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A Practical Controller for Explicit Rate
Congestion Control

Kenneth P. Laberteaux, Charles E. Rolgsnior Member, IEEEand Panos J. Antsaklis

Abstract—This paper examines congestion control for explicit control implies communication between the network and cus-
rate data networks. The available bit rate (ABR) service category tomer throughout the life of the connection. Generally this com-
of asynchronous transfer mode (ATM) networks serves as an ex- mnjcation comes in the form of instructions to the customer

ample system, however, the results of this paper are applicable to , . . . .
other explicit rate systems as well. After a plant model is estab- to increase or decrease its sending rate. Closed-loop congestion

lished, an adaptive control strategy is presented. Several algorithm control is well suited for data that is not strongly delay sensitive.
enhancements are then introduced. These enhancements reduceClosed-loop congestion control uses a feedback mechanism and
convergence time, improve queue depth management, and reducethus can draw heavily on the feedback control theory.

parameter bias. This work differentiates itself from the other con- The complete ABR congestion control mechanism is de-

tributions in the area of rate-based congestion control in its bal- ibed in 1 d 121 Thi f licit rat
anced approach of retaining enough complexity as to afford at- scribed in [1] and [2]. IS paper 10clSes on explici raie

tractive performance properties, but not so much complexity as to  congestion control. The plant description of Section II-A is an
make implementation prohibitively expensive. approximation to the mechanisms specified in [1]. The present

Index Terms—Adaptive control, asynchronous transfer mode challenge is to devisg a controller that resides 'at the_ PUtpUt
(ATM), available bit rate (ABR), coefficient bias, congestion queue of an ATM switch port and produces a singiglicit
control, convergence rate, data network, explicit rate, Internet, rate to be sent to all ABR sources passing through the queue.

normalize least mean square (NLMS), queue control. The explicit rate must be chosen such that the incoming ABR
bandwidth matches the available ABR bandwidth in some
|. INTRODUCTION appropriate sense. Specifying a single explicit rate at time

_ ) ._for all sources ensures fairness. Matching the incoming ABR
I N 1984, the_ Cpnsultatwe Committee on Intemat'o,n%andwidth to the available ABR bandwidth attains efficiency.
Telecommunications and Telegraph (CCITT), a United ;s naners treatment of ATM ABR congestion control is
Nations organization responsible for teIecommunlcatlordﬂ%i,[e general. Issues studied by this paper are likely to arise
standards, selected asynchronous transfer mode (ATM) as i, re networking protocols and should not be considered

paradigm for broadband integrat_ed s_ervice _digital networlé?)plicable only to ATM ABR. Given the rate at which band-
(B‘IﬁDN) [2]. AT';/I net\./vorlfs prowde. S')é ?erwce Ca,teglor'eswidth consumption is increasing and computational costs are
Each category of service is customized for a particular typg, ..o qing, it seems likely that future data networks will employ

of traffic. Of these five categories, only one, available bit ratg ion_nerformance explicit rate congestion control mechanism.
(ABR), uses a feedback mechanism to create a closed-loop

congestion control. The creation of a control mechanism for
switch that can work with the closed-loop congestion contro
mechanism such as the one specified by the ATM Forum [1]The standard for ABR traffic [1] states that “the ABR service
is the focus of this paper. category provides a low cell loss ratio,” and that “no numeric
Congestion control is a process by which networks use fe€gmmitment is made about cell transfer delay,” but both should
back to adjust the influx of data such that the customer’s qualR¢ Minimized. Key to this goal is avoiding congestion at any
of service (QoS) requirements are met while simultaneously &Vitching node in the ATM network; cells that arrive to a nearly
tempting to maximize the utilization of the network’s resourceull switch buffer will experience excessive delay, while cells
Networks that attempt to deliver more data than their capacfyfiving to a completely full buffer are lost.
will experience congestion, leading to undesirable data loss, exATM ABR explicit rate congestion control for a single
cessive delays, or both. The closed-loop nature of Congestﬁgprce/destination paiwvirtual circuit (VC)] is illustrated in
Fig. 1 and occurs as follows: congestion control for ABR traffic
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) ram yam yam) described in [4]. Reference [5] makes a strong case for simpli-

ACR(» . . .
@) SW1 SW2 SW3 Swd +@ fying the congestion control problem to a single node study;
BRM few investigators have deviated from this since. Computation-

Fig. 1. Congestion control mechanism from perspective of source/destinatialrlly’ th.e Comrc.)”er must solve d& 3 simultaneous _equation;
pair. Sich time action delays change (dB is the maximum action
delay). References [4] and [5] place the closed-loop poles. No
effort is made to cancel the plant (and thus closed-loop) zeros.
cell moves from switch to switch, each switcill reduce the |mportantly, the number of responsive sources and their action
rate indicated by the ER field tay;(n) if w;(n) is less than delays are assumed known, thereby avoiding computational
the contents of the ER field. When the RM cell is returned ®mplexity usually associated with congestion controlers.
the source, the source is required to adjusalisved cell rate.  Altman et al. make several contributions [7]-[9]. Of
(ACR), an upper bound on its sending rate, to be no greater thaticular relevance to this paper, [7] discusses how a pure
the rate indicated by the explicit rate field. Thus, the ACR of aiyte-matching algorithm, i.e., where the bandwidth available to
ABR source equals the minimum rate allowed by the switch@®R traffic is completely apportioned without regard of the
in the path of the flow as indicated by the most recently receivegyrent queue depth, will produce unacceptably long queues.
RM cell. However, [8] shows that under fairly general restrictions,

1) Value of ATM ABR Congestion Controfor many years, ynder-allocating the available bandwidth, using either an
ATM ABR received considerable attention, not in small pagigditive or multiplicative constant, will ensure stability in the
due to its extensive support of sophisticated congestion contiglieue length. This gives some credibility to the rate matching
ATM ABR, despite being well suited for the explosively populagchemes proposed here and elsewhere. Throughout [7]—[9]
applications of web browsing, e-mail, and data backup, is yet(fke [4], [5]), the number of sources and their action delays
be widely utilized. Instead, the dominant protocol of today’s Ingre assumed to be known. Also note that their models do not
ternet remains TCP/IP, with its comparatively less sophisticatg@|ude the presence of ABR traffic which is controlled by
congestion control [27]. other switches.

Despite the ambiguities of the marketplace, there are at leasRaj Jain has made the best know contributions to the field
two reasons to continue research in ATM ABR congestiaff ATM ABR congestion control. His implementation-friendly
control. The first reason is that ABR may yet see wide-sca&plicit rate indication for congestion avoidance (ERICA) algo-
adoption. Although no longer the newest technology, ATMthm [10]and its successor, ERIGA[12], work well in a large
ABR has yet to be outperformed by newer technologies in ifmber of situations and appear to be favored by ATM switch
stated task of providing efficient, fair, and reliable transport fgfesigners. ERICA is computationally inexpensive to implement
nonreal-time, large bandwidth data applications. In fact, ABRgs compared to the other contributions mentioned above) and
critics contend that its high-performance-through-high-comms been shown, via simulations, to rapidly achieve max—min
plexity approach exceeds, both in capability and cost, th&mess in many cases. However, further study discovered var-
needs of the network marketplace of tomorrow. These critigsys scenarios where max—min fairness was not achieved. In a
claim that cheaper and simpler solutions, albeit less robugbog contribution [14], persisting fairness concerns of ERICA
are possible, most likely by extending the TCP/IP paradigrigrompted a new approach. The switch determines an effective
Examples of these innovations include [29]-[35]. number of sources. This effective number of sourced/gr, as-

The outcome of the current ATM verses TCP/IP battle r&jgned a specific fractional value to sources unable to use their
mains uncertain. ATM ABR has become a well-defined teclfajr share allocation. This approach is very similar to that sug-
nology. The onus is on the new TCP/IP enhancements to prey&sted by Fulton and Li in 1997 [17], and marks an intersection

their claims of doing well enough with less. in these two bodies of work. Imer also proposes a controller in
the same vein [15]. A comparison of these related schemes to
B. Related Work that proposed by this paper occurs in Section 11-C2.

Congestion control has been and continues to be a topic ofn addition, there has been significant contributions made in
active research. Significant contributions to the understandiiftf ATM Forum. The ATM Forum has approved what has be-
of congestion control in ATM ABR networks have been madeome thede factoguidelines for the operation of ABR conges-
in the past decade. Contributors include [2]-[24]. Benmoham#@n control by defining the required behaviors and properties
and Meerkov made a significant early contribution in plarftff ABR sources, destinations and resource management (RM)
modeling with [4] and [5]. The assumptions developed in [4ells [1].
are widely employed. Reference [4] treats the single-node casel his work differentiates itself from the other contributions
while [5] treats the multiple-node case. In the end, throudh the area of rate-based congestion control in its balanced ap-
careful reasoning and imposing judicious assumptions, [Bfoach of retaining (_anough complexity as to affqrd attractive
essentially arrives back at the single bottleneck node cd¥formance properties, but not so much complexity as to make

implementation prohibitively expensive.

1To minimize reaction delay, switches generally mark backward (re-
turning-to-source) RM cells. Networks can also use the same congestion
control techniques while marking forward RM cells (if, for example, backward 2The controller presented in Section 1I-B does not assume that the number of
RM cells do not take the same path as forward RM cells), but with much longssurces and delayd) is given. This accounts for a significant amount of the
action delays, with the expected performance degradation. controller’'s complexity.
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Fig. 2. Plant from perspective of switch output port.

Another vein of congestion control research focuses oatew to be sent to all ABR sources passing through the port.
lower complexity-lower performance solutions for the InterneThe explicit ratex must be chosen such that the incoming ABR
Floyd proposed random early detection (RED) [30] and explidiandwidthy matches the available ABR bandwidghin some
congestion notification (ECN) [31], two methods for routerappropriate sense. Specifying a single explicit rate at tirfor
to signal congestion by probabilistically dropping RED oall sources ensures fairness. Matchirtg * attains efficiency.
marking ECN packets. These two concepts have given risdt is assumed that for each VC, at least one RM cell pagses
to several suggestions for Internet congestion control usidgring each sample interval. Rates:), y(n), andy*(n) are in
one-bit marking strategies (see [34] and [36] and referenaasits of cells/s.
therein). This group of one-bit, Internet-specific algorithms, Output port; will observe changes to its input raién) as
and our ATM ABR algorithm, occupy very different places owarious sourcesS;) react to previously specified explicit rates
the performance-cost curve, specifically our algorithm givegn —m). Thereaction delaym, as viewed by for sources;,
more performance with more cost. At best, the one-bit markingjthe time betweeji's adjustment of its explicit rate to the time
algorithms can match bandwidth to capacity only in the meajimeasures this explicit rate as its input rate fr§mThese reac-
requiring large buffers (as discussed in Section 11-C.2). tion delays will vary for different sources. Assume that there are

The general flow control problem has also received extensikgsources that respond with reaction defay; sources that re-
investigation (see [26] and the references within). This genesgdond with delayl+1, . .. , andbyg with delayd+dB, where dB
approach is helpful in framing specific flow control problemsis a known upper bound ojis reaction delay. There is also an
but required communication and computational resources amknown subset of th& sources that are unresponsive to port

not generally available in ATM and TCP applications. 4's explicit rates. In the first part of this paper, the rate of this
_ unresponsive traffic is assumed to be a constantlls/s. This
C. Outline of Paper assumption is justified if each unresponsive source has a guar-

The remainder of this paper is as follows. Section Il specifi@iteed minimum cell rate that exceeds gostexplicit rates. In
an appropriate plant and controller for the congestion cont@gction IlI-C, the unresponsive traffic is instead modeled as a
problem. Section Ill presents three algorithm enhancemeri@ndom process.
The first, described in Section IlI-A, dramatically improves the Itis assumed thaly, by,. .., bap (@ndC until Section 11I-C)
convergence time of the controller. The second, describedrgmain constant for periods of time long enough for adaptive
Section 111-B, extends the purely rate-matching control scheriféentification to occur. Faster convergence speed of the adap-
to provide queue depth management. The third, describedtii¢ algorithm results in better tracking of these time-varying
Section 11I-C, extends the plant model to include a noise digarameters. The plant is therefore given by
turbance, corresponding to nonresponsive sources with varying

rates. Then, a strategy for reducing the resulting coefficient bias () = bow(n — d) + -+ + bapu(n —d —dB) + C' (1)
is introduced. Conclusions are made in Section IV. y(n) = ( Yu(n —d)+C 2
[I. THE CONGESTIONCONTROL SYSTEM yln) =Blu(n —d) + € )
. e B= [b07 b17 de] and
A. Plant Definition u(n) = [u(n), u(n —1),...,u(n — dB)]*.

Reference [1] defines the mechanism used for congestion
control for ATM ABR networks. In this section, the importantNote that for convenience, filters in~! (denoting unit time
features of [1] are distilled into a plant model (Fig. 2). The foldelay) and time sequencessinare mixed in expressions, e.g.,
lowing description augments the material in Section I-A. (2). Matrix notation is also used. Equations (1), (2), and (3) are
Since each switch implements its own, independent coequivalent.
troller, one may consider the plant from the perspective of aSince the minimum delay in the plant & adjustments in
single switch SW. A discrete-time model is used, where samplén) will not be observed untik + d. Therefore, to generate
intervals correspond to control intervals, i.e., a new contraln), it must be decided at time what the desired value of
actionu(n) is calculated for each. y(n + d) should be. This desired bandwidth, which is notated
The present challenge is to devise a controller that residesy*(n + d|n), may reflect both bandwidth and buffer mea-
at output portj of switch SW and produces a single explicisurements made up to time(this may be generated by a pre-
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diction filter as in [9]). By extension, in many cases, the inputeros and one honminimum-phase zero, as shown in Fig. 3(a).

of the algorithm will bey*(n + d + V | n) (for some nonnega- Fig. 3(b) and 3(c) show!(n) andg¢(n) (with V = 10), re-

tive V), i.e., the desired value @f(in + d + V') chosen at time spectively. Fig. 3(d) shows the accuracy of the approximation

n. The goal of the congestion control mechanism of SW is {@) for this example.

choose the control signal(n) at timen so as to minimize  Since the planB is not knowna priori, the controller must

El(yin+d+V)—y*(n+d+V]|n)?. be determined adaptively. Various methods and architectures for
This plant model was introduced in [16]. It is a direct generdaptively discoverin@(n) are explored in [21]. Fig. 4 speci-

alization of the plant models implicit in the work of Fahmy, Jaiffies the structure for controller identification recommended by

et al. [14] and Fulton and Li [17] (see [16]), which have beefi21]. The controllelQ(n) can be adaptively determined using

extensively simulated under realistic conditions. the normalize least mean square (NLMS) algorithm [45]. Faster
convergence speed of the adaptive algorithm results in better

B. Controller Definition tracking of the time-varying parametersBfresulting from the
The plant (3) is a finite impulse response (FIR) filter and igpening and closing of ABR connections. At timecalculate

fth_us bpunded-_input—bounded-o_utput (B_IB_O) stable. However, Wn—d—V)= Q(H)Ty(n) (5)

it is quite possible that plant (3) is nonminimum phase (NMP), A N . . . T

necessitating a controller that performs adequately with NMP Q(n) = [Go(n), Gu(n); .-, duc(n), foc(n)]

plants. The large phase lags inherent in NMP plants generalfy (n +d+V [n) = [y (n+d+V[n),...,

make them difficult to control. However, the challenge is greatly Yy (n+d+V —dQ|n—dQ),ypc]"

S|mpI|f|ed_|f the NMP plgnt is known t(_) be stable. Sp_ecmcall_y, y(n) = [y(n),y(n — 1), ..., y(n — dQ), ync]*

the adaptive controller, first proposed in [21], approximately in- ©6)

verts the stable FIR plant (3) with another FIR filter. The concept

of approximately inverting one FIR filter with another adaptive efn)=eu(n—d-V)=uln—-d-V)

FIR filter is not new, e.g., [37], [39]. Yet this concept aflap- —difn—d-V) (7

tive approximate inverse contreéems to have gained relatively R R py(n)

little attention despite its attractive characteristics, perhaps due Q(n+1) =Q(n) + WG(H)’ 0<p<2

to limited convergence and stability analysis. Analysis of this 8)

controller, found in the Appendix, demonstrates attractive per w(n) = Q(n F 1Tyt d+ V| n). )

formance for the current plant and may increase the adoption of

this control scheme in other applications. The scalard is the minimum plant delay} is an operator
To understand adaptive approximate inverse contrehosen (nonnegative) inversion polynomial delay (previ-

consider that the planB(z*) can have zeros inside andgysly discussed), ang: is the adaptive gain chosen such

outside the unit circle. The ideal inverting IR filter is thenpat o < ;4 < 2. The constanypc is operator-chosen,

B~Hz7Y) = 1/B(z7"). The time-domain realization gppended to the delay-chain values ff} in (6) so that

b=Hn) = Z7HB7'(x7")}, where Z7{xz(:71)} is the the final tap of (n) becomes a DC tagnc(n) (see [20]),

inverse Z-transform ofx(~»~1) [38], is not specified until a Q(n) = [Qlin(n)T’qADC(n)]T_

region of convergence is specified. If the region of convergencerig. 5 shows the complete control architecture. The identi-

is chosen to include the unit circle, the impulse responggation section uses NLMS adaptation to deternide + 1)

is generally two-sided, i.e., nonzero for both positive an@nhown withjpc separated from the remaining linear tag..,

negativen. However, unless there is a root 8{(z~*) on the and withype = 1) by creating estimaté(n— V — d) using (5).

unit circle, thereby preventing a region of convergence théf(n + 1) is copied into the Controller, which produceén)

includes the unit circlelb—*(n)| converges to zero exponen+rom the set poiny* (n+V +d|n). The plant is represented

tially asn — oo [38]. By delayingb'(n) by V samples, the by (3).

resultingb=!(n — V') can be truncated to form an FIR filter if

b=Y(n—V) =~ 0forn < 0andn > dQ (V > 0). The resulting C. Discussion and Comparisons

causal(d@ + 1) tap FIR filter (n) approximates(n — V)1

increasing well with increasing choices Bfandd@ (if B(z)

has no roots on the unit circle)

The control algorithm (5)—(9) has many attractive features,
as described in the Appendix. Specifically, the Appendix shows
that, under a set of reasonable assumptions, the adaptive, FIR
v controller fiIterQ(n) converges to its optimal Weiner solution

@ Q= (B ) Elymyutn—d— V)] (10)

Note that adding delay is a common characteristic of nonmim the mean and mean-square. Further, the Appendix

imum phase plant control, given the large phase lags inherengimes conditions that guarantees théitn, ... y(n) —

nonminimum-phase plants. (The above explanation does notgpn|n —d — V) = 0.

pear in [37] or [39], although the more recent [40] makes brief, This plant-controller formulation limits itself to controlling

similar comments). rates, with no explicit queue control. This strategy, supported
To illustrate, consider as an exam@é> 1) = 2+ 921 + by [8], requires that the bandwidth available for ABR traffic be

8z~2 4+ 3273, which has a pair of complex minimum-phaseslightly under-utilized, thus creating extremely short (or zero)

z

B(z1)

Q" =q+qzr "+ 4 quor 9 ~
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Fig.3. B(z7')=2492"1482724327% (a) The zeros oB(z!). (b) A two-sided, causal impulse respomse (n) if the region of convergence is chosen
to include the unit circle. (c) The impulse response(f), a delayed, truncated versionlof! (). (d) The convolutiorb(n)*g(n) &~ z~1°.

() B un-d) 1) Simulation Framework:To provide a baseline for com-
v parisons in this paper, a common simulation framework is now
/ ' defined. These simulations use the Matlab [46] simulation tool.
0, = e,(n-d-v) The plant, defined in Section II-A and shown in Fig. 2, envi-
sions a switch SW having an output pgrtontaining a conges-
tion controller. For the purpose of a common simulative frame-
Fig. 4. Direct inverse plant modeling. work, the output port rate of poftis 2488 Mbps (million bits per
Y4 nln—d—v)-y(n) second)= 5.869 Mcps (million cells per second), i.e., an OC48,
which is a realistic port speed for ATM switches currently under
Controller development. Of that, some subset (10-20% seems reasonable)
of the bandwidth will be allocated for ABR traffic, and in the
ya+a+vim  current framework, 1 Mcps is used as the average ABR rate for
port j. Let C = 200 Kcps (thousand cells per second) of this
1 Mcps constitute ABR traffic controlled by other ports, leaving
on average 800 Kcps of ABR traffic responsive to the pofihe
set-pointy™* is therefore chosen to be a white Gaussian process
with meanE[y*] = 1 Mcps and a standard deviatioty- of
22 Kcps?
It seems plausible that the complexity of ABR will discourage

queue lengths in steady state. By avoiding explicit queue mdi: Use for short-lived connections (e.g., domain name server
eling, the plant is reasonably modeled as an FIR filter and th4€ries, individual e-mail deliveries, etc.). Instead ABR con-
open-loop stable. The proposed controller, lacking the abilif§fctions ina single port will likely constitute a small number of
to modify closed-loop eigenvalues, can only be employed wilirae bandw_|dth aggreganons of traffic, e.g., connect!ng 5|t_es of
known stable plants. Its greatest asset s its effective and intuit&°!lege or industrial campus. Therefore, for these simulations,
control of stable NMP plants. In Section IlI-B, explicit queue
control is proposed. The integrating action of a queue poses Sta{]’hese deviations about the mean of the desired ABR rate are determined by
bility i | b h ith the extent that the port measures and reallocates bandwidth from higher level
llity issues. _Contro parameters must be chosen with careglQyice category flows. It is somewhat uncertain how aggressively ports will
ensure stability of the enhanced system. attempt to reallocate unused bandwidth. Very small variances are possible.

Fig. 5. Complete control architectugnc = 1).
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let the 800 Kcps of responsive ABR traffic be comprised dhe amount of available bandwidiff so that a futurey will
22 high-capacity, greedy sources, each averagingjMbps= match a future,* in some appropriate way. Thus the controller
36.4 Keps. If the number of ABR cells that must include oné5)—(9), in its simplest versiofd() = 0), is essentially equiva-
RM cell, Nry, is 32, then the per-connection rate of RM cellgent, in performance and complexity, to the suggestions made
corresponding to responsive ABR sources is 1.14 Kcps, or do Fulton, Imer, and Fahmy.
RM cell every 880 microseconds. The measurement and controConsider how these one-tap controllers perform. The con-
sample time i, = 1 ms. troller in each case consists of dividing a future estimate of
The minimum response is chosen to be delay 10 msec. y*(n) by the associated,. All provide fair and efficient allo-
The distribution of the delays of the 22 sources is given lpation ofy™* in the long-term. The best such a controller could
B(z71) = 2710(2 49271 4+ 8272 4 3273). This corresponds accomplish is that the incoming ABR bandwidth matches the
to a plant with one nonminimum phase zero and a pair of coravailable ABR traffic in the mean, i.eE[x(n)] = 0,x(n) =
plex minimum phase zeros [see Fig. 3(a)]. The number of tap§n) — y(n).
in the controller is{Q = 30, with V' = 10. The adaptation gain  While the authors of [14], [15], [17] make a fair and stable
is set at its optimal valug = 1. Cell rates are not strictly lim- allocation their performance goal, here fair and stable alloca-
ited to be nonnegative, although manual inspections reveal thiah is taken to be a minimum acceptable performance objec-
this rarely occurs after an initial transient. tive. This difference in performance objective may be based on
2) Comparisons to Less Complex SchemBsfore pro- amodeling assumption. Clearly for ATM ABR congestion con-
ceeding to the main contribution of this paper, the algorithtnol systems, two quantities change with time: the amount of
enhancements, it is appropriate to evaluate the merits of thendwidth allocated to ABR and the number of competing ABR
general control scheme proposed here. Other approachesdnnections vying for this bandwidth. Since operational experi-
congestion control have been outlined in Section I-B. Includethce with ABR is limited, it is difficult to know with certainty
in this list are approaches that claim to provide satisfactotlye time-scales over which these two quantities change. How-
performance with a lower computational cost than (5)—(9). kver, this paper assumes that an ABR controller is likely to see
what follows, it is shown that the added computational cost @ available bandwidth change more rapidly than the number of
(5)—(9) provides better performance than less computationatignnections.
complex schemes, specifically [14], [15], [17]. Also, (5)-(9), If the available bandwidtly*(n) remains constant for long
in its simplest(d = 0) case, is essentially equivalent inperiods (e.g., multiples of the maximum round trip tinig, or
performance and complexity to the simpler schemes. 05 ~ 0, then the single-tap schemes discussed above work
Consider the proposed controller (5)—(9), specificallgffectively. Note that Imer, both in his development and simu-
the identification (8), with only one adaptive tap, i.e.lations, assumes thgt(n) is constant. Fulton useg(n), the

dQ =0,V =0,up =1 sample mean ofi*(n), in her calculation of the explicit rate

. . 1 . u(n —d) Since this paper assumes thé{n) changes more quickly
1) = — —d) - A S 74

an+1)=dq(n) + y(n) (un = d) = dlnjy(n)) y(n) than changes in the number of ABR connectiari$p ) is mod-

(11) eledasanoise source. Using this paper’s notation, in the one-tap
casey(n) can be modeled as
Note that in thelQ = 0 case, the NLMS adaptation devolves

into a single division. Compare this to Fulton’s identification . B(z"Y)+C
o 2 sing P vy =y a4V ImZELEE g
eff
S y(n) i.e., a noise source filtered through the FIR filter

Moo+ 1) = 2075 (B(=) + C)/Nug. From (12)

whereu(n — 1) is the time average of a sequence of previous x(n) =y (n|n—d—V)—yn)

values ofu. Fulton does not explicitly estimatg therefore re- B(z"YH)+C
quires the averaging om for convergence (unsurprisingly, the =y (njn—d-V) <1 - 7) .
recommended time interval for averagingdisamples). Simi- Nett

larly, Imer [15] calculates Unless,B(z~') = b,, the variance ofy(n), o2, increases as

. y oZ. increases. The queue sizg@eue(n), is the integral of ().
Nett,tmer = w From the definition of variance, for a one-tap controfl&, the
variance ofqueue(n), O—(?lueue' also increases agf increases

everyd’ samplesd’ > d, whereuw is kept constant over the past(these observations will be supported by simulations below).
d’ samples. The Fahmy parametdfective number of active This increases the necessary buffer size if overflow is to be
VCs or Neg Fanmy, IS defined similarly [14], albeitin an indirect avoided. Also, if buffer underflow is to be avoided, a larger av-
manner. . . erage queue size must be targetedéqlgue increases.

Clearly Neg Laberteaux = 1/@, Net Fulton, Vet lmer, and Since larger queue sizes require a larger memory cost and
J\AfeﬂyFahmy are adaptive estimates that attempt to capture thtso increases the delay through the switch, both of which are
same information. In each controller, this value is used to divigeeferably avoided, this paper views minimizin@, and thus
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Fig. 6. Set-point error (left), and size of queue (right), (same scaling as Fig. 7(a)¥ itk 22.
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(@)dQ =8,V = 4.(b)dQ =4,V = 2.(c)dQ = 0,V = 0.

queue(n), as a desirable performance goal. Using the simula-Fig. 6(a)—(c) show the performance, both in terms of set-point
tion environment established in Section 1I-C.1, Fig. 17 sHowerror,y™(n)
how ef'fectivelyrff< and queue size can be minimized by usingally degrading as the number of tafig decreases. In the lim-

31 (d@) = 0) taps in the controller (5)—(9). A& is decreased iting one-tap cas€d() = 0), the performance is essentially

to the limiting one-tagfd@ = 0) case, performance gracefullyequal to the performance of Fulton’s UT algorithm, shown in
degrades to that of the one-tap solutions discussed above. Fig. 7(a). This supports the near-equivalence of performance
predicted in the discussion above. (These simulations are iden-
tical to those shown in Fig. 17-where the desired queue size is

4For the sake of space economy, the simulations of (5)—(9) shown in thig)0—
section are in fact using the algorithm enhancements of Sections IlI-A and
11I-B. However, the basic complexity/performance comparisons are essentially

the same for the nonenhanced controller of (5)—(9).

—y(n), and the size of the queugyeue(n), grad-

200 cells-except for changesdifp andV as noted).
Some may be satisfied with the performance of the simple,

one-tap controllers shown in Fig. 6(c) and 7(a). However, it
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Fig. 7. Set-point error (left) and size of queue (right) with Fulton’s UT algorithmo(a) = 22. (b) o~ = 223.

is important to note that performance of one-tap controllers pgerformance/complexity curve of congestion control. At best,
highly dependent on the standard deviation of the set-ppjnt, these one-bit schemes will match the arriving bandwidth to
Wheno,- is increased an order of magnitude from 22 to 223he available bandwidth in the mean, with even greater error
the performance is observed to degrade an order of magnituvaeiancegi. The aforementioned comparisons can therefore be
[compare Fig. 6(c) to 8(c) and 7(a) to (b)]. In contrast, the muéxtended to the one-bit Internet proposals.

titap controllersd@ > 0) improve performance as the number
of taps increase, with the origindd? = 30 case showing no per-
formance impairment due to increasggd (compare Figs. 8(a)

and _17)' _ In this section, three additions to the congestion control mech-
It, IS well- knowp that the convergence time for LMS type alynism are introduced and discussed. Each addition provides nec-
gorithms, including NLMS, decreases as the number of tagSsary mortar in cementing together theoretical analysis and
increases [45]. The plots above begin after 2 s, as all cagggtical design. These three modifications are singled out for
converge within this time. However, convergence rates of tgention here since each addresses a general issue likely to
adaptive estimates increase as the number of taps decreasea,dﬁéar in many complex congestion control schemes, not just
vealing a short-term versus long-term performance tradeoff. ot of ATM ABR congestion control. The simulations use the

To s_ummarize, the added complexity of (5)—(9) proVidef?amework is described in Section [I-C.1. Material from this sec-
much improved performance over those of [14], [15], [17}01 was first published in [22].

Further, (5)—(9) can be simplified in implementation (by
reducing d@), thereby gradually reducing its performanc
and complexity to that of the popular one-tap solutions [14],
[15], [17]. For example, if the complexity budget for a specific The first algorithm enhancement addresses the convergence
available bit rate application allows five tapgy = 4), then rate of the controller. The results of the Appendix ensure
the added complexity of these five taps appears justified.  that the originally proposed congestion controller converges.

Other, even computationally simpler, congestion contrélowever, without the modifications presented in Section IlI-A,
schemes have been presented for the Internet (see Section leBjvergence rates are unnecessarily, and possibly unaccept-
Generally these schemes are one-bit marking approachasdy, slow. Significant speedup is obtained with the following
These approaches occupy a very different location on theodifications.

I1l. ALGORITHM ENHANCEMENTS

. Convergence Rate Improvements
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Fig. 8. Set-point error (left), and size of queue (right), with. = 223. (a)dQ = 30,V =10.(b)dQ =4,V =2.(c)d@ =0,V = 0.

1) Unmodified ConvergenceFig. 9 shows the results of inversely proportional to the eigenvalue spre&d../Amin
simulating the system without any modifications to improvef R = E[y(n)y(n)?] [45]. Note that the eigenvalue spread
the rate of convergence. After 8 s, the convergence of tleea measure of the conditionality of a matrix. It is more
controller is so poor that it appears to be admitting over twigifficult to specify the convergence trajectory EI[Q(n)] for
the desired rate of traffic. This is clearly an unacceptablenormalized least mean square (NLMS) adaptation in all but the
performance. simplest cases [43]. Practical experience shows that speed of

2) Managing the Eigenvalue Spreadhe least mean convergence is still a strong function of eigenvalue spread, with
square (LMS) algorithm has the property that the mean of therger spread results in slower convergence.
coefficient error vectorE[Q(n)], converges to zero at a rate  What follows are three proposals for reducing the eigenvalue
spread oRR, thereby increasing convergence times, followed by

SNote that the results from the Appendix ensures ti{at) will eventually . . .
a comparative discussion.

coincide with y*(n).
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Ely(n)] is by directly calculating sample means. The most
3500~ common method is using a single-pole filter. If the sample
| means ofu(n) and y(n) are notatedusy(n) and ysu(n)

3000 respectively, then
g 2500 usn(n) = usm(n — 1)(1 = 6) + éu(n) (13)
§ ysm(n) = ysm(n — 1)(1 = 6) + dy(n) (14)
EZOOG where0 < § < 1.
3 1500 The sample meanssy; (n) andysy (n) then replacer andg
[&]

in Fig. 10. As shown in Fig. 12. Generally no DC tap is needed
(ypc is eliminated fromy andy ). From Fig. 12, the necessary
and sufficient condition thab’[y*(n|n — V — d)] = Ely(n)]

is thatg = (n) is given by ([24])

1000

|
500 i
|

dQ
Time (Seconds) q"(n) = Elu(n)] — Efy(n)] Z gi(n). (15)

Fig. 9. Comparing the set point (lower curve centered at 1000) and port In ; ;
Rates (higher curve approximately centered at 2000)—unmodified case. ?I’!Ee)wever’ there is a problem. Slgn@ (n) creates feedback

lower set point,* plot remains around 1000 Kcps while the port input rate Paths not readily Ops_ervable in Fig. 12. Wﬁh’l) = u(n) -
plot has a mean value around 2000 Kcps. ugm(n), andy(n) similarly defined, redrawing Fig. 12 gives

Fig. 13, where the feedback path is plainly shown.
Several simulations expose the unstable behavior suggested
nt%)eFig. 13. When the closed-loop poles and zeros of this system

a) Reducing Means via Constant Estimat&everal
strategies to improve convergence time of the system defi o . o
%e periodically plotted during system convergence, it is clear

in Section Il have been proposed and evaluated. For t t unstabl forman < when the closed.| |
application, the best strategy is as follows: Provide the iden# 1at unstable performance occurs when the closed-loop po'es

fication algorithm with zero-mean signals by estimating argll outside the unit-circle during the convergence interval.

removing the signal means. Then perform “DC correction” i nsurprls(ljngly, stz;blle pe(r)fg;mz_;trr;]ge r:S rrl(r)]re “f‘;eht/ éfs's |
the controller by an additive term. ecreased, €.g., DEIOW . ' IS has the efiect of nearly

The basic concept is illustrated by Fig. 10. leand 3 be breaking the feedback path shown in Fig. 13. However§ as

fixed estimates oF[u(n)] and F[y(n)] respectively. Subtract is decreased, the sample-mean estlmagms(@) andysyi(n)

: . ; : ..take much longer to converge to good estimategzfi(n)]
« and g from their corresponding signals to perform identifi- o 9
cation. Constants: and 2 are then added to the controller toandE[y(n)]' As a resilti(n) ands(n) take longer to become
perform DC correction. It is easily shown (see [24]) that fo?pproxmately zero-mean signals, thus the eigenvalue spread

A Y, Y, T i ) :
the architecture of Fig. 10, on€g(n) converges to its optimal glfoval[g(n)Y(n) ] remains large an@;(n) converges very
Qo, E[y(n)] = Ely*(n|n -V —d)]. '

h | hods for choosinand3. O . ¢) Reducing Means via Downsampled Estimat&he
b'I'T ere are ieveral me:] ods 0: choosingndf3. One possi- optimal strategy is now presented. To break the feedback path
lity is to set3 equal to the sample meangf(n + d + V' |n). ghopn in Fig. 13 and thus avoid instability, use significantly
Then, if V is the total number of ABR flows supported by th%own-sampled versions afsyi(n) and ysi(n) for DC cor-

p_ort (including bott_le-necked flows), set= §/N. The _intu- rection. Specifically, run the identification process as shown in
itive proposal of using sample meansyondw leads to insta- Fig. 12, but update*(n) at a down-sampled rate
bility, as will be shown in Section 111-A2b. T

Simulations show the method depicted in Fig. 10 has the po- g (n) = usp g« (1) — Ysm g« (N)
tential to make a significant improvement in convergence rate, dQ
but that performance is quite sensitive to the accuracy of the X Gi QLJ dSInterval)
mean estimates. For example, Fig. 11(a) shows the case when i—0 dsInterval
a = 0.99E[u(n)] andfg = 1.01E[y(n)]. The measured eigen- Ut ga () = usn (L n J dSInterval)
value spread oR is 50. The convergence is very fast. How- “ dsInterval
ever, whena = 0.9F[u(n)] and3 = 1.1E[y(n)], as shown YsM g« (1) = Ysm (LMJ dSInterval) (16)

in Fig. 11(b), the performance is noticeably slower, albeit much
better than shown in Fig. 9 (where essentially 0 andg = 0). where|z] is the integer part of and dslinterval is an integer
The measured eigenvalue spreadl.is x 10°. down-sample interval.
In summary, if an offline method can be found to estimate By infrequently latching the values ofisy 4+(n) and

E[u(n)] andE[y(n)] accurately, this method holds promise, bugsn .- (n) used for determining*(n), the feedback paths of
its effectiveness decreases rapidly as the estimatesl 3 be- Fig. 13 are essentially broken. For example, Fig. 14 shows
come less accurate. the case whedslnterval = 500, i.e., ¢*(n) is updated once

b) Reducing Means via Constantly Updating Estiper 500 ms. The final measured eigenvalue spread is 6. The
mates: One obvious method for estimating[u(n)] and convergence rate is satisfactorily fast.
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Fig. 10. Architecture for adding and subtracting fixed estimates of the means.

safomerryy B. Control of Queue Size
o ’ o 7: T :T o 3 o T: T Congestion Control work done by control theorists, e.g.,
CTTo T Ty T T [4]-][7], [9], often explicitly include queue matching in addi-
2 5 -- Jl‘ - :L -- 3 -- J: i tion to rate matching in their cost functions, no doubt in part
; CoTaTTTrTTIe e a response to [7]. In contrast, Section II-B presents a pure
£ ; ; ; ‘ ; rate-matching controller, a strategy supported by [8]. This
§ e S strategy requires that the bandwidth available for ABR traffic
° i Tl e A be slightly under-utilized, thus creating extremely short (or
e R e zero) queue lengths in steady state. While this has advan-
i— -- *. --- |+ -- —i— -- +: --- tages, e.g., shorter end-to-end delay and smaller memory
P requirements, it may be more desirable to have, on av-
Time (Seconds) erage, longer queue depths. Since ABR is not designed
(@ for delay-sensitive traffic, it may be preferable to target a
Set Point eror: y"y nonzero buffer size in order to ensure network efficiency.

The scheme presented thus far does not allow for a desired
gueue depth greater than zero.

Queue control is fairly easily incorporated into rate-matching
schemes. The basic idea, suggested by [13], is to use any pre-
ferred rate-matching scheme to determine an explicit rate. This
explicit rate is then increased if the present queue depth is below
its target, or decreased if the present queue depth is above the
target.

The proposal of this section is distinct from [13] in that it
scales the set poingi (n + d + V' | n), notthe explicit rate(n)
directly. Specifically, decide at time the target input rate for
timen + d + V, but notate this a®(n + d+ V |n) instead
of y*(n+d+V |n). The targetinputrat®(n + d + V| n) is
Cotieot valugs, (5) Set-Point ertor when estmatamd s ae within 10% of C10SEN Without regard of the queue size. Further, for simplicity
their correct values. of presentation, assume thatn + d + V' |n) is the actual ser-

vice capacity for ABR traffic at time + d + V. Define a scalar

3) Discussion: Convergence rate is a serious issue for thg(n) thatis monotonically decreasing function of the queue size
proposed explicit rate congestion controller. Without modificafueue(n). Control of this queue size is accomplished by mul-
tions, performance is unacceptable (Fig. 9). If accurate estimatigdying &(n + d + V' | n) by n(n) to formy*(n +d + V' |n),
of E[u(n)] and E[y(n)] can be obtainea priori, fixed esti- i.e.,
mates provide excellent performance [Fig. 11(a)], but if these
fixed estimates are less accurate, performance degrades severely  y*(n+d+V |n) =n(n)®(n+d+Vin).  (17)

[Fig. 11(b)]. An online sample mean calculation works quite
well, as long as the feedback path of Fig. 13 is broken by dowfihis queue-aware set-poigit(n + d + V' | n) is used in exactly
sampling the DC correction update (Fig. 14). the same way as outline in Sections IlI-A2a and 1lI-A2c. The

Cell Rate (Kcells/sec)

Time (Seconds)

(b)
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Fig. 13. Architecture for subtracting sample mean estimates, as shown
Fig. 12 with feedback explicitly shown.

. . Time (Seconds)
plant model now includes the queue-deptieue(rn), which

progressesas Fig. 14.  Set-point error whe@*(n) is updated twice a second.

queue(n + 1) = queue(n) + y(n) — O(n|n—d—-V). (18) [ ey

L* T &
Taking the constant mean estimate method of Section IlI-AZ %
(shown by Fig. 10) and incorporating (17) and (18) produce 5 - T
Fig. 15. e o ‘ 1] p— <
To illustrate the queue control provided by (17), reconsid€e(n+a+vin) b )é% copy) * i * o)

the example discussed in Section IlI-A2a, where accurate ca yH(nsd+Vin)

stant estimates = 0.99E[u(n)] and = 1.01E[y(n)] are used
to reduce the convergence rate. The set-point error is shown
Fig. 11(a). In one example (not shown here), with no attempt 1
control the size of the queue, ig(n) = 1, the queue grows
to just over 5000 cells. To target a nonzero queue-depth, ust
n(n) function that decreases monotonically witheue(n). A
sample function is shown in Fig. 16. Fig. 15. Queue control added to controller of 11I-A.2.A. Compare to Fig. 10.
Using the function shown in Fig. 16, with
queue_scale_bound = 0.01, Q1 = 100 cells, Q> = 200 cells,
Qs = 300 cells, the target-queue-depth is achieved the witho
perceptibly affecting the convergence rate, as shown in Fig. 1
Comparing Figs. 10-15, clearly potentially destabilizing 1
feedback is created by performing queue control with (17
As discussed in Section II-C, the controll€)(n) lacks the
ability to stabalize unstable behavior in the system. Tr I } l
integral action produced by explicitly modeling the queu < Q Q

Lemmmmmmccem e mmmm e ]

1+ queue _ scale _bound

1—queue _ scale _bound

queue(n)

SFor ease of presentation, we ignore the saturation nonlinearity of the quefig. 16. Sample;(n) Function.
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size of the queue

| {(n-d-V)
B(-")
g a)
. e i(n—d-v)
1.015 T T T T T T T
o - ‘E‘ T ? - "i‘ . ‘E - 5‘ - ‘E‘ - ‘i - Fig. 18. Identification process incorporating plant noisen).
106 -~~~ 7 - -~~~ -7y - -~
1 | 1 1 ! { | (
o | ,?J_ - li el _E S S of port j has been characterized as a constafgsee (3)). This
L Y characterization is plausible if the nonresponsiveness is due to
Time (Seconds) certain source characteristics. For example, a source may be en-
(@) titted to a minimum cell rate (MCR) that exceeds the explicit
rates proposed by poft or the source provides data at a fixed
T T ] I ..
SO I A R S rate below the offered explicit rate of pgrtHowever, an ABR
R S source may be nonresponsive to pdsecause it is responsive to
R another port( j) of another switch. The explicit rates of pert
3 P are no more likely to be constant than those of poftherefore a
2 ot more realistic traffic model for pogthas nonzero variance in its
< ‘ ; ; — nonresponsive traffic. Specifically, a zero-mean, white Gaussian
§ e noise signato(n) which is uncorrelated ta(rn ), is added to the
° plant (3)
y(n) =B u(n — d) + C + w(n) (19)
Tme (Suonds) The signal(C + w(n)) can be viewed as the nonresponsive
) traffic having mearC and variancer2 . Lety..(n) = y(n) —

. _ . w(n) be the plant output without noise. Fig. 18 shows the mod-
e B et e identiication process incorporating the plant noise.
queue depth is actively controlled. Estimatesnd 3 are within 1% of their A parameter estimation process is said to be biased if the
correct values. Note that this is comparable to Fig. 11(a). mean of the estimates are not equal to the parameters being es-

timated. In the Appendix, the controller identification process

in the plant, then incorporating queue size in the controlleaf (5)—(9) is shown to converge to its Weiner solution. For the
makes unstable behavior a possibility. Intuition suggests, andiseless caséw(n) = 0),y(n) = y<(n) and the unbiased
simulations confirm, that stability is only in jeopardy when th&Veiner solutionQug is
scaling ofn(n) is aggressive. Stability is maintained, using
the n(n) shown in Fig. 16, withqueue_scale_bound equal to Que = Qo

0.01. However, if we changqueue_scale_bound from 0.01 = {E[y(n)y(n)T]}—lE[ ( Yu(n —d — V)]
to 0.1, simulations show [24] that the oscillations introduced o .
significantly impact overall performance. It seems intuitive = {E y=(n)y=(n) ]} Eyw( yuln —d—=V)].
that using a smaljueue_scale_bound can make the impact of (20)
ony*(n+d+V nearly negligible, yet still effect the ) ) ) )
z(egred g{)e(ﬁavior. In) ynegig y Whenw(n) # 0, the biased Weiner solutio® 5 is
C. Biasing Issues Qp ={E[y(n)y(n )T]}_IE[ (n)u (” —d—V)]
The third algorithm enhancement responds to an enhance- = {E [yw n)y ] +o I}
ment in the plant model. The enhanced model generalizes Ely=(n)u (n—d 1. (21)

the behavior of the nonresponsive ABR sources, allowing
them nonconstant rates. This is modeled as a noise sourc€learlyQp # Qus whenw(n) # 0.
the plant model. This noise causes biasing in the parameteR) Related Work:The biasing effect ofw(n) # 0 on
estimates used for the controller. A novel method to minimizlaptive approximate inverse control was previously reported
the bias is introduced. Unlike previously published remedi¢39]-[42]. The accompanying recommendations focus on
for bias, this solution requires only a trivial amount of addeddding a second adaptive filtﬁ(n), which includes a DC tap,
calculations. Further, unlike other methods, this new methtal estimate the plant. This estimate will be unbiased, as the
does not jeopardize convergence. noisew(n) occurs on the output of the estimated plaB?.

1) Generalizing the Plant by Incorporating Nois&intil this Fig. 19 shows a controller estimation process that identifies
point, ABR traffic that is nonresponsive to the explicitrate)) ~ Q(n) with B(n) in place of the true planB. The scheme of
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C+a(n) N

model(n)

y*(n+d+Vin) N .
N Q B B Q
(copy) (copy)

4

Fig. 19. A method for removing bias frotﬁ(n,) [39]. The left figure is used to estimaf®. The right figure depicts an offline process to estirrételsing the
estimateB from the left figure.

Fig. 19 has intuitive merit, yet lacks complete analysis. Prelimvherescale,,, is an operator chosen constant (discussed below).
inary, often heuristic, results are presented in [39]. The posBILMS adaptation is performed using

bility of poor estimates oﬁ(n) motivates yet another architec-
ture (see [39, Ch. 7]) to reduce the sensitivity(bqﬂ) to the

parameter errors ii3(n). However, this new architecture fil- cye (1) = y(n =) = §ln — ), (24)
ters its adaptation error, and thus cannot be assured to converge. O(n+1)=0(n)+ w. (25)
Other possible solution to the biasing problem exist in the liter- e(n) p(n)

ature including the pseudolinear regression algorithm [44] and . .
the simple hyperstable adaptive recursive filter (SHARF) algho" €ach, 8(n+1) is translated into the controller FIQ® (n+
rithm [28]. Both require added computational complexity and) Using
care to ensure convergence.
3) Reducing Estimation BiasThis section presents a . 1

0 R 5
novel method for reducing the biasing effect of plant noisg (n+1)= fo(n + 1)scale u[ bi(n+1),=f2(n+1),...,
described in Section I1I-C1. Unlike the previous suggestions p D1 _é Y 1 P T (26
of Section IlI-C2, this strategy does not require additional ~— w(n+1), 1, —Orps(n+1),..., ~bag(n + 1" (26)

adaptive filter coefficients, e.gB(n) in Fig. 19 (or C(n) .
of the pseudolinear regression algorithm), and is thereb Note that (23)~(25) do not attempt 10 include a character-

computationally less expensive. Further, this bias-reduci tion of the noise, nor aitempt fo otherwise filter the adap-

strategy poses no threat to global stability, as was the casevf gon (fatrror. Sut_:h tec_hnllques,_ !ncludlrllg Str;%se of [44] _and
the methods of Section 11I-C2. ], often require strictly positive-real ( ) assumptions

The strategy employed is reparameterization. Instead of adgp
tively finding Q(n) by estimatingi(n — d — V) as in (5), re- 0
peated here

_the “noise filter” or some other plant aspect. Violation
such an assumption compromises convergence, both the-
oretically and practically. By avoiding any adaptation error
filtering, the reparameterized adaptation of (23)—(25) will

. A converge to its Weiner Solution. This Weiner Solution will

in —d=V)=y(n) Q) be biased, but as shown in the following, the biasing is
= go(n)y(n) + G1(n)y(n — 1) decreased for the reparameterized case as compared to the
+ -+ Gag(n)y(n — dQ) (22) nonreparameterized case.
Choosingnr = 0 creates numerical problems in calculating
use the following reparameterized adaptive model to estim4#3) and (26). This is the reason for choosing a nonzefor

y(n — 7): the purpose of estimatingo(»~*). Ideally 7 is chosen ag =

argmax; |go;|, although anyr such that|g | is “relatively

large” will avoid numerical problems.

N For the noiseless case, i.eg(n) = 0 both the orig-
+02(n)y(n = 1)+ +8x(n)y(n — (x = 1)) inal nonreparameterized adaptation scheme (5)~(8) and the
+ Orp1(n)y(n — (7 + 1)) reparameterized scheme (23)-(25) have unbiased Weiner
+~~~+édQ(n)y(n—dQ) Solutions. Let the unbiased Weiner Solution for the non-

T reparameterized case and reparameterized cagebeand
=¢(n)" 0(n) @3) " espect
UB, pectively

§(n — ) = Bo(n)u(n — d — V)scale,, + 0 (n)y(n)

for some appropriately chosen intege < » < d@, and
Qus = {E[y=(M)y=(n) T} Ely<(n)u(n —d - V)]
p(n) = [u(n —d — V)scaley,,y(n),...,y(n — (v — 1)), 27)
y(n —(r+1)),...,y(n — dQ)]" Ous = {ElpL (n)os(n)"1} 7' Elpg (n)y=(n — m)]. (28)
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Further, define the transformation 8fs to Q¢ as an all-zero control signal, i.e., doing nothing is better than at-
tempting any nontrivial control, the biasing effect is so great. In
1 n r 2 . .
Q= [—bus1. —Ouna. ... contrast, ag -, becomes large in (33), the matrix

scaley,fus o
—6UBx 1, —0UB At1,- -, —OuBagl’- (29)

T 2 q:
Note thatQ?y, = Qus if perfect inversion ofB by Qo is {Elpm (e ()] + o diag{0. 1,1, 13} (34)

assumed. . . . . .
. . becomes increasingly diagonal. (It also becomes increasing|
Whenw(n) # 0, the Weiner solutions for both the nonrepa; gly clag ( gy

. ; : ill-conditioned, but avoids singularity sind&fu(n—d—V)?] #
rameterized cas@® g and reparameterized caég are biased. 0.) As (34) becomes more diagonal, from (383 o, the first

Q {E[ ()3 ()] term of @gg, becomes close to zero. Surprisingly, as the noise
B 2yw ﬁ Yt increasesf o ~ Bup.o and_thusonBﬂT is only slightly biased
+021}  Elyo(n)u(n —d— V)] (and not equal to zero, as in the nonreparameterized case). By
(30) construction, ther’th tap of the controller is one of its most
T significant taps.
05 = {E[(pw (M)¢e ()] L Before presenting the simulation results, a few comments on
+o02 diag{0,1,1,...,1}}" scaley, are in order. The constastale,, should be chosen
X Elp_(n)ys(n — )] (31) to reduce eigenvalue spread of the auto-correlation matrix
E[p(n)e(n)T]. As discussed in Section 111-A.2, reducing the
whereg_(n) is defined eigenvalue spread of the auto-correlation matrix is desirable
as this reduces the convergence time. One possible measure-

0o (n) = [uln —d— V)scaley,, y=(n), . .., ment-based scheme gale,, = ,/62/52, where 05 and
Yo(n— (n = 1)) ym(n— (x +1)),....y=(n—dQ)]*. oo are sample-mean estimates of the variancey aind
respectively.
Noting the bias error i) 5 andf g as vectorQpr = Qp — The simulation experiments presented below demonstrate
Qup andfgg = 0 — 0z, then from (30) and (31) the reduction of bias that occurs with reparameterization.
As in Section II-C.1,B(z 1) = 27192 + 927! + 8272 +
quB,0 327%),C = 200,dQ = 30,V = 10. The sample time is
: T, = 1 msec. The bandwidth available for explicit rate traffic,
T 21— 2 ] y*(n|n —d— V), is modeled as a Gaussian random process
Qoe =~ {Ey=(my=()']+ox1} " og | quns Wit(h |E[y* (n|n —) d— V)] =1Mcps,s2. = 484 Kcps. When
: reparameterization is performed,= 9, as this is the largest
qUB,dQ magnitude tap ofQup (Fig. 20). To reduce the eigenvalue
(32) spread of the autocorrelation matrix, the methodesfucing
and means via downsampled estimafBsction 11I-A.2.C) is used.
0 -1 When the plant output noise(n) is a zero-mean, Gaussian
1 random process with variancg?, = 120 Kcps, without
Osr = < Elp_(n)e_(n)']+ 02 ) reparameterization, biasing is pronounced. Fig. 20(a) shows the
- impulse response the parameter estin(atand the optimal,
unbiasedQug after 8 s (8000 samples) of convergence. The
i 00 i estimateQQ bears a poor resemblance @us. When Q is
quB,0 convolved withB, instead of the expected impulselat= 10
: Fig. 20(b) demonstrates th&} poorly invertsB. Comparing
fopul & ' (33) bode plots ofQug, Qs, andQ in Fig. 20(c) shows thaQ
EB”’_l ) does indeed closely resemiflgs and poorly resembleQus.
UB,x+1 The set point errory*(n|n — d — V) — yz(n), is shown in
: Fig. 20(d).
In contrast, the reparameterized case, with= 9, shows
much less bias. The impulse responseQ)fs much closer to
Itis possible to translais g, into an analytical expression for Qf;; as shown in Fig. 21(a). Convolution @‘andB reveals an
the bias erroQ% . However, the nonlinearity of the translationmpulse at delay” = 10, as shown in Fig. 21(b). In Fig. 21(c),
(26) and (29) obscures any added intuition provided by such tie bode plots 00?5, Q%, andQ show thatQ) well approxi-
analytical expression. Instead, what follows are heuristic argmratesg ¢ and nearly well approximateg?, ;. The upward shift
ments claiming that2 has a larger biasing effect €5 than of Qas compared t@Q?  is consistent with the slight overshoot
onéz, and thusQy. observed in the delayed impulse of Fig. 21(b). The set point
Consider the large2 case. Ass2 increases, (32) indicateserror, as shown in Fig. 21(d), is noticeably superior as compared
thatQgr — —Qus, or Qg — 0. Such a controller producesto the nonparameterized case shown in Fig. 20(d).

[V

4
qUB,Tr

]
L qUB,dQ -
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Fig. 20. (a) Impulse response € (solid line) andQ 5 (dash-dot line). (b) Convolution d andQ. (c) Bode plot 0fQ uy (dash-dot line)Q 5 (dashed line),
andQ (solid line). (d) Set-point errog*(n|n — d — V') — y(n), with 2 = 120 Kcps. No reparameterization.

IV. SUMMARY AND CONCLUDING REMARKS In [20], the adaptive process for the controlté(n) given
\@/ (5)—(9) is guaranteed to converge stably to its optimal so-
tion Qo (defined by (10)). Specifically, [20] definés(n) =
(n),y(n—1),....y(n—dQ)]" andQ(n) = Q(n)— Qo, and
HH"keS and justifies the following four assumptioAssumption
s GaussianAssumption Z(n) andQ(n) are independent.
ou(n — V — d) andQ(n) are independenAssumption 3

This paper takes up the challenge of finding an effecti
control strategy for the explicit rate congestion controlleﬁi
The problem is motivated in Section I, where other relat

compared to other schemes in Section Il. The new contributio
of this paper are presented in Section Ill. These contributio . o = B ETY Y
consist of algorithm enhancements to the system defined | € auto-covariance matri, = .[( (n)—E[Y(n))(Y(n)—

: : : ) Y(n)])*], is full rank; Assumption 4x < ||y (n)||?, 0 > 0
Section I, and include convergence rate improvements, qu ’ A 0= 10 .
depth management, and a method to reduce coefficient b‘g hen the following theorems are proved, thereby assuring

without compromising convergence or significantly increasin Z’;an\d;pjglgzontroller coefficients converge both in mean and

computational complexity. . . .
There are several potential directions for future research. Onér heorem 1:Given Assumption 1-Assumption 4 amd <

path would examine real-world protocols and networks in dﬁ;hzhm"—’zo_OGE[Q(Q] =0 ion 1-A ion 4 anid
attempt to improve the fidelity of the plant model. This will al- 2eolrem ' Elvqn s~sumgt|o_n ;*if]%mftlog‘ _f}{“f
most certainly create a more complex plant model. Modeling tH%ZreWHn;H‘% g JEIQeE:le)?o(gs)ta]nt_muatiices ((jegneg in [20] :

blending effect introduced in [24] is but one possibility. othef’ h Its of 120 that th troll .
modeling extensions include delayed or lost data (e.g., resourcg e results of [20] assure that the controller converges in

management cells), nonlinearities due to rate and buffer satdfEan and mean-square to the optimal controgyr for any
tions, bursty sources, and other phenomena. givend(@). However, giverB, for a large enough@, Q(n) will
' ' nearly perfectly inverB (simulations in Section II-C.2 suggest

thatd@ is on the order of 30). Consider the realistic case when

dQ is chosen large enough to make the following assumption.
This appendix provides hereto unpublished as well as aAssumption 5:B(z~!) has no zero oifz| = 1 and the plant

summary of published convergence and stability results for t{®) is equivalently expressed as

proposed explicit-rate ATM ABR system given by (3)—(9) and

shown in Fig. 5. Q(z"Hy(n) =uln —d—-V). (A1)

APPENDIX
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Cell Rate (Kcells/sec)

Magnitude (dB)

Time {Seconds}

Frequency (rad)
(c) (d)

Fig. 21. (a) Impulse response & (solid line) andQux (dashed line). (b) Convolution @ andQ. (c) Bode plot ofQux (dash-dot line)Q 5 (dashed line),
andQ (solid line). (d) Set-point errog*(n | n — d — V') — y.(n) with 02 = 120 Kcps. Using reparameterization.= 9, scale,, = 12.5.

Here are two other assumptions. where the set-point error jg(n) = y*(n|n —d—V) —y(n).
Assumption 6: |Q(n)|| > 0forall n; Assumption 7At each Using Assumption 6
n,z = e~ is notaroot ofQ(z~1) = 0if y*(n) contains the A
frequencyw . ly(n)|| < k3 + K4 Jmax QM) Tx(T)], 0< K3, Ky < 00
Assumptions 6 and 7 prevent pathological cases; neither pose =r=" (A.5)
significant limitations in practice. '
. If we can make Assumption 5 ?S.We” as the minor Assump- With (A.4) and (A.5), the key technical lemma [44] asserts
tions 6 and 7, then the more restrictive Assumptions 1-4 are rl:ﬁ)
needed. This leads to a cleaner proof with stronger global sta-

bility results. is bounded. andl Y )T 29 A.6
For this proof, substitute the update (8) with ly (mf}is bounded, an "E&(Q(n) x(n)) )

Theorem 3: Given Assumption 5-7, the plant (2), which is
Q(n +1) = Q(n) + L(”)e(n)’ §>0. (A2 equivalent to (A.1), controlled by (5)—(7), (9) and (A.2), gives
6 +y(n)Ty(n) lim,, o x(n) = 0.

Proof: Equation (A.3) gives (A.4). The key technical
The update (A.1) is identical to [44, (3.3.19)]. From (7), (A.1), . \ . . ;
and (5),e(n) = Q( Y7y(n), and from [44, Lemma 3.3.2] femma gives (A.6), which, along with Assumption 7, gives the

result. This completes the proof. Theorem 3 first appeared in

[24]. O
lim o) 0
11m =
n—oo (6 +y(n)Ty(n))/? REFERENCES
nh_{go |Q(n — k) — Q(n)|| = 0 for any finitek. (A.3) [1] Traffic Management Specification Version 41l Kenney, Ed., ATM
) Forum.
[2] R.Jain, “Congestion control and traffic management in ATM networks:
From (7)= (9)’ (5)’ and (A_3) Recent advances and a surve@®mp. Net. ISDN Systvol. 28, pp.

1723-1738, Oct. 1996.
[3] C. Rohrs, R. Berry, and S. O’Halek, “Control engineer’s look at ATM
_ congestion avoidanceComp. Commuyvol. 19, no. 3, pp. 226—234, Mar.
=0 (A4) 1996

L (@) x())?
w5 5ty (n) Ty (n)
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