to the places of N0, and then added. Also, the transformation of (L0, b0) from the step A of the
procedure is not done. Thus the constraints ignore the marking of the places resulted by transition split.
A siphon is considered to be implicitly controlled if the marking inequality required for the siphon to be
controlled is implied by the current set of constraints (which are written only with respect to the places of
N0).
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The difference from the usual approach is that the contribution of the places resulted by transition split
is ignored when a siphon is checked whether it is implicitly controlled. Naturally, modification A does not
change the procedure for those Petri nets in which the final Petri net Nk has no split transitions.

Theorem 6.5 Let N be a Petri net and (Li, bi) be a set of constraints Liµ ≥ bi, µ ≥ 0, with bounded
feasible region. The liveness enforcement procedure with the modification A terminates if started with initial
constraints(Li, bi).

Proof: Let MR be the bounded feasible region of Liµ ≥ bi, with µ nonnegative integer vector. Let FN

be the set of markings forbidden by the control places added up to some point. Let S be the next siphon
considered for control, and fS the set of markings which would be forbidden in the target net N by enforcing∑
p∈S

µ(p) ≥ 1. S is not implicitly controlled if (fS \FN )∩MR 6= ∅. Since each siphon which is not implicitly

controlled adds at least a new marking µF ∈ MR to the set of forbidden markings, and since MR is finite,
after we control a finite number of siphons, all new siphons are implicitly controlled and so the procedure
terminates. 2

Theorem 6.5 is important because it gives a sufficient (but not necessary) condition for termination which
is not very restrictive for real applications, where in general the capacity of every place is finite.

The usage of the procedure with the modification A can be summarized as follows:

• Find a set of constrains Liµ ≥ bi with bounded feasible set F , where µ is a nonnegative integer vector,
such that for all initial markings µ0 of N which are of interest: R(N , µ0) ⊆ F . Let MI be the set of
initial markings of interest.

• Use the procedure with the modification A and initial constraints (Li, bi).

• The supervisor can be used for the initial markings µ0 ∈ MI which satisfy Lµ0 ≥ b and L0µ0 ≥ b0,
where (L, b) and (L0, b0) are the two sets of constraints generated by the procedure.

The disadvantage of modification A is that Theorem 6.2, which guarantees liveness enforcement, may
not apply in certain cases. Theorem 6.3 still applies, since the siphon control method is the same, and the
only difference is that some siphons, which normally wouldn’t be considered to be (implicitly) controlled,
may be considered so when the modification A is used. (This difference does not matter in the proof of
Theorem 6.2.)

6.2.3.2 Modification B In this approach we simply use a set of initial constraints with bounded feasible
region. This is enough to guarantee termination if transition splits can occur only in finitely many iterations.
Unlike to the deadlock prevention approach, in our liveness enforcing approach this assumption is often not
satisfied, as the AC-transformation makes the procedure a lot more prone to perform transition splits.

Theorem 6.6 Let N be a Petri net and (Li, bi) a set of constraints Liµ ≥ bi, µ ≥ 0, with bounded feasible
region. Assuming that in the case of N transition splits can occur only in finitely many iterations, the
liveness enforcement procedure terminates if started with initial constraints (L0, b0) which equal (Li, bi).

Proof: Note that in step A the constraints (Li, bi) are transformed as in section 5.2.5 to a new form
L′

0µ ≥ b′0, which is true in all Nj , j ≥ 1. By construction, since the feasible set of Liµ ≥ bi is bounded
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(and so finite), so is the feasible set of L′
0µ ≥ b′0. The proof is by contradiction. Assume that the procedure

does not terminate. After the last iteration in which transition splits occur, the size of the marking vector is
no longer changed. The set of possible markings is bounded to some set MR due to the initial constraints.
Thus, each time a new constraint is added to (L, b) or (L0, b0), at least one new marking of MR is forbidden.
Because MR is finite, after a finite number of iterations all new siphons (if any) considered in the step 2(b)
of the procedure are implicitly controlled, and so the procedure terminates. 2

The usage of the procedure with the modification B can be summarized as follows:

• Find a set of constrains Liµ ≥ bi with bounded feasible set F , where µ is a nonnegative integer vector,
such that for all initial markings µ0 of N which are of interest: R(N , µ0) ⊆ F . Let MI be the set of
initial markings of interest.

• Use the procedure with the modification B and initial constraints (Li, bi).

• The supervisor can be used for the initial markings µ0 ∈ MI which satisfy Lµ0 ≥ b and L0µ0 ≥ b0,
where (L, b) and (L0, b0) are the two sets of constraints generated by the procedure.

Unlike in approach A, both Theorem 6.2 and Theorem 6.3 apply. The disadvantage of approach B is that
the formal result which guarantees termination is weak, as it may be hard to know whether the assumption
on transition splits holds true, and there are many cases in which the assumption is not true.

6.3 Final Remarks and Directions for Further Research

6.3.1 Additional Constraints

We consider the case when additional constraints are to be enforced. Let (La, ba) be the additional constraints
and N the Petri net. The additional constraints are to be enforced first, and then the liveness enforcement
procedure can be applied. Thus, enforcing (La, ba) in N using supervision based on place invariants ([13, 22],
also in section 4.3) produces the closed loop Petri net NL. Then the liveness enforcement procedure can be
used with N0 = NL and initial constraints (LI , bI) reflecting the invariants resulted by enforcing (La, ba) to
N .

The reason why we should not first apply the liveness enforcement procedure to N and then enforce
(La, ba) is that additional constraints can effect loss of liveness. Indeed, we can easily find examples of live
Petri nets which lose liveness by adding some marking constraints.

6.3.2 Finite Capacity Petri Nets

In many applications it is reasonable to assume that the maximum number of tokens that a place may have
is bounded. In this case the Petri nets may be extended with an additional function K which maps to each
place a capacity. This type of Petri net is called place/transition net [16]. So, a place/transition structure

is represented by the quintuple N = (P, T, F, W, K), where K : P → N is the capacity function. With an
additional initial marking we have a place/transition net, denoted by (N , µ0). The capacity of a place is
allowed to be infinite. The firing rule of a transition in place/transition nets is the same as for conventional
Petri nets, except that a transition is not enabled by a marking if firing it would cause a place to exceed its
capacity.

Let N = (P, T, F, W, K) be a place/transition structure and NR = (P, T, F, W ) the corresponding Petri
net structure. N can be transformed in an equivalent conventional Petri net NE by enforcing in NR, to each
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place p with finite capacity, the linear constraint µ(p) ≤ K(p). The conventional Petri net is obtained using
the invariant based approach of [13, 22], outlined also in section 4.3.

If all the places have finite capacity, the equivalent Petri net is by construction structurally bounded. The
liveness enforcement procedure can be started as in section 6.3.1, with N0 = NE and constraints (La, ba)
which describe µ(p) ≤ K(p) for all p ∈ P . The method can be guaranteed to terminate as shown in
section 6.2.3, since a bound on the marking of each place is known. Indeed, the upper bound for the marking
of any place p ∈ P is the finite capacity K(p) and the upper bound for the marking of a control place pc

enforcing for a place p ∈ P the constraint µ(p) ≤ K(p), is also K(p).

6.3.3 The Termination Problem

Section 6.2.3 shows how to modify the procedure to guarantee termination for structurally bounded Petri
nets. However, as shown in section 6.2.3, guaranteed termination may come to a cost. This is why in this
section we consider the procedure as defined in section 5.4 and examine two divergence causes.

6.3.3.1 Converging Constraints The termination of the procedure is facilitated by considering only
minimal siphons that are not implicitly controlled (see section 5.2). For instance, the procedure does not
terminate for the Petri net of figure 11(a) unless implicitly controlled siphons are not eliminated. However
this operation does not guarantee termination in general. For instance this does not help the procedure to
converge for the Petri net of figure 11(b). The reason is that new places generated through transition splits
appear in the case (b); such places prevent the generated siphons to be implicitly controlled, and so the
procedure to converge.
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Figure 11: Example for the termination problem

Checking whether a siphon is implicitly controlled is equivalent to an integer programming feasibility
problem. Solving integer programs is an NP type problem [21].

6.3.3.2 Nonconvex Feasible Sets We consider a set F ⊆ N
k to be convex if any convex combination

of elements of F which is in N
k also is in F . In other words, F ⊆ N

k is convex if ∀n ≥ 2, ∀x1, x2, . . . xn ∈ F

and ∀α1, α2, . . . αn ∈ R+ such that
n∑

i=1

αi = 1, if y =
n∑

i=1

αixi and y ∈ N
k, then y ∈ F . By using theorems 6.2

and 6.3, we can see that when a convex combination of markings for which liveness is enforcible produce a
marking for which liveness is not enforcible, the procedure cannot terminate. Indeed the feasible region of
a set of linear inequalities is a convex set, so the method cannot converge to a set of constraints satisfying
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both theorems 6.2 and 6.3.
We show two examples in Figure 12(a) and (b). In case (a), the Petri net is live for the markings [2, 0]

and [0, 2], but not for [1, 1]. The set of markings for which liveness is enforcible equals the set of markings
for which the Petri net is live, which is not convex. In case (b), which corresponds to the PT-transformation
of (a), deadlock can occur. Preventing deadlock is equivalent to enforcing liveness, and deadlock can be
prevented for the markings [2, 0, 0, 0] and [0, 2, 0, 0], but not for [1, 1, 0, 0]. In both cases (a) and (b) the
method cannot terminate.

A solution to avoid this type of problem is to improve the procedure as follows:

1. For all places p, let M(p) = {x : ∃t ∈ •p : W (t, p) = x or ∃t ∈ p• : W (p, t) = x}.

2. Let d be the greatest common divisor of M(p). If d > 1, then the following changes are made: (a) all
weights of the arcs connected to p are divided by d; (b) in all constraints, replace µ(p) by bµ(p)/dc.

In this way we obtain more sets of linear inequalities, rather than just one for all markings. Given an
initial marking µ0, we obtain the constraints (L, b) by replacing bµ(p)/dc with µ(p)/d+ bµ0(p)/dc−µ0(p)/d.
We see, L does not depend on µ0, but b does.

(b) (c)(a)
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Figure 12: Examples for section 6.3.3.2

However this solution is not applicable for the structurally unbounded Petri net structure shown in
Figure 12(c). We can easily see that there are initial markings for which liveness enforcement with a convex
set of allowed markings conflicts with being more permissive than any liveness enforcing supervisors. Indeed,
from the marking µ0 = [2, 0, 0, 0], both µ1 = [0, 2, 0, 0] and µ2 = [1, 1, 0, 0] are reachable. (µ2 is reached
by firing t1, t5 and t6.) Because for µ0 and µ1 liveness is enforcible and µ2 = 0.5µ0 + 0.5µ1 is a deadlock
marking, the procedure cannot terminate.

7 Summary of Results

In this section we outline the main new results of this paper. The new results of our prior work [8, 9] are
not included here. In section 3:

• Theorem 3.2 is fundamental for our procedure for T -liveness enforcement. It shows the relation between
siphons and dead transitions.

• Proposition 3.6 gives a necessary condition and a sufficient condition for T liveness to be enforced in
a PT-ordinary asymmetric choice Petri net.
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The liveness enforcing procedure has been stated in section 5.4. Variations of this procedure have been
given in section 6.2.3. The procedure has the following characteristics:

• Given a Petri net structure and a set of transitions T , the procedure generates two sets of linear
constraints (L0, b0) and (L, b), such that for all initial markings µ0 which satisfy L0µ0 ≥ b0 and
Lµ0 ≥ b, the Petri net in closed loop with the supervisor enforcing Lµ ≥ b is T -live.

• No assumptions are made on the Petri net structure. The method is effective for the Petri nets
generally considered in the deadlock prevention literature, as well as for those which may be generalized,
unbounded, nonrepetitive and with uncontrollable and unobservable transitions.

• The user is allowed to specify initial constraints in the form of initial constraints in (L0, b0). In this
way the procedure knows that only markings such that L0µ ≥ b0 are used. Using initial constraints
benefits problems in which one of the following is true: (a) the procedure should not generate constraints
requiring L0µ 6≥ b0, (b) permissivity can be compromised to reduce the complexity of the supervisor
(for instance by using certain place invariants in the structure of the target Petri net) (c) convergence
help is needed.

The main results concerning the liveness enforcement procedure are proved in section 6.2. The fact that
uncontrollable and unobservable transitions are allowed affects the permissivity related results. These results
are proved for a restricted class of Petri nets with uncontrollable and/or unobservable transitions.

• In the conditions of Theorem 6.2, T -liveness is enforced.

• The case when the structure of N0 does not allow T -liveness is detected in Proposition 6.19.

• In the conditions of Theorem 6.3, the supervisor is maximally permissive (least restrictive). A situation
in which the conditions of Theorem 6.3 are satisfied is when the procedure is given a Petri net with
controllable and observable transitions in the case of liveness enforcement. A method to extend the
permissivity is given in section 6.2.2, and the theoretical result is given in Theorem 6.4.

• Two modifications of the procedure have been proposed to guarantee termination. Theorem 6.5 and
Theorem 6.6 guarantee termination for the two modifications.
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