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Abstract—This paper presents a procedure for the design of
supervisors that enforce the transitions in a given set to be live.

-liveness enforcement corresponds to full liveness enforcement
when equals the total set of transitions. Rather than assuming a
given initial marking, this procedure generates at every iteration
a convex set of admissible initial markings. In the case of full
liveness enforcement and under certain conditions also in the case
of -liveness enforcement, the convex set of each iteration includes
the set of markings for which liveness/ -liveness can be enforced.
When the procedure terminates, and if it terminates, the final
convex set contains only markings for which -liveness can be
enforced. Then, the supervisor keeping the Petri net (PN) marking
in this convex set can be easily designed using the place invariant
based approach. This paper focuses on the fully controllable and
observable PNs. Several extensions of the procedure, including to
partially controllable and observable PNs, are outlined.

Index Terms—Deadlock prevention, liveness, Petri nets (PNs).

I. INTRODUCTION

T HIS PAPER presents a procedure for the design of super-
visors that enforce the transitions in a setto be live. We

call this property -liveness. Liveness (or full liveness) is a spe-
cial case of -liveness, as it means that all transitions in a Petri
net (PN) are live. -liveness enforcement arises naturally when
not all transitions need to be live, such as when certain transi-
tions model failures or initialization processes.

The procedure presented in this paper makes no assumptions
on the PN structure; the PNs are allowed to be unbounded and
generalized (i.e., with integer arc weights). The supervisors gen-
erated are least restrictive for a large class of PNs. In particular,
the supervisors are always least restrictive when the procedure
is used to enforce full liveness. Note also that the procedure is
not dependent on the initial marking. Instead, the set of initial
markings for which a supervisor enforces-liveness is charac-
terized as the feasible set of a system of linear marking inequal-
ities. Thus, a -liveness supervisor produced by our approach
is defined for a set of initial markings, rather than for a single
initial marking. Moreover, when the supervisor is least restric-
tive, enforcing -liveness by any method is possible only for
the initial markings for which the supervisor is defined. This
procedure can also be extended to handle PNs that have uncon-
trollable and/or unobservable transitions. However, the super-
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visors designed under this circumstance are usually not least
restrictive. On the negative side, the procedure does not have
guaranteed termination, and divergence may arise frequently in
practice. Further, even when the procedure terminates, the com-
putations may be complex. However, these computations are
performed offline. Once a supervisor has been designed, run-
ning it in real-time involves only trivial computations.

In the literature, there is little work on -liveness. However,
there is a number of papers on full liveness enforcement. Typ-
ically, liveness enforcement has been studied for a fixed ini-
tial marking and with various assumptions on the structure of
the PN. This differentiates the prior work from the method pre-
sented in this paper. Note that the problem of characterizing the
set of markings for which a PN can be made-live is decid-
able in the case of PNs with controllable and observable tran-
sitions [1]. The algorithm proposed in [1] searches the marking
space to find a set of minimal markings; based on this set the
least restrictive -liveness enforcing supervisor can be immedi-
ately derived. However, the approach of [1] is not very practical
for two reasons: 1) the coverability graph is to be evaluated for
every marking considered during the search and 2) the number
of minimal markings may be large (e.g., exponential in the size
of the net). Other constructive results on liveness enforcement
are restricted to particular classes of PNs. Among them we men-
tion the following. Liveness enforcing supervisors have been
obtained for classes of conservative PNs [2]–[4]. Other classes
of PNs for which liveness supervisors have been constructed are
in [5] and [6]. Unfolding, which in essence generates a reduction
of the reachability graph, has been used in [7] to construct live-
ness supervisors for-safe PNs. Only a few papers have con-
sidered liveness enforcement under partial controllability [7],
[8]. To our knowledge, to date there are no liveness enforcement
methods dealing with partial observability. However, note that
in practice the full observability assumption can be unrealistic.

Our approach is most related to the deadlock prevention pro-
cedure we presented in [9], and its improvement in [10]. With
regard to the methodology we use, we note the following. The

-liveness procedure does not use reachability analysis of PNs.
The procedure is iterative, at every iteration correcting new
deadlock situations. Using iterations to correct deadlock situa-
tions appears also in [11] and [4]. The supervision technique
that we use is supervision based on place invariants [12]–[14].
Further, the procedure uses two PN transformations: one to
almost ordinary PNs and another one to asymmetric-choice
nets. The first transformation was inspired by a similar trans-
formation in [11]. With regard to the second transformation,
note that a transformation to free-choice nets, a particular class
of asymmetric-choice nets, has also been used in [15].
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The notation, the definitions, and the prior results used in this
paper are given in Section II. Section III presents motivating
examples. The -liveness procedure is defined in Section IV.
Section V includes illustrative examples. The procedure is ana-
lytically proved in Section VI. Specifically, Theorem 3 proves
that the supervisors constructed by the-liveness procedure en-
force -liveness, and Theorem 4 gives a sufficient condition for
the supervisors to be least restrictive. Finally, three extensions of
the procedure are presented in Section VII. First, Section VII-A
shows how to obtain the least restrictive supervisor when the
designed supervisor is not least restrictive. Then, Section VII-B
shows how to incorporate additional constraints on the marking.
Finally, Section VII-C presents the extension of the procedure
to PNs with uncontrollable and unobservable transitions.

II. PRELIMINARIES

We denote a PN by , where is the set of
places, the set of transitions, the set of transition arcs, and

the transition arc weight function. We use the symbolto
denote a marking and we write when we consider the
PN with the initial marking . The incidence matrix of a
PN is denoted by , where the rows correspond to places and
the columns to transitions. Also, by denoting a place byor a
transition by , we usually mean that corresponds to the’th
row of and to the th column of . We write to
express that the markingenables the firing sequence, and
is reached by firing .

A PN is ordinary if
. We call PT-ordinary1 if , if then

. A PN is said to be withasymmetric choiceif
for all places and such that we have that
either or .

Given a PN , a transition is live if any reachable
marking enables some firing sequence which includes. Given

, the PN is -live if all transitions are live;
for , -liveness corresponds to the usual definition of
liveness.

A supervisor is a function that2 maps to
every marking a set of transitions that the PN is allowed to fire.
We denote by the set of reachable markings when

is supervised with . We say that -liveness can be
enforced in if an initial marking and a supervisor exist
such that supervised by is -live.

We use supervision based on place invariants [16], [14] to
construct a PN representation of a supervised PN. In supervision
based on place invariants the supervisor enforces a set of linear
marking inequalities on a PN . The supervisor is
a PN with the same set of transitions as. The places of the
supervisor are calledcontrol places. The supervised net, also
calledclosed-loop PN, is the PN obtained by putting together

and the supervisor PN. This construction is summarized in
the following theorem.

Theorem 1: [14], [13] Consider a PN with incidence matrix
and initial marking , and a set of linear constraints

1The name reflects the fact that all arcs(p; t) from a placep to a transitiont
satisfy the requirement of an ordinary PN thatW (p; t) = 1.

2jP j denotes the number of elements ofP .

to be imposed on it. If , then a PN su-
pervisor with incidence matrix and initial marking

enforces the constraint when included
in the closed-loop system . Furthermore, the
supervision is least restrictive.

It can be seen that in Theorem 1, the control places satisfy the
invariant equation

(1)

A siphon is a set of places , , such that .
A siphon is minimal if there is no siphon . A siphon
is controlled with respect to a initial marking or a set of initial
markings if for all reachable markings it contains at least one
token. Also, given a marking, is empty if the total marking
of is zero. The requirement that a siphonis controlled can
be written as

(2)

where is the marking. The siphoncan be invariant controlled
in order to always satisfy (2). The invariant is created by adding
an additional place, calledcontrol place, which we denote by .
See Theorem 1 or [11], [17], [18], and [2]. Thus, the equation
of the marking of is

(3)

The following lemma is proven in [19]. The lemma will be later
used in the proof of one of the main results.

Lemma 1: Let be a PN of incidence ma-
trix . Assume that there is an initial marking which enables
an infinite firing sequence. Let be the set of transitions
which appear infinitely often in . Then, there is a nonnegative
integer vector such that , : and

: .
In what follows, we introduce a special type of subnets, which

we callactive subnets. An active subnet is a part of a PN which
can be made live by supervision for appropriate initial markings.

Definition 1: Let be a PN of incidence
matrix , , ,

, and the restriction of to . We say that
is anactive subnetof if there is

a nonnegative vector such that and
(where is the transition corresponding to the

th column of and the th entry of ). We say that
is -minimal if and for any other active
subnet such that .

Note that in view of Lemma 1, -liveness can be enforced for
some initial marking iff a -minimal active subnet exists. Next
we define a subclass of siphons, which we callactive siphons.

Definition 2: Given an active subnet of a PN , a siphon
of is said to be anactive siphon(with respect to ) if it is
or includes a siphon of . An active siphon isminimal if it
does not include another active siphon (with respect to the same
active subnet).

Even though we consider-liveness enforcement in arbitrary
PNs, the following theorem is fundamental to our approach, in
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Fig. 1. Motivating examples.

Fig. 2. Motivating examples.

which we iteratively generate intermediary PNs that are PT-or-
dinary and with asymmetric choice.

Theorem 2: [19] Given a PT-ordinary asymmetric-choice
PN , let be a set of transitions and a -minimal active
subnet. If all minimal active siphons with respect to are
controlled, the PN is -live (and -live).

The previous theorem indicates that for the purpose of en-
forcing -liveness, we can restrict our attention to the control
of the siphons which are minimal and active.

III. M OTIVATION

Consider the PN of Fig. 1(a). It is of interest to determine all
initial markings for which a liveness enforcing supervisor ex-
ists. It can be noticed that the following set of marking inequal-
ities characterizes all initial markings for which liveness can be
enforced:

(4)

(5)

(6)

Furthermore, each inequality is necessary; by removing any of
the inequalities we can find an initial marking satisfying the
remaining inequalities for which liveness cannot be enforced.
Once we have come up with the set of initial markings for
which liveness can be enforced, we can create a supervisor
enforcing liveness as in Theorem 1. The supervised PN is
shown in Fig. 1(b), where the control places, and
correspond to (4)–(6). As specified in Theorem 1, the initial
marking of the control places depends on the initial marking

of the PN as follows:

(7)

(8)

(9)

However, it can be noticed that by removing the control place
liveness is still enforced [Fig. 1(c)] for all initial markings

satisfying (4)–(6). Then, to follow the notation we use in the
rest of this paper, we can write (4) and (5) as matrix inequality

, and (6) as matrix inequality ; then we can
say that liveness is enforced for all initial markingssatisfying

and by the supervisor enforcing
(as in Theorem 1). Given a PN and a set of transitions ,
the purpose of the -liveness procedure of this paper is to gen-
erate constraints and such that the supervisor
enforcing on enforces -liveness for all initial mark-
ings satisfying and .

Next, consider the PN of Fig. 2(a). It can be seen that only the
transitions and can be made live. So, there are no initial
markings for which liveness is enforcible. However, there are
initial markings for which -liveness is enforcible. These
initial markings can be described by the inequality

(10)

The only active subnet is defined by the set of transitions
, and the only siphon equals the total set of places of the

PN. For all nonzero initial markings this siphon is controlled.
However, a nonzero initial marking does not imply that (10) is
always satisfied. This suggests that the empty siphon criterion
for deadlock is not very useful for -liveness enforcement in
PNs which are not PT-ordinary and with asymmetric choice, as
is the case for this PN. Furthermore, this would also suggest the
use of transformations to asymmetric-choice and PT-ordinary
nets, in order to take advantage of Theorem 2.

In the PN of Fig. 2(b), there are initial markings for which
liveness can be enforced. However assume that we are only in-
terested in enforcing -liveness. Then, the markings for
which -liveness can be enforced are described by

(11)

The only -minimal active subnet is with
and . Then, is
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the only minimal active siphon with respect to . Two other
active subnets are and defined by and

, respectively. This example shows that
a -minimal active subnet may not be unique: both and

are -minimal active subnets.
Finally, note that in some problems the set of markings for

which -liveness can be enforced cannot be represented as a
conjunction of linear marking inequalities. For such problems
the -liveness procedure of this paper can behave in two ways:
1) it does not converge and 2) it does not generate the least re-
strictive -liveness enforcing supervisor. Note that we prove
in Theorem 4 that behavior 2) may happen only if the PN has
more than one -minimal active subnets. As an example, con-
sider the PN of Fig. 2(c). For both markings
and liveness can be enforced. However,

is a deadlock marking. Therefore, no conjunc-
tion of linear marking inequalities can describe the set of initial
markings for which liveness can be enforced.

IV. -LIVENESSENFORCINGPROCEDURE

A. Procedure

Given a target PN , the liveness enforcing procedure gen-
erates a sequence of asymmetric-choice PT-ordinary PNs,,

, , increasingly enhanced for liveness. is trans-
formed to be PT-ordinary and with asymmetric choice. The
other PNs are obtained as follows: in each iterationthe new
minimal active siphons of are controlled, and then, if needed,
the PN is transformed to be with asymmetric choice and PT-or-
dinary. Thus, the iteration produces the asymmetric-choice
PT-ordinary net . The active siphons of each are taken
with respect to an active subnet computed for every itera-
tion ; if is the set of transitions of to be enforced to be live,

is a -minimal active subnet of . Controlling a siphon
involves enforcing a linear marking inequality. Let be
the total set of inequalities enforced in . Because is the
last PN in the sequence, it has no uncontrolled active siphons.
Therefore, in view of Theorem 2, is -live for all initial
markings which satisfy . Finally, the constraints de-
fined by can be easily translated in constraints in terms
of the markings of , which define the supervisor for liveness
enforcement in .

In the procedure

– is the marking of the places which are not control
places;

– is the marking of the control places;
– the PN of iteration is ;
– the active subnet of is .
The procedure notation is such that (1) describes the invari-

ants enforced by the control places at any iteration. We denote
a set of constraints as . We give the detailed
description of the specific steps of the procedure in the fol-
lowing subsections. Thus, we annotate the procedure steps with
the number of the subsection in which we describe in detail the
specific operation.

Input: The target PN and .

Output: Two sets of constraints and
.

A. is transformed to be PT-ordi-
nary and with asymmetric choice ( Sec-
tion IV-C ). 3 The transformed net is .
Let , , and .
B. A -minimal active subnet is com-
puted for ( Section IV-D ). 4 If none
exists, the procedure terminates and de-
clares that -liveness cannot be enforced
for any initial marking.
C. While true do
1) Let and be empty sets of

marking constraints.
2) If no uncontrolled minimal active

siphon is found ( Section IV-B.2 ), the next
step is D. 5

3) For every uncontrolled minimal active
siphon :

Test whether (2) needs control place en-
forcement ( Section IV-B.2 ). If it does,
include (2) in .

Else include (2) in .
4) Let be the PN struc-

ture obtained by enforcing in as
in Theorem 1, and let be the cor-
responding place invariant equations (see
(1) ).
5) If is not PT-ordinary and with

asymmetric choice, the PN is trans-
formed to be so ( Section IV-C ); let
be the transformed net. Update ac-
cording to the net transformations ( Sec-
tion IV-C.III ). Let be the updated
(this means that in corresponds
to in , where and are
markings of and ).
6) Let , , and

. Let 6 and ,
for any marking of . For each place
in add a null column to each of
and , to match the size of . Similarly,
add null columns to to match the size
of . Let 7 , , ,
and .
7) If is empty, include in

and in .
Else, do the following
(a) If is not empty, include

in .

3Transforming PNs to PT-ordinary and asymmetric-choice PNs has polyno-
mial complexity.

4The computation of the active subnets has polynomial complexity.
5In the worst case, the number of uncontrolled minimal siphons depends ex-

ponentially of the size of the net.
6Given a set of placesX , �j is the restriction of� to the places ofX .
7A j is the restriction ofA to the columns corresponding to places inP ;

A j , A j , \ldots, have a similar meaning.
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(b) If is not empty, include
in .

8) Compute the new active subnet
( Section IV-D ). Let . The next step
is C.1.
D. Restrict and to : and

.
E. Optionally, the redundant constraints
of and are removed. 8

The final constraints and are such that -live-
ness is enforced for all initial markings such that
and when is supervised according to
. We proceed by describing specific operations involved by the

procedure.

B. Generating Marking Constraints

The marking constraints generated by the procedure corre-
spond to the constraints (2) on the uncontrolled minimal active
siphons of each iteration. The constraints (2) are included in
the sets of constraints and after being written in
terms of the places of the net which are not control places; we
discuss this in Section IV-B.1. Then, in Section IV-B.2, we dis-
cuss the detection of uncontrolled siphons and the detection of
uncontrolled siphons which do not need a control place in order
to be controlled.

1) Sets of Inequalities and : The procedure is
set up so that the PN of each iteration satisfies
(and so ) for all reachable markings if
is satisfied at the initial marking. The constraints are
recursively obtained as follows. The siphons in a iterationmay
contain control places added in previous iterations. So, (2) may
involve not only places of the target net , but also control
places. However, the marking of the control places appearing in
(2) can be eliminated by using . Thus, the oper-
ations in the step C.7 correspond to adding new constraints to

and , after substituting the control place markings
by .

2) Siphons Not Needing Control:Here, we discuss the step
C.3 of the procedure. A siphon is uncontrolled if (2) is not
implied by , , , and .
In other words, is uncontrolled iff the system of ,

, , , and has an
integer solution . We design the procedure, in particular
the transformation to PT-ordinary asymmetric-choice PNs, in
such a way that an uncontrolled siphon is always a siphon which
did not exist at a previous iteration. Thus, at step C.3, it is enough
to check only the new siphons which appeared due to the steps
C.4 and C.5 of the previous iteration. It can be seen that checking
whether a siphon is uncontrolled may involve solving an integer
program.

There are siphons which satisfy (2) at all reachable markings
if (2) is satisfied at the initial marking. Such siphons do not need
a control place to ensure that (2) is satisfied. We identify that
an uncontrolled siphon does not need a control placeby
checking whether would satisfy . When this is the

8This operation may involve integer programming.

case, (2) is included in , which contains constraints on
the initial marking.

C. Transforming PNs to PT-Ordinary Asymmetric-Choice PNs

The transformation of PNs to PT-ordinary asymmetric-
choice PNs consists of applying first a transformation to
PT-ordinary PNs, which we callPT-transformation, and then
of a transformation to asymmetric-choice PNs, which we call
AC-transformation. There are many ways in which these trans-
formations could be done. Our concern has been to design the
transformations so that we can prove the procedure generates

-liveness supervisors, and the supervisors are permissive.
To this end we impose three requirementsR1), R2), andR3),
which we state later. Before stating the requirements, we have
to mention that the transformations we use employtransition
splits; a transition is split when decomposed into a sequence
of places and transitions. The requirements we impose are
written in terms of the notation of the -liveness procedure.
The requirements are as follows.

R1) No control place in is in the postset of a transition
created by a transition split.

R2) Any set of inequalities which hold true in ,
hold true also in , for .9

R3) The constraints enforced on in step C.4 are
satisfied in .10

1) Transformation of PNs to PT-Ordinary PNs:We use a
modified form of the similar transformation from [11], and we
call it the PT-transformation . Let be a
PN. In this transformation, each transition such that

for some , is split (decomposed) in a se-
quence of new places , , and new transitions

, , , , where is a parameter depending on
: . The new places and transitions

are connected as follows:

i) , and , for
;

ii) , for ;
iii) .

Note that resembles very much : has all the connec-
tions of plus one additional transition arc.After the transition
split is performed, we denote by .

The PT-transformation consists in splitting all transitions
such that for some . In this way, the

transformed PN is PT-ordinary. Note that

(12)

(13)

We use the convention that a split transitionis also a transition
of the PT-transformed net, as we denote by .

2) Transformation of PNs to Asymmetric-Choice PNs:Let
be a PN and be

the transformed PN, where , . The idea of the

9That is, for all markings� ofN satisfying(8� 2 R(N ; � ):X� � x),
we have that for all markings� of N such that� j = � ,
(8� 2 R(N ; � ): X� j � x) holds true.

10If � denotes a marking ofN , this corresponds to8� :A � =
d ) A� j � d.
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Fig. 3. Illustration of the transition split. (a) Initial configuration and (b) PT-transformation. (c) Initial configuration and (d) AC-transformation.

transformation is as follows. Given the transition, and
such that and , remove from ei-

ther the postset of or that of by adding an additional place
and transition, as illustrated in Fig. 3(c)–(d). Note that this op-
eration corresponds to a modified form of the transition split
of the PT-transformation. We call the transformation to asym-
metric-choice PNsAC-transformation . The algorithm of the
AC-transformation is given here.

Input: and optionally ; the de-
fault is .
Output:
Initialize to be identical with .
Let be a vector indexed by the transi-
tions of . For all set if

and otherwise.
While do11

1) Select a transition and set
.

2) Construct
.

3) if is empty, then continue with the
next iteration.
4) Let .
5) For every
a) A place is selected.

If possible, is selected such that (i)
below holds true. Else, if possible, is
selected such that (ii) holds true:

i) (or ) if (or ) has been
previously selected for another element of

.
ii) appears in another element of .

b) If a place could be selected (i.e.,
if ) then .

c) For all set if
.
6) For all , delete from the

transition arc and add a new place
and a new transition such that ,

, , ,
, and .

Note that the operation in the step 6 of the algorithm is atran-
sition split. Further, the second argument of the transformation,

, is used to select the transitions to be split. Indeed, in gen-

11kxk denotesft 2 T : x(t) 6= 0g

eral there are many ways in which to choose transitions to split
such that the transformed net is with asymmetric choice. The

-liveness procedure selects such that the requirement R2
is satisfied, thus ensuring that the constraints added in the pre-
vious iterations remain enforced. Therefore the choice ofat
the AC-transformation of the step C.5 is , that is,
the set of control places resulted by enforcing at step
C.4. For the AC-transformation at the step A of the procedure,
the default value of in the AC-transformation is used.

3) Transformation Effect on Marking Constraints:Note that
the way we implement the PT- and AC-transformations ensures
that for all , can be seen as connected to another
PN via additional arcs to the transitions of (not unlike the
connection between a plant PN and a supervisor PN). Thus, the
marking constraints already enforced in are not disturbed,
and so requirement R2 is satisfied.

Let be a PN and assume thatis PT-transformed and then
AC-transformed; let be the resulting PN. Let be a
marking constraint enforced in for initial markings in some
set . It can be checked that the form of in is

, obtained from with the substitution

(14)

for each place of , where and are determined in :
, . The places are the

places resulted by splitting the transitions , where the
notation of Section IV-C.1 is used. The placesare the places
resulting from the AC-transformation which satisfy .
Consider an inequality (3) at step C.3 of iterationwhich is
enforced in step C.4. We use (14) in order to derive the form
of (3) in . Let be the control place enforcing (3) in .
Then (3) is transformed to

(15)
where the notation is similar to (14): ,

, are the places resulted by
splitting the transitions , and are the places resulting
from the AC-transformation such that . Note that the
siphon remains controlled, that is (2) is still true. Therefore
requirement R3) is satisfied.

The considerations above showed that the transformations of
this section satisfy the requirements R2) and R3). The next result
states that R1) is also satisfied.

Proposition 1: At every iteration , the requirement R1) is
satisfied.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:25 from IEEE Xplore.  Restrictions apply. 



1968 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 11, NOVEMBER 2003

Proof: Let and denote the preset/postset operators in
and , respectively. First, note that the transitions of

obtained through transitions splits form the set . Note
also that if R1 is not satisfied, there is a control placeand a
transition such that . However,
implies . So, we prove by induction that for all
and : . At we have :

, by construction. Given an iteration number, assume
: . We prove : .

Assume the contrary, that : . Then
and there is a control place added in step C.4

of iteration such that . Let be the siphon controlled
by . Note that in view of the transition split operation,

implies ; also, since is PT-ordinary,
. Further, implies that

and firing in from some enabling marking increases the
total marking of . However, this contradicts (since
is a siphon) and in . The conclusion follows.

D. Computation of a -Minimal Active Subnet

The following algorithm computes a-minimal active subnet
if one exists, or declares failure otherwise. A-minimal active
subnet does not exist iff at no initial marking can all transitions
of be made live (see Definition 1 and Lemma 1).

Input: and , .
Output: The -minimal active subnet

.
1) Check the feasibility of sub-

ject to and , where is
the incidence matrix of .

If infeasible then exit and declare
failure.

else let be a solution, 12 , and
.

2) For , if do
a) Check the feasibility of sub-

ject to , , and
.

b) If feasible then let be a solu-
tion; and .
3) The active subnet is

, ,
, and

is the restriction of to .

This algorithm needs to be used only once, to compute.
For , can be obtained by repeating the changes done
to in , as in the followingupdate algorithm.

Input: ,
and the sets , denoting for

each which has been split the set
of the new transitions in which
appeared by splitting .
Output: .

12L j isL restricted to the columns corresponding to the places ofN .

1)
2) The active subnet is

, ,
and is

the restriction of to .

V. EXAMPLES

This section illustrates the -liveness procedure on two
examples.

A. Example 1 ( -Liveness Enforcement)

Consider the PN of Fig. 4(a), which is not PT-ordinary and
not with asymmetric choice. Three transitions cannot be made
live, for any marking: , , . We want to enforce -liveness
for .

The first iteration begins with the PT- and AC-transformed
net , in Fig. 4(b). The -minimal active subnet is shown
in Fig. 4(c). At the step C.3 there is a single minimal active
siphon, . Then, the constraint
is added to . At step C.4, the control place is added
[Fig. 4(d)]; the invariant is .
The PN is plus the control place , in Fig. 4(d). At
step C. is transformed to be with asymmetric-choice. The
transformed net is shown in Fig. 4(e). By (15), the updated
invariant is

(16)

At step C.7, since and are empty, only
is added to , where is

.
At the second iteration, the only new minimal active siphon

is . The check whether
is uncontrolled is as follows. The siphon is uncontrolled if

(17)

is not implied by the current constraints; in our case there is
only one constraint: (16). In other words,is uncontrolled iff
the system of
and (16) has a nonnegative integer solution. Thus the procedure
detects that is uncontrolled, and sets to (17). Then the
control place is added in step C.4 [Fig. 4(e)]. At step C.5 we
obtain the PT-transformed net , represented in Fig. 4(f). The
invariant is

. Then, at step C.7, is not
empty; is replaced in ; the inequality

is obtained and added to .
At the third iteration, although there are new active siphons,

there is no new minimal active siphon. Therefore the procedure
exits the loop C at step C.2. After step D, we have

and

At step E a redundant constraint is removed. The procedure
terminates with , , and empty constraints

. The supervised net is shown in Fig. 4(g). For all initial
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Fig. 4. Example 1. (a)N . (b)N . (c)N , the same asN andN . (d)N and the added control place. (e)N and added control place. (f)N . (g)N
supervised forT -liveness.

markings satisfying , -liveness is enforced in a
least restrictive manner (Theorems 3 and 4).

B. Example 2 (Liveness Enforcement)

Consider the PN of Fig. 5(a) for liveness enforcement.
The intermediary PNs , and are represented in
Fig. 5(b)–(d), where the control places added to, and

are connected with dashed lines. In the first iteration, there
is a single minimal siphon, , and the control
place is added. In the second iteration there are two new
minimal siphons: and and
two control places and , respectively, are thus added.
In the third iteration there are two new minimal siphons:

and , and so the
control places and , respectively, are added. At the
fourth iteration no new minimal siphons are found, and so the
procedure terminates. The constraints enforced by, , ,

and are, respectively

After removing the redundant constraints, the supervisor of
is defined by and , and is the least restric-
tive liveness enforcing supervisor (Theorems 3 and 4). There are
no constraints .

VI. THEORETICAL RESULTS

The proofs of the following results use the notation of the
-liveness procedure (Section IV-A), and so the PN at the be-

ginning of iteration is , and the active
subnet . Additionally we introduce
the following definitions. A marking of is valid if a) for all
control places added in the iterations the invariant
equations of the form (15) hold true, and b) for all
places other than control places and places of. Note that
all markings of are valid. Twovalid markings and of

and areequivalent if for all places
of . Next we introduce a firing sequence notation. Both the
PT- and AC-transformations (Section IV-C) perform transition
splits. A transition may be split in more than just one itera-
tion, and the transitions resulted by splitting may also be
split in subsequent iterations. Given a transitionof and an
iteration number , we denote by an arbitrary transition
sequence of such that a) enumerates the transitions
(including itself) in which of is successively split until
(and including) the iteration , and b) valid markings of
exist such that enables . In this way firing the sequence

in corresponds to firing in . If is not split, we
let . The notation for and in , is
similarly defined by taking instead of . If ,
we let . For instance, in
Example , in Example is any of

and and .

A. Proof of the -Liveness Procedure

The next result proves that the supervisors generated by
the procedure enforce -liveness. The assumptions are that

-liveness enforcement is possible for some initial marking,
and that the procedure terminates. In view of Definition 1 and
Lemma 1, the first assumption ensures that a-minimal active
subnet exists. When no -minimal active subnet exists, the
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Fig. 5. Example 2. (a)N . (b)N . (c)N . (d)N . (e) the supervised PN.

procedure terminates at step B and declares that-liveness
cannot be enforced.

Theorem 3: Assume that a -liveness enforcing supervisor
exists for some initial marking of . If the procedure termi-
nates, supervised according to is -live for
all initial markings satisfying and .

Proof: The proof is by contradiction. Let be the number
of the last iteration. First, we prove that for any markingof
satisfying and , the equivalent marking of

exists, and is -live. Then, we show that assuming
the supervised not -live contradicts that is

-live. Let and be the sets of constraints
and at the end of iteration . The final sets of

constraints and are obtained from 13

and , after removing redundant constraints at step
E. Let be a marking of , a marking of ,

and . Assume that and
. Then and imply

and . Furthermore,
implies that we can define . Thus is
by construction valid and equivalent to. Since the procedure
terminates at iteration, contains no uncontrolled active
siphons, and so is -live by Theorem 2.

Let be the closed loop of and the supervisor enforcing
(Theorem 1). Assume that from an initial marking

of satisfying and , the supervised net
can reach a marking for which a transition is dead.
We show that this leads to contradiction. Let , and
let and be the equivalent markings of and in .

13L j isL restricted to the columns corresponding to the places ofN .

Since is -live, enables a transition sequence
in which includes . Let , i.e., is the set
of transitions that appeared by transition split operations in all
iterations. Firing any transition always reduces the
marking of some places in (Proposition 1), while firing

may increase the marking of some places in .
Note also that sinceappears in , and , must
include transitions . Let be the first transition in
that appears in . Then we can write as , where

appears only once in . It can be proved that contains
a subsequence (we prove this as Proposition 2 in the
Appendix). Since all transitions of before are in , and
firing them only decrease markings of , is en-
abled by . Let be the next transition of in . Similarly,

is enabled by . We continue this way and
eventually find in and in such that . We have that

enables . However, this implies
that enables in , and since , is not dead
in , which is a contradiction.

B. Permissivity

The supervisors generated by the procedure, when it termi-
nates, are least restrictive for a large class of PNs. Our next the-
orem gives a sufficient condition for the supervisors to be least
restrictive. Since the supervisors generated by our procedure are
defined on a set of initial markings rather than on a single ini-
tial marking, we say they are least restrictive when for all initial
markings of the following are satisfied:

– if or , no -liveness enforcing
supervisor of exists.
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– if and , the supervisor enforcing
is the least restrictive -liveness enforcing

supervisor of .

Theorem 4: Assume that the procedure terminates and
has a single -minimal active subnet. Then the-liveness en-
forcement procedure provides the least restrictive-liveness
enforcing supervisor.

Proof: The proof is organized as follows. Let be a
marking of and an equivalent marking of . We prove
that cannot be made -live if cannot be
made -live. Then we use this fact to prove that no-liveness
supervisors exist for the initial markings which do not satisfy

and . Finally, given satisfying
and , we prove that the supervisor enforcing
is the least restrictive -liveness enforcing supervisor of .

To prove our first claim, we prove by contradiction that
cannot be made -live if cannot be

made -live, where and is the equivalent marking
of . For , assume that can be made -live
when cannot be made -live. Then, enables an
infinite transition sequence in which all transitions of ap-
pear infinitely often. However, this implies that is also
enabled by , contradicting the assumption that
cannot be made -live. For , assume that can
be made -live when cannot be made -live.
Let be an infinite firing sequence enabled by such that all
transitions of occur infinitely often in . Since
cannot be made -live, is not enabled in .

Then , , , enables
, but does not enable . This corresponds to the

following: has an active siphon which is controlled in
with and does not allow to fire.

Hence, was satisfied when was added to . This
implies . Firing in produces the same
marking change for the places in as firing in . Since

is not allowed by to fire, firing from
empties . Since is fired in the sequence ,
is an empty active siphon of . An empty active siphon
implies a nonempty set of dead transitions from the active
subnet. Therefore, the transitions in do not appear infinitely
often in . Let .
The active subnets for are computed using the update
algorithm of Section IV-D, therefore, . Using the same
construction as in the proof of Theorem 3, the projection of

on (let it be ) is enabled by , where is the
restriction of to the places of . Note that the transitions
of do not appear infinitely often in . We apply Lemma
1 for and , and using the notation of Lemma 1, we let

; defines an active subnet and , as all
transitions of appear infinitely often in . However is
not a subset of , for . Therefore, is
not the single -minimal subnet. This contradicts the theorem
assumptions.

The second part of the proof, showing that all-liveness en-
forcing supervisors forbid the markings such that or

, is also by contradiction. Assume that can be
made -live for a marking which does not satisfy all con-

straints and . Let and
be the constraints and before step D. Since step
D only removes redundant constraints, does not satisfy all
constraints of and . Let be the first
iteration in which an inequality is added such that its
restriction to is one of the inequalities of
and not satisfied by . The markings forbidden
at every iteration are those for which there are empty active
siphons. Therefore, has an empty active siphon for ,
where is the equivalent marking of in . As shown
in the previous paragraph, this implies that cannot be
made -live. Then cannot be made -live, which is a
contradiction.

Finally, let be a marking satisfying and
. Let be the supervisor enforcing on .

Assume there is a -liveness enforcing supervisor less re-
strictive than . We show that this leads to contradiction. Let

and be the closed loops of
with and , respectively. Then there is a (possibly empty)
firing sequence enabled from in both and

, such that and , is enabled by
, is allowed to fire at by , and is not allowed to fire at

by . Then, the marking such that satisfies .
Therefore, by the previous part of the proof,-liveness cannot
be enforced in . Then is not a -liveness enforcing
supervisor of , which is a contradiction.

Note that in case of liveness enforcementequals the whole
set of transitions. Then the only possible-minimal active
subnet is the whole net. Consequently, Theorem 3 has the
following corollary.

Corollary 1: Assume that liveness is enforcible in for
some initial marking and the procedure terminates. If ,
the procedure provides the least restrictive liveness enforcing
supervisor.

Another consequence of Theorem 4 is that the procedure will
not terminate for a PN with a single -minimal subnet when
the set of markings for which -liveness can be enforced cannot
be represented as a conjunction of linear marking inequalities.
Finally, note that the proof of Theorem 4 ensures also that at all
iterations , the markings for which -liveness can be enforced
in is a subset of the set of markings satisfying and

. Formally, let , , and denote , , and
after the step 7 of the iteration. Denoting by and
the restrictions of and to the places of , we have the
following result:

Corollary 2: Assume that has a single -minimal active
subnet. Let be a marking of for which -liveness can be
enforced. Then, for all iterations, and

.

VII. EXTENSIONS

The procedure can be extended in several directions. First, the
procedure can be extended to find the least restrictive-liveness
enforcing supervisor even when has several -minimal ac-
tive subnets. Second, an additional input can be provided to the
procedure, containing constraints that specify knowledge on the
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initial markings for which the PN will be used, and knowl-
edge on the reachable space for such initial markings. Third, the
procedure can be extended to handle PNs with uncontrollable
and/or unobservable transitions. These three extensions are dis-
cussed next.

A. General Least Restrictive Design

Let , , be the -minimal active subnets
of . Let , , be the corresponding-min-
imal active subnets in . Theorem 4 does not apply, as we have

( ) -minimal subnets. However, it applies for -live-
ness, as there is a single -minimal active subnet: (we
denote by the set of transitions of and ).
Then the procedure can be applied for -liveness enforce-
ment for . Assuming the procedure terminates, let

and be the generated constraints
for each . Then, it can be proved [20] that the su-
pervisor that enforces the disjunction

and requires the initial marking to
satisfy also ,
is the least restrictive -liveness enforcing supervisor of .
This solution is also possible when the other two extensions
that follow are applied. However, in the case of uncontrollable
and unobservable transitions, least restrictive design is no longer
guaranteed [20].

B. Additional Constraints

The -liveness enforcement procedure can be enhanced with
two additional inputs:initial-marking constraints(IMCs) and
reachable-marking constraints(RMCs). The IMCs specify ini-
tial markings of interest. The RMCs specify constraints satisfied
by all markings reachable from the initial markings of interest.
The IMCs and RMCs are useful as they can help the procedure
converge. Assuming a set RMC of the form and a set

of initial markings of interest, the following are the main
changes in the -liveness procedure.

1) At step A: is initialized to .
2) At step C.3: check whether (2) is consistent with .

That is, after including (2) in or , it is
checked whether there are any solutions to ,

, , , , and
, where and . If no solu-

tions exist, it can be shown that no-liveness enforcing
supervisors exist for initial markings in .

A detailed treatment of this topic can be found in [20].

C. Uncontrollable and Unobservable Transitions

In the presence of uncontrollable and/or unobservable transi-
tions, the goal of the procedure is to ensure that the final con-
straints obtained after the step E areadmissible. Ad-
missibility is the quality of a set of constraints ensuring
that the construction of Theorem 1 creates a supervisor that does
not attempt to “control” uncontrollable transitions or “detect”
firings of unobservable transitions. Methods for the transfor-
mation of inadmissible constraints to admissible constraints ap-
pear in [13] and [16]. Unfortunately, if the-liveness procedure
generates inadmissible constraints, transforming them to admis-

sible constraints does not guarantee that enforcing
ensures -liveness [20]. Therefore, the procedure

attempts to obtain constraints that are admissible by
construction. In fact, the procedure ensures that

(18)

where and are the restrictions of the incidence matrix
of to the sets of uncontrollable and unobservable transi-

tions, respectively. Ensuring (18) is sufficient for admissibility
[13], [16]. The procedure achieves (18) by means of the fol-
lowing change of the step C.3.

If (2) needs control place enforcement, transform (2) to an
inequality that isadmissible with respect to and add

to . Note that if the procedure could not transform (2)
to an admissible constraint , it cannot produce a -liveness
enforcing supervisor.

Next, we describe the algorithm used to transform (2) to an
inequality that is admissible with respect to .

The admissibility requirement is that the constraint
is admissible in when written in terms of the places of .
That is, is to be admissible in ,
for and . Let denote the iteration number of
the algorithm. The admissibility requirement can be written as
follows. Let and be the restrictions of the incidence
matrix of to the uncontrollable transitions and unobservable
transitions, respectively. Let be the matrix such that

. Then, in view of (18), we require

(19)

(20)

The constraint should be such that the requirement R1 of
Section IV-C is satisfied. Let be the control place enforcing

in . Requirement R1) for can be written as
, which corresponds to

(21)

where is the restriction of the incidence matrix of
to the columns corresponding to the transitions of . To
ensure that (2) is satisfied when is satisfied, we impose

(22)

(23)

(24)

(25)

One situation which may cause the-liveness procedure to di-
verge is when has a single nonzero entry; that entry is positive,
in view of (24). To avoid this, failure is declared ifcontains a
single nonzero entry. The algorithm is as follows.

Input: , – the set
of uncontrollable transitions of ,
– the set of unobservable transitions of

, – the set of places at the current
iteration , the current constraints
and , and the siphon .
Output: A constraint admissible with
respect to .

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:25 from IEEE Xplore.  Restrictions apply. 



IORDACHE AND ANTSAKLIS: DESIGN OF -LIVENESS ENFORCING SUPERVISORS IN PNs 1973

1) Let , , and
.
2) If (19) and (20) are satisfied then

exit and return and .
3) Let and .
4) While is
a) Check 14 the feasibility of

with the additional constraints (19)–(24) .
b) If infeasible, set .
c) Else let ; if

, set .
5) If then declare siphon control

failure and exit. 15

6) Solve the linear integer program
subject to

and (19)–(24) .

This algorithm can be illustrated on the PN of Fig. 6(a).
All transitions are controllable and observable except for

, which is unobservable. When the procedure is applied
for -liveness, the control place is added at the first
iteration, to enforce the admissible constraint
(Fig. 6(b)). Then, as , is split, and so the place

is generated [Fig. 6(c)]. We illustrate the transformation
to admissible constraints on the constraint (2) for the active
siphon obtained at the second iteration. At
the second iteration, the matrices and are empty, while

and

At step 1 of the transformation, and .
At step 2, (i.e., ),
(i.e., ). Let be restricted to the first four columns.
Then, and . There are no
inequalities (19) to check, as there are no uncontrollable transi-
tions. Further, (20) is not satisfied, as .
Therefore, (2) is not admissible with respect to. At step
4, the constraints (19)–(24) are: as (20),

as (21), for as (22), for
as (23), and as (24). In constraint

(21) is the restriction of the incidence
matrix to the transition – the only transition of the net gen-
erated by transition splits. Thus step 4 generates . So, at
step 6: and . The constraint in

corresponds to in , that is
, which is indeed admissible, as (18)

is satisfied. Enforcing generates the control place of
Fig. 6(c).

Finally, note that this extension of the procedure to partial
controllability and observability is in general suboptimal, in the
sense that the supervisors are typically not least restrictive. A
sufficient condition for optimality is given in [20].

VIII. C ONCLUDING REMARKS

In this paper we have introduced a procedure which, given a
Petri net and a set of transitions, synthesizes a supervisor en-

14The feasibility check involves solving a linear program.
15jS n Aj denotes the number of elements ofS n A.

Fig. 6. Example of Section VII-C.

forcing all transitions in to be live. The procedure relies on
structural properties of Petri nets, and can be applied to arbitrary
Petri nets. The procedure is optimal for a large class of Petri nets,
in the sense that if it terminates, the designed supervisors are
least restrictive. In particular, this optimality applies to the case
of full liveness enforcement (i.e., whenequals the total set of
transitions). A situation in which the procedure will not termi-
nate is when our sufficient condition for optimality applies and
the target Petri net has the property that the set of markings for
which -liveness can be enforced is not the set of integer points
of a convex polyhedron. However, it is possible to help the pro-
cedure terminate by using additional constraints restricting the
set of initial markings of interest. The operations performed in
an iteration of the procedure may be computationally complex,
however all computations are performed offline; trivial compu-
tations are required to run a supervisor online. The procedure is
fully automated and has been software implemented.

APPENDIX

Proposition 2: Let be a valid marking of , an enabled
firing sequence and . Assume that appears in . Then
each transition of appears in before the first
occurrence of in ; let be the sequence in which these transi-
tions appear in before the first occurrence ofin . There is a
subsequence of such that the sequence equals a .

Proof: Let be the set of places resulted through split
operations in the iterations . The marking is valid,
so cannot be fired unless the places are marked, which
cannot become marked unless the transitions in are
fired. Next, let . The transitions of cannot
fire unless the places are marked, which cannot
happen unless the transitions in fire before. Let

. We continue in the same way until we
get . This proves the first part of the proposition, as the
transitions of are .

Given a transition , let . Let be the
last transition from appearing in before . Let be the
last transition from appearing in before

. Let be the last transition from
appearing in before . We continue this way until

such that . Let be the

sequence . By construction, is a sequence
.
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