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Absteact. In this paper. o novel methodology for analysis of piccewise linear hybrid systems based on discrete
abstractions of the continuoes dynamics is presented. An important charactenstic of the approach 13 that the
available control inputs are taken into consideration in order to simplify the contnuous dynannes. Control
specitications such as safety and reachability specifications are formuluted i terms of partitions of the stie <pace
of the system. The approach provides a convenient general framework not only for analysis, butalio for conroller
synthesis of hybrid systems. The research contributions uf this paper impact the areas of analysis. veritication, wm

synthesis of piecewise linear hybrid systems.

1. Introduction

In this paper. a systematic methodology for analysis of piecewise linear hybrid systems
based on discrete abstractions of the continuous dynamics is presented. Our work is
motivated by the need fo aldress challenging problems in the control and coordination of
modem complex enginecring applications such as autonomous vehicles, chemical and
manufacturing plants. and multiple robotic systems. Hybrid systems are modeled as
discrete-time dynamical systems. A mathematical model that can capture both discrete and
continuous phenomena is formulated. The continuous dynamics are described by hnear
difference equations and the discrete dynamics by finite awtomata. The interaction
between the continuous and discrete parts s defined by piccewise linear maps
characterized by sets of linear equalities and inequalities, We refer to this class of
systems as piecewise linear hybrid dynamical systems in order o emphasize the hyvbrid
nature of the systems and problems of interest. The introduced model is general enough 1o
describe important engineering applications, but simple enough 1o facilitate  the
development of analysis. and synthesis wols. Piecewise linear hybrid dynamical systems
have an efficient representation For modeling and simulation. Furthermore. current
modeling tools such as Matlab, Simufink. and Stateflow offer the necessary Rexibility for
modeling and simulation of this class of systems,

Analysis and synthesis methodologies based on discrete abstractions have been studied
extensively in the hybrid system literature: see. for example. Alur et al. (2000) and
Koutsoukos et al. (20003, In order to analyze hybrid systems and design control
algorithims, it is desirable to induce dynamical systems in finite quotient spuces that
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preserve the properties of interest and then study the simplitted models. In this paper, we
propose 4 new methodology for the construction of discrete abstractions of the continuous
dyvnamics. An important characteristic of the approach is that the avuiluble control inputs
are tuken into consideration in order to simplify the system. The main mathematical tool to
be used is the predecessor operator applied recursively to subsets of the hybrid state space.
The applicution of the predecessor operaior corresponds to partition refinement into finer
pariitions that allow the formulation of conditions that guarantee the existence of
appropriate controls for the objectives of interest.

Typical control specifications investigated in this paper are formulated in tenms of
partitions of the state space of the sysiem. Examples include sufety problems, where the
controller guarantees that the plant will not enter an unsafe region for example
guaranteeing that iwo interacting robots will not collide. Also reachability problems where
the controller drives the plant from an initial operating region or state 10 a desired one; this
ts the case for example in the startup procedure of a chemical plant. In order to study safety
specilications for piecewise hybrid dynamical systems. we introduce the notion of
quasideterminism. Quasideterminism represents the case when the future behavior only
for the next time interval of the given system can be uniquety deterinined by the current
state of the induced system. We show that this property can be used to formulate conditions
for safety specifications for piecewise linear hybrid dynamical systems. The safety
conditions can be tested using efticient linear programming techniques. We also present an
algorithm for the compurtation of the maximal safe set based on the approach in Tomlin et
al. (1998) and Lygeros et al, (1999). Reachability conditions are also formulated. Qur
approuch is based on conditions that guarantee that the state can be forced to reach a
desirable region of the stae space by selecting appropriate controls, It should be
emphasized that we are inlerested only in the case when reachability between two regions
is defined so that the state js driven to the target region without entering a third region. This
Is a problem of great praclical importance in hybrid systems since it is often desirable to
drive the stale to a target region of the state spice while satisfying constraints on the state
and input during the operation of the system,

Pievcewise linear systems arise very often as mathematical models for practical
applications. For example, piecewise linear systems can be used to model systems with
discontinuous dynamics that arise because of saturation constraints, hysteresis, friction in
mechanical systems and so on, For another example. in order to avoid dealing directly with
a set of nondinear ditferential equations one may choose 1o work with linear equations and
switch among these simpler models. Furthermore, piecewise linear sysiems arise in the
switching controb paradigm (Morse. 1996, 1997) where the behavior of the plant is
controlled by switching between different controllers for euch region of the state space. |t
should be noted that the class of piccewise linear systems has been studied extensively in
the circuit theory community: see, for example, Leenaerts and Van Bokhoven (1998) and
the references therein, Here, we are interested in approaches that have been developed for
modeling. analysis. and synthesis of hybwid control systems. The first investigations of
piecewise lincar hybrid systems can be found in Sontag (1981, 1982, 1996). The main
problems studied in this framework are swbility, controllability, and input-outpui
regulation, Piecewise linear dynamical systems have been considered also in Bournez el

al. (£999) and Asarin et al, (20002, 2000b). A methodelogy for approximating the
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reachable states is developed and  supervisory control framework is used for controller
design. A class of hybrid systems which is similur to piecewise linear hybrid systems 1s
considered in Bemporad and Morari (199%a. 1999b) and Bemporad et al. (?..l)OQ). Thg:.c
systems are described by linear dynamic equations subject to linear inequalitics involving
real and integer variables. Finally, piecewise linear systems were also studied in Johansson
(1999) to deuvelop computational algorithms for the analysis of nonlinear and uncertain
dynamical systems. ‘

A great amount of research work has already been done in the h)fbnd syslcms~urea
during the past decade; see, for example, Antsaklis (2000) and the relterences therein, A
survey of ditferent models and methodoelogies can be found in Antsakhs et .1l (1998). T!'le
approach presented in this paper is directly related to supervisory control tramcwqu l!or
hybrid systems (Stiver, 1993; Stiver et al., 1996b: Koulsuukusl' et al., EQUU). Similar
approaches based on upproximations of the continuous dynamics by a‘dlscrele event
system have also been proposed in Nerode and Kohn (1993), Raisch and O Young (1‘998).
Cury et al. (1998}, and Lunze et al. (1999). The hybrid systeny model [_yp:cully' .used in the
supervisory control framework consists of a plant described by nonlinear d{rtf:rx::ntl:‘ll or
dilference equations. a discrete event controller described by a deterministic [linite
automaton, and an intertace which provides the meuns for the communication between the
plant and the controller. In the model proposed in the present work, we consider A plant
that contain discrete dynamics and both discrete and continuous inputs as well as discrete
and continuous disturbances. .

The hybrid system model used in this paper can be viewed as a input-ouiput h_vb.nd
automaton evolving in discrete-time. Hybrid automata provide a general modeling
formalism for the formal specitication and algorithmic analysis of hybrid systems Alur ct
al. {1993). Formalisnis for input/output hybrid automata huve been also proposed in Lynch
et al. (1996), Tomlin et ai. (1998), and Lemmen (2000). A related upproacl:l 0 thc wgrk
presented in this paper uses bisimulations to study the decidability . c?t verl‘hcauon
algorithms (Henzinger, 1995; Lafferriere et al., 1999; Alur et al., 2000). Blstf‘nulanons are
quotient systems that preserve the reachability properties of the original hybrid system and
therefore, problems related to the reachability of the original system can be solved by
studying the quotient system. However, the use of bisimulations in pmcm:fl-l (.‘f)ntml
systems is limited by the requirements for very simple continuous dynamics (Lafferriere et
al., 1999). The related notion ot dynamical consistency for hierarchical control systems
has been studied in Caines and Wei (1998). The use of dynamical consistency aims at the
computation of abstractions that preserve the controllability properties of hybrid conirol
svstems. A lattice of hierarchical partitions is defined in Caines and Wei (1998) and used to
iﬁvcstigutc dynamical consistency. However, no constructive ulgorilh.nTs for lh.e
computation of the panitions are given. Computational methods for reachability analysis
of hybrid systems have been also presented in Chutinan and Krogh (1999a, I})‘)‘)b) whf:rc
the continuous flow of the hybrid system with arbitrary dynamics is approximated using
polygonal tlow pipes. Finite-state approximations are then used for the veri‘ﬁculi(.m of l.hc
hybrid system properties. In our paper, reachability analysis of discrete-time piecewise
lincar hybrid systems is carried out without approximations using Fourier—MoltzKin
elimination and linear programming techniques. The initial partition is refined basec_i on
the existing control resources and disturbances. The retinement terminates when it is
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guaranteed that the control specifications can be satisfied enabling the design of control
algorithms,

The main contributions of the paper are the following. An algebraic system theoretical
framework is developed for the analysis, verification. and synthesis of piecewise linear
hybrid dynamical systems. This framework enables us to develop a novel methodology for
analysis of piecewise linear hybrid systems based on discrete abstractions of the
continuous dynamics, Our approach is based on systematic methodology tor refinement of
the state space pantition. Algorithms for reachability analysis of discrete-time piecewise
linear hybrid systems are presented in detail. [t should be noted that these algorithms can
be applied in the general case when the discrete dynamics contain controllable and
uncontrollable events and the continuous dynamics contain  conirol inputs and
disturbances, The research contributions of this work impact the areas of reachability
analysis, verification, and synthesis of piecewise linear hybrid systems. Note that the main
results of this paper have appeared in Koutsoukos (2000); early results have been reported
in Koutsoukos and Antsaklis { 1999, 1999b, 2000).

This paper is organized as follows. [n Section 2. we present the moedeling framework for
piccewise linear hybrid dynamical systems. In Section 3, we use an algebraic system
theory framework to describe our motivation for using discrete abstractions for the
analysis of hybrid systems. In Section 4, we present a methedology for backward
reachability analysis of piecewise linear hybrid systems. First, we formally define the
notion of partition refinement by characterizing the set of polyhedral partitions as a lattice.
Then. we detine the predecessor operator for PLHDS, and we present computer algonthms
for backward reachability analysis based on the predecessor operator. In Section 3, we

study the safety problem for piecewise linear hybrid sysiems. In Section 6, we study the
reachability problem and we formulate conditions that guarantee reachability between
piecewise linear regions. Finally, concluding remarks are presented in Section 7.

2. Piecewise Linear Hybrid Dynamical Systems

In the following. we define the class of piecewise linear hybrid dynamical systems. The
main characteristic of this class is that the continuous dynamics are described by linear
difterence equations. the discrete dynamics by finite automata, and the interaction between
the continuous and the discrete part is defined by piecewise linear maps. First, we present
some basic notions and the necessary notation that are used in the modeling formalism of
piccewise linear hybrid dynamical systems.

A piecewise-linear (PL) subset (Sontag. 1982) of a finite dimensional vector space V is
the union of a finite number of sets defined by (finitely many) linear equations f(x} = a
and lincar inequalities f(v) > a. A PL relation R : X — ¥ between PL sets is one whose
araph is a PL set (as a subset of X x ¥). A PL map is defined similarly. Equivalently, the
map f:X =¥ is PL if there exisis a covering of X by PL subsets X; such that the
restrictions f | X, are all affine (linear -+ translation).

Consider the state space X and define the mapping 7 : X — 2* from X into the power set
of X. The mapping 7 defines an equivalence relation £, on the set X in the natural way
vELG T iy | = rix, ). The image of the mapping n is called the quotient space of X by

T
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E_ and is denoted by X £, Adopting this notation we can write 7 : X — X E_,_.\x-here 7 l.“;
understood as the projection of X onto X/E,. The mapping 1 generates a partition of the
stateset X into the equivalence classes of £, and will be called generator. . ]

In this paper, we are interested in the case when X = 3 ar_1d the generator is deh?fd. b\l
a set of hyperplanes. Note that such piccewisc-linear"regl\o‘ns‘unse in many |")l‘..'l(.ll‘C.lr
applications. Consider the collection {A;}; _,, .5, 1 " = 3 of real-valued functions o
the form k;(x) = o7x —w,. where g, €3 and w; e R. Let

H, = ker(h,) = {xeR"  h{x) = glx —w, = 0}
and assume that H; is an (n — 1)-dimensional hyperplane (Vh,(x] = gl # 0). We define
the function i, : B" — {— 1,0, t} by

-1 if <=0
Rxy=<¢0 if h{x)=0
1 if ]f,‘(.l') =0

Then, the generator 15 defined by z(x) = [ x).. ... hf(.r)]T. Although the genirutor has
been defined as 7 : R — [ — 1.0, 1}* there is a bijection between {—1,0.1}" and tht
quotient set X/E, (they are the same set). The quotiemt sel can be n?prese.nlid as
X/E, = {P},i=1,...,|n] where each P, corresponds. toa po!y-hcclral reglo.n of R, »

Let X o R” denote the continuous state space, Q the finite set of discrete states or modes of
the system, I/ © R" the continuous input space. I the set o_f input events, and ¥ the output
set of the hybrid system. Often, it is desirable 1o tlislingulsh be.:lween contrsllllcd un(‘l un:
controlled inputs, and we may include both a space of continuous inputs U/ C 1™ and a .spdu.‘
of continuous disturbances D < . Furthermore, the set of input favcnts can be.wnlten.a.s
Z =X 0%, The set I, represcnts the controllable evenis Wh.lCh are associated w.nh.
discrete state transitions which can be issued by a control mechamsm.. Thn.c set I, contains
the uncontrollable events generated by the environment. [n our modc]u_1g tfa}mework, these
events are viewed as discrete disturbances. Note that this definition is different than the
definition of supervisory control {Ramadge, 1990) where unconlrollub{e echls are events
that can be disabled by the controller. The output set can ulso' contain a discrete -.1nc.l H
continuous part. Finally. in the case when the measurements are fjl_tfercm lrmn‘ the outputs. a
measurement set and a measurement function can be included in the system’s description.

DEFINITION | A piecewise linear hybrid dynamical svsiemt (PLHDS) is defined by

xfe+t}= ’\.;t.v+ l)-r(f) + Bq(l prte{r) + Eq:l-i-l dir)

(8]

g(r+ 1) = 3(g(), m{x(t)), 5, (1), 0,(1)). qls + 1 gactix(x(7)})

¥(r} = glq(s), x(1)

where A(0) = xR, g(0) = o Q and 7: X = X/E, puritions the continuots state
: - ; [ THEx e

space R into polvhedral equivalence classes. act : XjE; — 2% defines the active mnde. set

/ fvale e e R*“P are the system matrices

for every equivalence class. A, € R By and £, e are the sy

[
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for the discrete swe 4. 3:0Qx X JEz X T %I, = Q is the discrete stute transition
Suncdon and g : Qx X =Y is the eutpat funciion which is assumed to be piecewise linear.

The dynamic evolution of the system is defined as follows. A change in the discrete state
of the system can be caused by 1wo type of evenis. First, an input event genermed by either
the controller or the environment. Second., un event generated by the continuous dynamics
when the continuuus state enters a polyhedral region of the continuous state space defined
by the partition. The sct of events generated by the continuous dynancs is called the set of
plant events. After such a discrete transition. the system is at mode (discrete state) ¢ and
the continuous state evolves according 1o the ditference equation (1} driven by the control
input u(r).

The interaction between the discrete and continuous components of a piecewise linear
hybrid system is formally defined as follows. For each discrete mode, we assign o region of
the state space using ihe mapping inv: Q — 2/ The continuous state may evolve
according 1o the difference equation determined by the discrete state g only if x(¢) & inv(g).
The regions inv(g) are called invariants. Itis assumed that the invariants are regions of the
primary partition. These regions arise from the control specifications that do not aliow
cenain modes in a region of the state space. They can also arise from discontinuities in the
continuous dynamics when, for example. saturation or sign functions are used to model the
physical processes. Note that in our modeling framework, the invariants do not necessarily
correspond Lo disjoint regions of the state space. This is a realistic assumption, since many
times in modeling of practical applications, it is not straightforward 1o assign a unique
difference equation to each region of the state space. This is a task to be accomplished by
the controller depending on the control specitications.

An alternative way to describe the notion of invariants that will be useful in our analysis
ts by defining the sel of feasible modes for each region of the primary partition. The active
mode set is delined by the mapping act : X/E_ — 2€. From the definition of the invariants
and the active mode sets, it follows that for each discrele state ¢ € and for each region of
the primary partition Pe X/E, we have Pe inv(g) = ge act(P).

Assume that the current discrete state is ¢ and that ¢ € act {(n{x{r))) for some state
x(r) e theng' is apossible new state, and the transition g — ¢ {or (¢, ¢')) may occur. Each
feasible discrete state transition is associated cither with a controllable event G6.€X oran
uncomtrollable event ¢, € X,. A controllable event is issued by a control mechanism and
forces the transition 1o occur. An uncontrollable event is generated by the environment and
may also force a discrete state transition. As it is described in the previous definition, the
discrete state iransition function is assumed to be deterministic which means that for a given
controllable or uncontrollable event the next discrete state can be uniguely determined,

The state transitions of the PLHDS are synchronized by a clock. At every clock tick an
input event may be triggered and an event caused by the continuous dynamics may occur,
Therefore, every change inthe state occurs synchronously to aclock. Since the hybrid model
evolves in discrete-time, the gencrator will not be able o identify the exact moment that a
byperplane is crossed. It idemifics the first sumple after a crossing has occurred. In many
physical systems. however, events oceur asynchronously at time instants that do not
necessanily coincide with the clock ticks. Discrete-time systems can be used as
approximations of physical processes. The approximation is based on the Fact that evenls
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that vecur asynchrenously are detected in the next clock tick (using digital computers). In
many situations, the discrepancy in the tme instants of the event vecurrences can be studied
by considering continuous disturbances in the model. Discrete-time modeling offers
signiticant computational advantages, however. it cannot be used 1o study the behavior of
the system between sampling instants. For example, it is possible that a sequence of two or
more plant events will occur in a sampling interval. In our model, it is assumed that the plant
events are generated based only on the value of the state ai the sampling instants.

Itis assumed that the purtition defined by the mapping 7 is appropriate for extraction of
important information for the system and it will be called the primary partition. The
primary partition is determined by considering the regions which are used to describe the
control specitications and the interaction berween the continuous and discrete part of the
open loop hybrid sysiem,

The proposed modeling formalism separates the physical plant to be controlled from the
control specilications and the controller, It provides the ‘lecessary mathematical ols to
describe explicitly what control actions are available in order 10 influence the behavior of
the plant. Avery important consequence of this churacteristics is that it is possible o detine
open loop and closed [oop connections between the plant and the controller and try to
exploit the advaniages of feedback. I should be noted that the above model does not
nchude jumps in the continuous state that may occur when certain state variables wre
discontinuously reset, for example, upon crossing a hyperplane, Juriaps can be added in the
modeling formalism described above and in the subsequent analysis if they can be
represented by piecewise lineur maps. However. the notation becomes tedious, and the
ideas and methodologies presented harder 1o follow.

Example—Temperature Control System: We present a temperature control system (o
illustrate the piecewise linear hybrid medel. An electrical anatog of a temperature control
system is used by considering the temperature being analogous 1o ¢lectric voltage, heut
quantity 1o current, heat capacity to capacitance, und thermal resistance o electrical
resistance. The system consists of a fumace thal can be switched on and off. When the
furnace is on, a continuous input controls the produced heat. The control objective is o
control ihe iemperature at a point B of the system by applying the heat input at a different
point A. The temperature at point 8 is also affected by the temperature at i point C of the
environment.

The temperature control systen has two modes ¢, and ¢, that correspond (o the furnace
being on and off respectively. When the furnace is on. the system can described by the
electrical circuit shown in Figure 1. Let .y, and v, denote the voltages (temperatures) across
the capacitors C; and C, conuolled by changing the current (heat) input i which takes
values in the set & C R. The temperature v, is also affected by the temperature ¢ of the
environment which is modeled as 1 continuous disturbance. For the mode ¢\, the system is
governed by the state-space equation (using Kirchhoffs laws)

. R 1
‘|] _ | TRG R [-HJ + [Cl.}u+ [ ? }d
| # ~Fac |t 0 e

where RIZ = R|R2R| +R-_\.
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Figure [ Electric vircuit describing the case when the fumace is on,

When the fumace is tumed off, the lemperature is decreasing and the behavior of the
system can be described by the electrical circuit shown in Figure 2. The values of the
resistors und the capacitors model the time constants of the system. The time constants are,
in general, difterent depending on whether the temperature is increasing or decreasing.
The state-space representation of the system for the mode ¢, takes the form

where Ry = RaR /R, + R,

The voltages (temperatures) x, and x5 can be affected either by the continuous control
input € U or by switching on or oif the furnace using the control input events g, and g,
I is assumed that a relicf switch is used to protect point A from overheating. so that the
furnace is switched off automatically whenever the temperature v, exceeds a prescribed
level h. The control objective for the system is to maintain the temperature X, between
appropriate levels described by the interval [/, hu).

A partition of the continuous state space is obtained by considering the hyperplanes
hy=x —ubhy =xy — It hy = x5 — e, and hy = x; that describe the safety guard and
the control specifications of the system. The partition of the continuous state space is
shown in Figure 4, Discrete-time representations of the continuous dynamics for each
maodle are obtained using (zero-order hold) sumpling. The discrete part of the system is
described by the automaton of Figure 3. The system switches between modes ¢, and ¢,
upon receiving the control input events g, and o, Moreover, a plant event issues when
Xy > ab will switch the system to the off mode.

—_ T x d

Fignre 2. Electric circuit deseribing the case when the fumace is off.
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Frgure 4 Partition for the temperature control system,

The lemperature control system example is used to illustrate the partition refinement
methodolody for safety specifications in Subsection 3.2 and for reachability specifications
in Subsection 6. 1. A case study of hybrid controller synthesis for a related heating system
is presented in Balluchi et al. (1999), where a heating system is modeled as a hybrid
automaton with continuous dynamics described by first-order differential equations and
controlier that guarantees safety is designed using game theory. In our example. the
objective is to control the temperature at of the system by applying the heat input at a
different point, ancl therefore the system can only be described using second-order
dynamics. It should be noted that the example and our approach can be generalized 1o an
n-th-order piecewise linear hybrid system.

3. Discrete Abstractions

This section describes an algebraic system theoretical framework that enable us to
formalize the partition refinement methodology, The main contribution is a framework for
constructing discrete abstractions for piecewise lincar hybrid systems that take into
consideration the control inputs, both continuous and discrete.

In order to analyze hybrid systems and design control algorithms, it is desirable 1o
induce dynamical systems in finite yuotient spaces that preserve the properties of interest
and then study the simplified models, The solution we propose is to take advantage of the
available control inputs in order to simplify the system. We want 1o formulate conditions
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on the available control inputs in order to construct meaningful discrete abstractions of the
hybrid system. The main mathematical Wwol 1o be used is the predecessor operator applied
recursively (o subscts of the hybrid state space. The application of the predecessor operator
corresponds io the refinement of the primary partition into Rner partitions that allow the
formulation of conditions that guaraniee the existence of appropriate controls for the
objectives of interest.

In general, the design of the partition depends not only on the plant to be controlled, but
also on the contral policies availuble, as well as on the control goals to be attained, Certain
control goals may require, for example, detailed leedback information while for others
coarser yuantization levels of the signals may be sufficient. The former case corresponds
to finer partitioning of the leedback signal space, while the luiter corresponds to coarser
partitioning. The fact thar different control goals may require different types of
information about the plant is not surprising, us it is rather well known that (o stabilize
a system, for example. requires less detailed information about the system’s dynamic
behavior than to do tracking. Note that in general, the fewer the distinet regions in the
partitioned signal space, the simpler {lewer states) the resulting induced system will be.
and this wiil result in a simpler controller design. Since the systems to be controlled via
hybrid controllers are typically complex, it is important to make every effort to use only
the necessary information to attain the control goals. The question of systematicaily
determining the minimum amount ot information needed from the plamt in order 10
achieve particular control goals is an important and largely open question; our work only
partially resolves this guestion,

3L Induced Dynamical Systemns

Let /' be the state wransition function of a dynamical system and assume that the inputs are
lixed. Consider the dingram in Figure 3. Intuitively. the map 7 is used to coarsen the state
set of the system. The question that arises is whether the system f can follow this
abstruction. This question is concerned with the existence of a mapping [ : X/E, — X/E,
that makes the diagram commute. It is shown in Sain (198 1) lhuljT exists if and only if

Y E xy = (mof){x) = (nof)(x.) 4)
X J X
1] -~
SRS Lo -~ XIE;

Figre 5. hduced dynamicil systems,
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{where = denotes function composition) and moreover, it (4) is satistied then f is unique.
Note that the above result does not require any steucture on the set X or the mappings = and
f- Using equivalence relations on the state set X, it is possible 1o define new dynamical
systems 1 the derived quotient spuces. These systems are called induced dynamical
syslems (Sain, 1981).

In the hybrid systems case, the properties of the original system are not preserved. in
generul. in the induced system. One ol the main difficulties arises because abstractions of
continuous systems in fnite quotient spaces usually resubt in nondeterniministic discrere
event systems. Consider, for example, two continuous states 1, v, £ 1, x, = 15 such that
mixy ] = m(x,) = PeX/E,. The stiles v, and x, may be driven even using the same control
inpui to different equivalence classes of the yuotient space X/ E,. Therefore, in general we
have that (7 o £){x)) # (7 o f)(x;} and a mapping £ that makes the diagram commute cdoes
not exist.

In general, piecewise linear hybrid dynamical systems cannot be induced in [linite
guotient spaces by preserving the reachability properties {Latferriere et al, 1999,
However, there are some cases when a mapping n and the induced system f can be
computed. A special case arises when the mapping 7 is defined using the natural invariants
of the continuous dynamics (Stiver et al,, 1996a; Broucke, 1999; Stiver et al., 2001).
However. it is very dillicuit to compute such partitions, and moreover, the control
specifications are not necessarily defined using the invariant sets of the system. The
solution we propuse is to take advantage of the available control inputs in order 10 simplily
the system. We want to formulate conditions on the avaifable control inputs in order 10
induce piecewise linear hybrid dynamical systems in finite quotient spaces. The design of
hybrid control systems is decomposed in two levels. In the higher level, we are concerned
only with the existence of appropriate control inputs. The implementation of the controller
and theretore, the selection of the control input signal is done by the lower level. First, we
want to formulate efficient algorithms that guarantee the existence of appropriate control
inputs for safety and reachability specifications. Second, we want to develop systematic
methodologies for the design of the (lower level) controller. In this paper. we concentrate
on the first problem and we formulate conditions for the existence of appropriate control
inputs for safety and reachability specifications. The conditions are expressed as the
feasibility of an optimization problem. The lower ievel problem is concerned with the
selection of the optimal control inputs and it is a by-product of the optimization algorithm.
A systematic design methodology for the selection of optintal control inputs that results in
a feedbuck control architecture has been developed in Koutsoukos (2000), but it is not
presented in this paper due to space limitations,

First, we describe our approach using an algebraic system theory setting. Consider the
diagram shown in Figure 6. The equivalence relation £ is defined by the mapping
e XxU —X/Ey < X/E, as follows. The restriction of nz in the state space X is the
mapping which describes the primary partition of the system. The restriction of 7,
separates the input space U into two equivalence classes. The first equivalence class
consists of all control inputs available (o the system and the second class consists of all the
renizining elements of the input space. In practical applications, physical constraints such
as saturation constraints restrict the control inputs that can be applied to the system. For
example, the current input in the temperature control system example is constrained based
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XxU X
TpSTe X7 | Ty
' > v
MEexUE, --------+ f: ----------- + XIE,

Fiyure 6. Fonction diagram including control inpuis.

on the availuble current source. Many times, we even consider a finite set of inputs
corresponding o specitic commands as, for example, in a valve can be closed, half open,
open. and so on. Therefore, (v, i) is equivalent to (x5, 1) if and only if 2{x,} = 7(x,)
and the control inputs u), > cun be applied 10 the system. Note that the equivalence
relation of the input space is defined in accordance with our two-level anproach since the
higher control level is concerned only with the existence of controls. All available control
inpuls are equivalent at this level of abstraction. The induced dynamical system f exists if
and only if

() EQrr ) = 3 e U, (rp, of)(xuy) = (rg, 0 f)(xs,10)

The interpretation of the above condition is that f exists if and only if there exist control
inputs so that states that belong to the same polyhedral equivalence class of the primary
partition. will remain equivalent in the next time step.

Of course. it is desirable to consider the dynamic evolution of the system in more than
one step. [n order to do that, we consider an upper bound & € N on the number of rime steps
that defines the length of the time horizon of interest. The length is assumed to be finite.
since infinite-time problems in piecewise linear systems are. in general. undecidable
(Sontag, 1996). We introduce the following notation,

af={n.n+ 1 .o0=1n) 4 <6,

. n) = {w{e), ... ulr))}

The equivalence relation on the input space is now defined as follows. The input sequences
[t 1y} and wlry. 2] are equivalent if and only if 1, (¢}, 1€ [ty. 1] and #-{1), 1€ [tg. 8] are
available contral inputs. and in addition we have 1, — 1, < N and t» — 1, € N. The system
mapping denoted by ¢ : X > &Y — X is the extension of the map f : X x U — X, so that it
can be applied 10 sequence segments 1”4, 4], f — &, < N, The induced dynamical system 11-5
exists it and only if

(e[ n]) E (il n]) = 3uiln, ). w3, ] e U7

(g, 0 vy, 1ty 1y]) = {mg, 0 P)(va. 1kt 1a})

[ ]
2
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Xx Y = X
T TEy
XIEGRUME N wooeee Dol - XIE,

Fryure 7. Function diagram including control input sequences.

Our objective is to compuic a partition of the state space so that the diagram shown in
Figure 7 commutes. Qur approach is to refine the initial partition that is used to describe
the specifications, until we can guarantee that there exist appropriate controt resources tha
guarantee that the specifications are satisfied. Note that we consicder only the regions of the
staie space that appear in the specifications. Consequently, the commutativity of the
diagram in Figure 7 is only required with respect 10 the equivalence classes that are formed
from the control specifications.

3.2. Partition Refinement

In this section, we characterize the set of all the partitions of the state space with
polyhedral equivalence classes as a lattice and we define the notion of partition refinememt
with respect to the partid order of the lattice. The characterization of the partition
refinement in a lattice framework is very important for the following reasons. First, by
tormally defining the partition refinement as a lattice operation it is clarified how the
regions of are combined to form the final partition of the system, Second, it illustrates the
difficulty of using a partition of the state space to abstract the continuous dynamics (see
Proposition 1). Note that a lattice of partitions has been used to study dynamical
consistency of hybrid control systems in Caines and Wei (1998). In this paper. we only
consider polvhedral partitions and we present a constructive methodology for partition
refinement.

In the fellowing, we present some basic notions from algebraic system theory (Suin.
1981) that are needed for to formalize the partition refinement methodology. A binary
relation on X is defined as a subset B C X x X = X°. A poset is defined as a set X with a
partial order relation < on X and is denoted by (X. <) A lattice (X, <, AL v ) is a poset
IX, =} for which any two elements have a grewutest lower bound (infimum) denoted by the
binary operation v A ¥ (meet). and a least upper bound (supremum) denoted by the binary
operation v v ¥ { join}. A lattice is said to be complete if inf(¥) and sup(Y) exist for every
Y £ X Let ¥ be a subset of the lautice (X. <, A, v ), then (V. <, A v }is said to be a
sublatiice of (X, <. A, v ) if ¥ is closed with respect to the binary operations meet and
join.

Denote by B(X) the set of all binary relations on the set X. We can define the poset
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(B(X}. <€) where the partial order relaton < on B(X) defined as B, <8, if
{x.1:)€8; = {x.x2) €8, A latice siructure (B(X), <, A, v ) can be developed in
the poset (B(X), <) by introducing meel and join operations (corresponding 1o the set
theoretic intersection and union in X*). The lattice {B(X). <. A, v) is complete and is
referred 1o as the relational latice. Let £(X ) be the set of all eguivalence relations on X, We
have that £(X) C B(X) and E{X) inherns the pantial order of B(X), that is fur
ELEyeE(X)E| S E, if xjE |y = v £y, A lattice structure can also be developed on
the set of all equivalence relations on X (for more details see Sain, 1981). The lattice
(E(X). <, A, v) is called the equivalence lattice.

PROPOSITION | The set Ep(X) of all equivalence refations on X induced by mappings
m X —~X/E, which are defined using finite collections of (n — 1)-dimensional
fyperplanes and thus, they separate the siate space X into polvhedral equivalence
classes, is u sublattive of the equivalence tattice E(X), and will be called polyhedral
equivalence lattice. Furthermiore, Ep(X) is not complete,

Proof:  Consider the equivalence relations £, £, C X defined by the finite collections of
affine functions ", = {I};., 4 and A5 = {0}, 4, Tespectively. The meet of £,
and £y is defined us the sct theoretic intersection £ = (£, E.) = £, N E,. E is clearly the
equivalence relation defined by # = #°) U #', and its equivalence classes are polyhedral
sets sinee they are defined by the intersection of the eyuivalence classes of £, and £,.
Therefore, EgEp(X). The join £' of £, and £, is defined as the intersection of all
equivalence relations £; € Ep(X) that are larger than £, and £, with respect to the partial
order of the equivalence lantice

E'=sup(E).£y) = £\ ULy = [|E}, £y, E; S E]

The intersection of infinite number of equivalence relations from E,(X) does not
necessarily belong to E5(X). However. in this case we can define £ to be the equivalence
relation induced by the finite collection #" = | N 4, of affine functions. Then clearly,
E\,Es £ E and E'€ Ep(X). Note that in the case £, and £, do not have any common
hyperplanes, their join is the equivalence relation that corresponds to X2,

For the sublattice {Ep(X). <. A, v ) to be complete, every subset of £,(X) should have
an inlimum and a supremum. Consider a infinite set {£;} of equivalence relations in
Ep(X). then ,(E,} does not necessarily belong to Ep(X) since infinite intersections of

polybedral sets may not be polyhedral, |

Partition refinement is defined with respect to the order relation of the polyhedral
equivalence lattice. A partition defined by the mapping #' is finer than the partition defined
by m. if the induced equivalence relations considered as elements of the equivalence lattice
satisfy the condition £, < £, The partition refinement methodology starts from the initial
partition of the system and computes finer partitions by incorporating additional
hyperplanes. In the latlice framework. given the primary partition. we refine the state
space using the “"meet” operation of £p(X). The fact that the polyhedral equivalence
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lattice is not complete implies that in order for the fnal partition 1o be & polyhedral
equivilence relation, the partition refinement must use only a finite number of **meet’’
operations. It should be emphasized that the control specifications. the invariants. and the
guards of the hybrid model are represented using the polyhedral regions of the primary
partition.

4. Backward Reachability Analysis

In this scction, we describe a backward reachability analysis approach for partition
refinement. The main contribution is an efficient algorithm for partition refinement of
precewise linear hybrid systems based on the predecessor vperator.

4.1, The Predecessor Operator for PLHDS

In this section. we define the predecessor vperator for PLHDS. We also present the
technical results that are necessary for the compuiation of the operator. These results are
used for the development of computer algorithms for backward reachability analysis of
PLHDS.

A region of the state space is defined as R = (M, P} where M 0 is a set of modes and
P CR" is a piecewise lineur set satisfying the following property. For every xe P there
eXists ge M such that ge act{n{x)}. This condition guarantees that for every state in the
region R there is a possible evolution of the system. Given the region R = (M, P}, we
define the predecessor operator pre ; 2¢%X - 2C*¥ 14 compute the set of states for which
there exists a control input so that the state will be driven in R for every disturbance. The
action of the operator is described by

pre{R) = {geM} x {xeX | el YdeD A+ By + E deP}

The set pre(R) is piecewise linear and can be always represented using only linear
equalities and inequalitics. Such a description is based on the fact that piccewise-linear
algebra admits efimination of quantifiers (Sontag, 1982) which means that any PL ser
defined using quantifiers can be also detined using onty propositional connectives.

4.2.  Computation of the Predecessor Operator

In the following, we present algorithms 1o carry out the elimination of guantifiers for the
computation of the predecessor operator for piecewise-linear hybrid dymamical systems,
Our results are based on combinations of three different mathematical tools. Fourier—
Motzkin elimination (Motzkin, 1932) for computing appropriale projections, linear
programming techniques {Nush und Sofer, 1996) for eliminating redundant construints,
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and equivalences from predicate logic (Nerode and Shore. 1993) to combine the
constraints,

Consider the region R = (M, P). A PL set is not necessarily polyhedral. However, every
PL set P can be written as a finite union of polyhedrat sets P = [ J7_ | P;. for example, by
writing the linear constraints in disjunctive normal form. In order to show that there exists
4 constructive algorithm for elimination of quantifiers, we have essentially to consider
only the logical formula

GueU)dy ) adpleu)a }v v, (qu) adyleu)a )

Algorithms for elimination of quantifiers for more complicated logical formulas can then
be derived using logical equivalences (Chang, 1990). In the case of PLHDS, we are
interested in elimination of quantifiers for formulas of the form (Jug /) and (Yd D) for
the control inputs and disturbances respectively. Since any PL set can be written as the
finite union of polyhedral sets, it suffices to show how the predecessor operator is applied
to a union of polyhedral sets. We compute the predecessor operator of a PL set in two
steps. First, we consider only polyhedral sets and second, unions of polyhedral sets. In
order to simplify the notation, in the remaining of this subsection we assume that the
discrete state ¢ is fixed and we consider the restriction of the predecessor operator to the
continuous state space pre, : 25 — 2%,

4.3. Continucus Control Inputs

Consider the system x(r + 1) = Ax(¢) + Bu(r) where Ae ™" and Be R"™™. It is assumed
that the control input takes values in the polytope (bounded polyhedral) & described by
U={ueR"[Fu<v}, FeR'"™ veR’. Consider the polyhedral set PER” given by
P={xeR'|Gxr<w}, GeR"™™ weR”. Our objective is lo present a systematic
methodology to compute the predecessor operator set

pre (P) = {xeR"|Zne U, Ax + Bue P}

We denote Pr: X' x U/ — X the projection from the set X x I/ = R” x ™ 1o the state space
X =%

PROPOSITION 2 The set pre (P) is given by pre (P) = Pe(W) where W € X x U is defined
as W= {(x u)|[[GAx + GBn < w) A (Fu < v}}.

Proof: By direct substitution, we have that pre(P) = {x|Juel,GAx + GBu < w}.
Then. we have that if ve Pr(W), there exits e/ such that (x,u)eW, and therefore
xvepre (£). Conversely, if xe pre,(P). then by definition of the predecessor operator there
exists control input u € U such that (x, #) € W. which implies that x& Pr(W). Therefore, we
have shown that pre (P) = Pr(W). n
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The projection of the set W into the continuous state space X = R" can be computed
using the Fourier-Motzkin elimination method (Motzkin, 1952: Dulfin, 1974; Williams,
1986). We project the polyhedron W < ' x R into the space K" by eliminating the
variables «; of the control input vector. According te Fourier's method. in order 10
elimmate a variable from a set of inequalities. we must consider all pairs of inequalities in
which the variable has opposite sign and eliminate the vanable between each pair.

Since U is bounded. all the control variables «, will appear with opposite sign in at least
one pair of inequalities from the constraints Fu < v, In order to see that. consider that there
exists u, that appear with the same sign in all the constraints. Assume without loss of
generality that ir; appears with a positive sign in all the constraints Fu < v. Then. i, can be
decreased indefinitely without violating any of the constraints. Therefore. the set U is
unbounded which is a contradiction.

Example: Consider the following set of linear inequalities

Htotugl (3)
eyt +usi (6)
u <1 (7N

—u< =03 (8)

for which we want to eliminate the varjable . We consider al! pairs of inequalities in
which the variable u has opposite signs and eliminate between each pair. To demonstrate
this, the inequalities (5) and {8) can be written as

05<u<l—n —xs (9)
Therefore, we have that

05<1-x - xs {10
which can be written us

X +x <05 (1)
Thercfore, if there is a solution to the inequalities (3) and (8). there must be a solution to
the derived inequality (11). Conversely, it there is a solution to (11), then by writing the
inequality in the form (9). it follows that there exists # such that the initial inequalities are
satisfied. Note that the inequality (11) can be easily derived by adding (5) and (8) (after
possible multiplication by a positive number). Repeating this procedure for all the pairs of

inequalities in which u has different signs we obtain the following set of linear inequalities.
which represents the projection of the set of soltutions o the {x,,.x,) space.
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Note thut the constraint 0 € 0.3 is redundant.

A piecewise linear set, however. is not necessurily polyhedral, but it can be written as
the unton of polvhedral sets. Consider, the set P = {J¥_| P, where P, are polyhedral sets.
Then, the set pre.{#) can be computed by the following lemma.

LemMa | Consider the piecewise linear set P = |)%_ | P;, where P; are polshedral seis,
then the predecessor operator of P can be compried by pre (P) ={J7_ | pre,(P;).

Proot:

pre (P') = prel.( P,)
i=1

P
= {.\'|£ueU,rLr+Bue UP,-}
=1

={x|3uel,Ax+BueP,v ... vIueU Ax + BueP,}

il
= U pre {P;) ||
i=1

=

Therefore, the predecessor operator commutes with unions of piecewise linear sets.
Note that this lemma is a consequence of the equivalence (Ix}(¢p(x) v f(x))«—
(Ax){x) v (Fe)f(x) in predicate logic.

4.3.1. Continnous Disturbances

Here, we consider that continuous disturbances are present in the description of the system
which for a fixed discrete mode is given by x{t + 1) = Ax{r) + Bu(t) + Ed(r) where
AeR"™" BeR"™™ and EeR"*P. It is also assumed that the control input & and the
disturbance o take values in the polyhedral and bounded sets ¢ and D respectively.
Consider the polyhedral set P represemed by the following set of linear inequalities:

gr,\‘ T W

gx<w,

Iy this case, the predecessor operator takes the form

»J
£
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pre (f) = {xeX|Juel, VdeD. Av+Bu+EdeP} (12}
Consider the following linear programming problems for i = 1,..., v

min - gl Ed
st. deD

Since D 1s # bounded set the above linear programming problems have finite solutions. The
corresponding solutions are denoted by «f = argminy_p{ -8/ Ed}.i=1,... . v.

PROPOSITION 3 The ser pre (P} is given by pre (P) = Pr{V) where VS X x U is defined us

Proof: If xepre (P} then by definition there exists control input ue U such that the
following set of inequalities holds tor every d e D, and therefore for d = [d], ... ,.u’,’,]r we
have that

gAx+ gl Bu < w) — glEd;

g:'rf\_r +glBu < w, — gl Edd?

Therefore, there exists e U such that (x, &) € V, which implies that x& Pr{V).
Conversely, assume that xe Pr(V) but x & pre (P}. Then, there exists deD and
ie{l,...,v] such that for every ue U/

glAx+ g,—TBu > W= g,TEJ
But by the assumption that x& Pr{Q) we have that there exists we U/ such that

G A+ gfBu < w, — glEd; < w; — gTEd
which is a contradiction. |
Note that we could tirst apply the Fourier—Motzkin elimination method for the elimination
of control vartables, and then solve the linear programming problems for the disturbance,

In the case the set P is piecewise linear but not polyhedral, then we can can compute the

set pre,.(P) without quantifiers by using appropriate equivalences from predicate logic. For
example, in order to eliminate the universal quantifier of the disurbances for the set
P U P, we can use the logical equivalence

VdeD, Ax + B + Ede P, U Py—~(3d €D, Ax + Bu + Ede P N P5)

Then, the existential quantitier can be eliminared by writing the set 7, 7 PS in disjunctive
normal form and apply the Fourier-Motzkin eliminauon method for each set of
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conjunctive constraints, Note that since the control variables we U are independent of the
disturbance variable d £ D, we can select the order for the elimination of quantifiers.

Example: Inorder o illustrate, that the predecessor operator can be computed in a closed-
form in a sraightforward manner, we consider a piecewise linear set described by the
logical formula

() (xcu,dy A by, d)) v (b (v ud) A py(x, 16, d))

where ¢, coresponds to the linear constraint g7 Ax +g/Bu+ gTFd = w,. The
computation of the set pre.(P) is equivalent to the quantifier elimination for the formula

() (V) (e (xou,d) a by (e e d)) v (y(x, u, d) A py{x,u,d))
By applying simple logical equivalences we have

() (V) (P (v, 10 dy A pa(x, i, d)) v (o (x, u, d) A py(x, 2, d))
S (Vd){(Su)(p, (x. o, d) Ay (x, u.d)) v (s (x, 0, d) Ay, d))
(V) () (x. e, d) A by (i, d))) v (Bu} (o (x, 0, d) A gy (x, 1, d))

The elimination of the control variables can be accomplished by applying Fourier-
Motzkin elimination. The resuiting set can be written in disjunctive normal form to obtain
the logical formula W{x.d). Then, the disturbance variables can be eliminated using the
logical equivalence (Vd e D)(¥(x,d)) & (=(3deD)-(*P(x,d)).

We have presented constructive algorithms for the computation of the predecessor
operator for any piecewise linear region of the continuous state space. These algorithms
use the Fourier-Motzkin elimination method, linear programming techniques, and simple
eyuivalences from predicate logic. The algorithms were presented in analytical form and
they can be implemented by sotiware in a straightforward manner. These algorithms have
been applied for reachability analysis of practical examples using Matlab in Section 3.

Remark: A special case of particular interest is the class of hybrid systems for which the
control inputs take values tn a finite set. This is a rather important class of systems since it
cann be used to model many practical applications. For example, chemical processes
usually involve actuators that can be modeled using discrete vaniables such as valves and
compressors. Discrete control inputs arise also in the motion control of many systems such
as satellites or underwater vehicles. Note that in this case the projection can be computed
as the union of the sets that result by substituting each possible value for the control input.
This method, however, will lead to many redundunt constrains. The procedure to eliminate
these redundant constrains requires additional computational effort. A methodology for
reachability analysis in the case of discrete control inputs based on mathematical
programming techniques has been presenied in Koutsoukos and Amsaklis (2000).

-
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4.4. Algorithms for Backward Reachability Analysis

Consider 3 PLHDS described by the equations (1)-(3) and a region R = (M, P}. We denote
the quotient space X /£, induced by the primary partition as X/E, = {P },i=1..... l.
In addition, let pre,., : 2% = 2% denote the predecessor operalor for a continuous transition
described by the discrete mode ¢ as defined in equation (12). The fotlowing algorithm
computes all the states of the hybrid system that can be driven to R in one time-step.

Algorithm for the computation of pre(R)

INPUT: R = (M.P).§ = 0,7 = 0;

fori=1....|«|
O, =POP;
iFQ; # 0

for ge M N act(P;)
5=S8upre. ()
T=Tu{q}k

end

end
QUTPUT: pre{R) = (T, 5)

The algorithm computes all the regions of the state space for which the state can be
driven to R. In order to consider only the discrete modes that are feasible at each region of
the stute space. we write the set P as a union of regions of the initial partition and we
consider only the active mode set tor each region. Note that by construction, forevery xe §
there exists ¢ €5 such that ge (r{x)) and therefore. the set pre(R) is a region.

We have shown that the set prelR) is piecewise linear since it can be described using a
finite set of linear inequalities. Therefore. we can apply the predecessor operator to
compuie the set of all states that can be driven to pre(R) to get pre {pre(R)). Following the
same procedure, we define successive applications of the predecessor operator as

~ times

pre"(R) = pre(- -~ pre(R))

For a given region R, we define the coreachable set CR(R) as the set of all states that can
be driven to R. The coreachable set for a region of the hybnd state space can be computed
by successive application of the predecessor operator CR(R) = pre*(R) where * denotcs
the fixed point of the predecessor operator. It should be noted that the algorithm for the
computation of the coreachable set for a region R is semi-decidable. The procedure
produces the correct answer if it terminates, but its termination is not guaranteed. Infinite
time problems for piecewise lnear systems are, in general. undecidable (Sontag. 1996). In
Section 6. we present a grid-based approximation technique that can be used to formulate a
termination condition for the successive application of the predecessor operator,

For finite time problems, backward reachability algorithms for piecewise linear hybrid
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systems are NP-complete (Sontag, 1996). This follows {rom the definition of the
predecessor operator which 15 formulated using the existential quantitier over all possible
inputs. Practically, the number of linear constraints that are used to represent the
coreachable region grows exponenually at every iteration of the algorithm. The developed
algorithms can be used tor practical applications if they involve only a reasonable number
of iterations. For example, it is shown in Sectivn 3 that we can formulate conditions thai
guarantee that a piecewise linear regton 1s sate by considering only one iteration.

5. Salety

In the tollowing, we focus on the safety problem and we show how 1he refinement of the
state space partition can be used to formulated conditions for safety.

DEFINITION 2: Given a ser of safe states described by the region R ¢ @ x X and an initial
condition (gy, xp) € R. we say that the system is safe if (q(), x(1)) €R for every &

Qur objective is to formulate conditivns on the available controls, so that a given set is
safe for a PLHDS. In order to study safety specifications for piecewise hybrid dynamical
systems, we introduce the notion of quasideterminism. Quasideterminism represents the
case when the future behavior only for the next time interval of the actual system can be
uniquely determined by the curtent state of the induced system. We show that this property
can be used w formulate conditions for safety specificalions for piecewise linear hybrid
dynamica systems.

3.1, Quasideterminism

Quasideterminism can be viewed as a desirable property of the partition of the continuous
state space. The central characteristic of quasideterministic systems is that only the
reachability properties with respect to the safety specifications are preserved in the
quotient system. Quasideterminisim is a weaker requirement than the existence of a linite
bisimulation. A pariition that results in quasideterminism can be always computed for
piecewise-linear systems, while recent results have shown that finite bisimulations exist
only for limited classes of systems (Lafferriere et al., 1999). {n both approaches an
algorithm is used to refine the state space. A bisimulation corresponds 1o u fixed point of
the refinement algorithm. In quasideterminism, we do not require the existence of a fixed
point but we stop the refinement at a prescribed tixed iteration. The disadvantage of that is
that in this case the guotient system does not completely preserve the reachability
properties of the original system, however this is not needed for controller design for an
interesting class of problems as this work demonstrates,
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344 Measurements and Final Partition

Suppaose that at time ¢, x{x(r)} X £, is known. The signal v{s} represents the state of the
system at the r-th successive iteration of the system. It it is agreed that the granularity of
the primary partition is appropriate for the extraction of useful information regarding the
svstem’s behavior, then it is desirable to uniguely determine the state at the next iteration
up to its membership on an equivatence class a(x{r+ 1)}eX/E,. This can be
accomplished by considering a finer partitioa than the primary partiion defined by the
generator T 1o oblain better estimates for the continuous state. This partition will be culled
the final partition.

The final partition is defined by a mupping 7 : X — 2% in a simitar way as the primary
partition s delined by n. Given a partition defined by a finite set of {n ~ 1)-dimensional
hyperplanes, the generator ng : X — X/E::F separates the state spuce into a finite number of
equivalence classes which correspond to polyhedral regions in ", The function = = mz (v}
can be seen as a measurement function that provides the membership of the state to one of
the equivalence classes of £,_. Intuitively. our ability to make decisions 1o intluence the
behavior of the system depend on the amount of information comained in the measurement
signal,

In the case when the estimates of the state at time ¢ provide sufficient information o
uniquely determine the membership of the state of the induced system at time 7 + | on an
equivalence class of £, the system is said to be quasideterministic. The notion of
quasideterminism is illustrated in Figure 8, Although we do not compute an equivalence
relation thal guarantees the existence of a mapping f that preserves the reachability
properties of the original system, we exploit the commutativity of the diagram in Figure 8
in order to analyze the reachability properties with respect to the safety specifications.

DEFINITION 3: A piecewise linear hybrid dynanical system with primary and fincd
partition defined by X[E, and X/E._ is quasideterministic with respect to the primary
purtition if for every region of the final partition Z, € X/E,_ and for all states xe X such
nelx) = Z;, there exists nnigue region of the primary partition P,eX[/E, such that
P, = wixi1 -+ 1)) for every feasible discrete transition (q,q4'), ¢ e act{n{x(1)}), conrrof
action ue U and disturbance deD.

X ! X
?I'F n
' -
. S -
XIE,, XIE,

Figrure 8§ Ouasidetenninism and the partitions of the siate space.
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In Section 3, we showed that given a piccewise linear region R C @ x X, the set pre(R|}
of all the states that can be driven 1o R is piecewise linear, and therefore, can be descnbed
using a finite set of linear inequalities. Next, consider the hyperplanes hi(x) that
correspond to the linear inequalities that define the set preiR) and the partition ¥’ € Ep (X
defined by those as n'(x) = [, (). ..., #,(x)| where

X -1 if H{x)<0
I ix) = 0 if A{)=0
1 if A{x)>0

THEOREM | Consider a piecewise linear hvbrid dvnamical system with primary partition
defined by E_ and ler the partition generated by applving the predecessor operator
pre 2 29%% 289X 14 the regions of the initial partition defined by E . Then the piecewise
{inear lvbrid dynamical system with final partition defined by E_ = (E, EL} is
quasideterministic with vespect to the primary partition.

Proof:  Consider an equivalence class Z;e X/E, . Z; corresponds to an polyhedral region
of W'. Since £, = inf(E,,E, ), for every P,e X/E, we have that either Z;,Spre (P;) or
Z Npre (P;) = 0. Consider a continuous state YeZ. then by the definition of the
predecessor operator we have that x{r + 1) = Ax(r) + B u(r) + E,d(t)e P, if and only if
Z, < pre,(I’;}. Therefore, for each (¢,4’), 4" € (r(x(1))), for each ue U, and for every d e D,
the membership of the continuous state x{r + 1} in an equivalence class of X/£, can be
uniquely determined from the membership of the state x(f) in an equivalence class of
X/E,,. u

The implication of the above theorem is that for every state, every control action, and
every disturbance the membership of the state at the next time step to an equivalence class
of the primary partition can be uniguely detennined from the current region of the final
partition. This information can be used to determine if theset P is safe.

Remark: 1t the PLHDS with primary and final partition defined by X/E, and X/E_ is
quasideterministic with respect to the primary partition &, then it is also quasideterministic
if instead of £, we use any finer final partition such that £, < £,_. This can be shown by
considering a region Z{e £, . By the definition of the partial order in the equivalence
lattice, for every Zi e E, . there exists a unique Z;€ £, so that ny(x) = Z] = ne(x) = Z,.
Therefore, every Zi € E, corresponds to a unique equivalence class of E_, for which the
membership of the continuous state x{r+ 1) in an equivalence class of X/£, can be
uniquely determined,

5.2, Safety Conditions

In this section, we formulate conditions that guarantee that a given region of the hybrid
stute space is safe. The conditions can be efticiently tested using linear programming
techniques,
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THECREM 2 A PLHDS is safe with ‘re'sp(’rr o the region RS xX if and onlv i
R<preR).

Proof: If RS pre(R). every state (¢..x) € pre(R) and therefore every state (g.v) €R can
be driven in R, either by selection of appropriate control input v/ or by triggering a
discrete transition and therefore, the system is safe. Conversely, assume that the system is
safe and consider there exists control policy such that (g(r),x{r}eR for every r. By
definition, the set pre(R) is the set of all the states for which there exists control policy so
that the next state will be in R. Therefore. since the system is safe for every (q.x) e R we

have that {g,.x) € pre(R). [ |

In the following, we present a constructive algerithm which is used to test the condition
Rapre(R). Let RIX and pre{R)|X be the projection of R and pre(R} into the continuous
state space X. Similarly RIQ and pre(R)|Q for the discrete state space (. In order to show
that R =pre(R). we need to 1est whether RIQ S pre(R)|Q and RIX = pre(R})|X. Since, the
sets R|Q and pre{R)|@ are finite, we can test whether R|Q € pre(R)|Q in a straightforward
manner. Next, we concentrate on the continuous part of the regions £ and pre(R). The sets
RIX and pre(R)|X are piecewise linear but not polyhedral, and therefore they are not
necessarily convex. In order to test whether R{X < pre(R)}|X, we represent the constraints in
disjunctive normal form and we test the feasibility of fintie set ol linear programming
problems.

Every PL set can be written as a union of polyhedral sets using the disjunctive normal
form representation. Therefore, we can assume that the set R1X and the complement of the
sel prei R ) X can be written as

Rix=|J »

LE T [
and

pre(RIXI = ) W,
=30

where P, and W, are polyhedral, and therefore convex sets in . For each pair (7, f) the set
C; =P, NW,; is polyhedral as the intersection of polyhedral sets. Furthermore. the
condition P, W, =0 can be tested by solving the following linear programming
problem:

min  x

st.  xeC,
We have that PN W, = if and only if the above linear programming is infeasible.
Therefore, we have that RS pre(R) and the PLHDS is safe if and only if P 71 W, = Ul for
everyi=1,..., |Pland j = 1,.... Q.
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Tuble | Parameters for the wmperature control system

Furnuce ON Furnice OFF

i 0

Ry =12 Ry =10

R, =1 . =2

c =1 Cy =03
Cy=1 C,=1

U, = {03,5] Ug=0

D, =01 Dy 1,0

Example—Temperature Control System: I the following, we use the temperature control
system presented in Section 2 to illustrate how we can formulate the safety conditions. We
consider the system parumeters shown m Table 1. The discrete state g, corresponds to the
cuse the furnace is on. Using zero-order hold sampling with T = |. the continuous
dynamics ure described by the difference equation x(r + 1) = A,x(¢) + B () + E,d{1)
where

4 o |06634 01997) o fogi01] . _ [0.1369
PT 00997 0264t VT {03690 © T |0.5363

and w(r)e ;. dirleD|. Similurly, for the discrete state g, (furnace olf), we have
x(r + 1) = Agv(e) + Byue{t) + Egel{t) where

= 0.825% 0.1334 B — 1.8179 E = 0.0387
0T 00677 055511 0T oor3|r 0T o372

and u(r)e Uy, d(1)eD,. The partition of the state space is obtained by considering
the following hyperplunes  I(x) =x, —ub, ub =20, hy{x)=xs—l, t=5;
fy(x) =0 =, 1 =00 and hg{x) = x|, and it is shown in Figure 9. Tt is assumed that
the safe region is described by the set R = {{gq,4,), P} where P is given by

P={xeR|(0<x, Sub)n(lt <x, < he)}

Next, we describe in detail the atgorithm for the computaton of the sct pre(R). We
represent the set Pas P = {v|Gy € w} where

a booo
¢ 0 |
G= P I I R
5 -0
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Figure 9. Primary partition tor the tempeeatere control system.

and

W= - =

First, we compute the set
pre, , (P) = {xldgv + Boue + Eyd e P}

Note that it the system is at mode ¢,. the input is ¥ = 0. Using Proposition 3, we consider
the following set of linear inequalities:

GAgr = w — GEyd it3)
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We solve the linear programming problems

min  — g',f"E‘,(.’
s.L. ([EDU

for i=1.2.3.4 and we obtain [d].d5. . d;j| = (0.0, 1. - 1i. By substituting in
equation (13) we get

0.8259  0.1354 20
)| 00677 03551 (¥ 5 ,
Precs, ()= 1 <R 00677 - 05551 [.rz =1 -03772 {4
~0.8250 -0.1354 - 0.0387

Next. we compute the set
pre. . (P) = {xlAyx + Bju + E\de P}
We consider the following set of linear inequalitics:

GAx+GBu<w—-GEd
W<
—u<-03

We apply the Fourier-Motzkin elimination method in order to eliminate the control
variable «. We also solve the linear programming problems

min —gTE,d
st deD,)

fori=1,2.3,4 and we obtain [d},d3. d}, d;] = {1,1,0,0]. Using Proposition 3 we have
that

06634 0.1997 19.4580
i _ o] 00997 02641 | [x 4.3953 e
precy (P)= 9 ¥R 51997 _ 02641 [.\-J = | 0.6847 13)

—=0.6634 -0.1997 4.0507

The sets pre,. , (#) and pre_, (P) are shown in Figure 10. The set pre(R) is computed using
the algorithm presented in Subsection 4.4 as

pre(R) = {(do:q1). pre ., (PYUpre,, (P)}
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Figure 1. Final pastition for the tenyersune conienl svsoem.

In the following, we illustrate how we can test the safety condition R S pre(R). The set
pre(R}[X can be represented by the logical formula

(o1 A boa n bz » Pra) vy A a A by ady)

where the atomic formulas ¢, correspond to the linear inequaditics that detine the sets
pre., (P} and pre_, (P} in equations (14) and (13) respeciively. We define the set
W= Tpre.fR 1X}". Using DeMorgan’s laws, the set W can be represented by

i= Ha.a ( i ﬂ(b]’.)
=113

Therefore, the set W can be written as W ={J, /W, Each set Wy is described by
the logical formula (—¢hy; A ~epy b and therefore. it is polvhedral. The condition
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RIXSpre(REX can be checked by testing the teasibiluy of the linear programming
problems:

mm X
st o vePW,

For the temperawre control system, we have that R|Q = pre{R}|Q = {¢o.4,} and
POW, =dfori=1.23.dand s = 1,2,3,4 Therefore, the region R is safe as it can be
seen in Figure 10. Note that for every continuous states v there exists at least one discrete
mode that the system can switch to guaraniee safety.

3.3, Maximal Safe Set

In Subsection 3.2, we formulated conditions that guarantee that a given region R is safe. In
the case when the safety conditions are not satistied and R is not safe, it is possible that
there exists a region & C R which is safe. Such a region can be computed as the maximal
safe set conained in R. The problem of computing the maximai safe set has been studied
for timed systems in Asarin et al. {1993} and Maler et al. {1995) and for several classes of
hybrid systems in Tomlin et al. (1998). Lygeros et al. (1999), Wong-Toi (1997}, and
Berardi et al. (2000). Here. we present how the algorithm presented in Tomlin et al. {(1998)
can be applied to PLHDS.

Algorithm for the computation of maximal safe set

INPUT: RV = X: RV =R, k= I;
while f% 2 R¢
RESV = pre(RY) N RY,
k=k+1:
end
OUTPUT: R° = R*

The maximal sale set is computed us a fixed point of the iterative procedure described
above. At the &-th iteration of the algorithm, we compute the set RY = pre(R* ~ ') N gF -1
which contains all the states in R* for which there exist controls so that the state will
rematine in R¥. 1f there exists a fixed point iteration, then clearly the corresponding set R” is
sule. Furthermore, we have that RS KX ' and therefore the set R™ is the maximal safe set
contained in K.

The algorithm involves the computation of the predecessor operator at every iteration.
In Tomlin et al. (1998) and Lygeros et al. (1999), this computation is accomplished by
solving a Hamilton-Jacobi-Bellman equation derived from & game theoretical fonmulation
of the problem. In the case of PLHDS. the predecessor operator can be computed using the
algorithms for elimination of quantitiers presented in Section 3. The proposed procedure is
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semi-decidable. If the afgorithm terminates, it provides the maximal safe piecewise linear
sel contained in R, however its termination is not guaranteed.

The advantage of computing the maximal safe set of 0 PLHDS, is that based on this sct.
a controller can be designed which is maximally permissive. Such a controller is optimal
in a sense. since it does not restrict the behavior of the plant in a conservative way.
However, the algorithm for computing the maximal safe set is not computationatly
efficient. For PLHDS, the number of linear constraints increases exponentially at each
iteration of the algorithm. On the other hand, the safety conditions presented in Subsectton
5.2 do not guarantee that the corresponding controller will be maximally restrictive.
However, they provide constructive conditions that guarantee that a given region is safe
and they can be used to determine what are the appropriate control inputs that guarantee
safety. A class of discrete-time systems for which this procedure is decidable has been
presented in Vidal et al. (2000).

6. Reachability

In this section, we study the reachability probiem for piecewise linear hybrid dynamical
systems. We present a reachability algorithm based on the successive computation of the
predecessor operator. In general, the proposed procedure is semi-decidable and its
termination is not guaranteed. In order to fonnulate a constructive algorithm for
reachability, we consider two approaches. First, we consider an upper bound on the time
horizon and we examine the reachability only for the predetermined finite horizon.
Second, we formulate a termination condition for the reachability algorithm based on a
grid-bused approximation of the piecewise linear regions of the state space.

It should be emphasized that we are interested only in the case when reachability
between two regions R und R, is defined so that the state is driven 10 R, directly from the
region R without entering a third region. This is a problem of practical importance in
hybrid systems since it is often desirable to drive the staze to a target region of the state
space while satisfying constraints on the state and input during the operation of the system,
Consider, for example, an unmanned underwaier vehicle with control policies that allow
various combinations of screw speeds (on and ofT ), stern plane positions (up, level. down),
and rudder positions (left, right. straight). A control goal for such a system can be
described by a target region of the state space which represents a desirable set of
displacements and vetocities for the vehicle. However, while the system is driven to the
target regions the dispucements and velocitics must be approprietly constrained to
guarantee safe operation.

DEFINITION 4: Given two regions R\ R+ S Q x X. we say that R+ is directly reachable
from Ry, if every state (¢,x) € Ry can be driven in Ry in finite time without entering a third
region.

The problem of deciding if a region R is directly reachable from £, can be solved by
recursively computing all the states that can be driven Lo B from R, using the predecessor
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operator. We only consider regions of the form R = (Q), P, ) and R, = (Q-, P,) for which
£, and P, are adjacent polyhedral regions of the primary partition, In this case, the regions
P, and P, have a common boundary which is represented by a (n — I)-dimensional
hyperplane h(x) = g"x — w. The reachability problem between any two regions can be
solved by finding a path consisting of adjacent reachable regions. Note that if the regions
Ry =(q,.P) and R, = {(g,.P) have identical continuous parts, then the reachability
problem can be solved by considering the set of feasible transitions for the polyhedral
region .

6.1. Finite Time Horizon

Consider the regions R, and R, and the initial state (¢, x) e R, and assume that we can
disable the state from crossing all the boundaries of &) but i{x}. It is still possible that the
hybrid system will be blocked in the sense that the state will never exit the region R,
through the hyperplane A{x}. Note that this can happen since we want 1o drive the state
from R to R, without entering a third region. In this case there is a trade-off between
driving the state into the target region and satisfy the constraints for the state trajectory.
The risk of violating the operational conditions of a system while stirring the state to a
desired operating point must be addressed. Thus, this formulation of the reachability
problcm that takes into consideration constraints in the state trajectory is more important
than considering only the state into the target region, both in theory and in practice, Qur
approach is based on conditions that guarantee that state can be forced to cross the
hyperplane /i(x) in finite time by selecting appropriate controls. For this purnose, we
consider a finite time horizon defined by NT where T is the sampling period and N e N.
Consider a PLHDS described by the equations ( 1)—(3) and assume that the initial condition
is {girgl.X(1p ) ER,.

DEFINITION 5 The region Ry is directly N-reachable from R, if for every initial state
qlto) X(ta}) € R\ there exist control inpuis for the PLHDS and ke N, 0 < k < N so that
). x(ti)ERy for 1y <t < 6y + kt and (g(ty + ki), x{zy -+ k1)) €Rs.

We dehine the coreachable set CRN (R) of all states that can be driven from the
region R to R, in the finite time ¢ < NT without entering a third region. The predecessor
operator pre : 20%X _, 20X can be used to compute the set C‘R"' {R4) using the following
algorithm,

Algorithm for the computation of CR}, (R;)

R"=R3
CRgI(R:)r-@
k=10
fork=1....,N

REY = pre(RF) MRy,
it ~(RF I S RE)

25}
()
Th
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CRR (Ry) = CRY (R)UR'*1
else
exit
end

Given the regions R and R,. we compute all the states that can driven from Ry to R,.
Note that at every iteration & of the algorithm we consider the intersection of the set
pre(RY) with the set R, since we are interested only in states that can be driven to R,
directly from the region R, without entering a third region. At every iteration of the
algorithm we have to apply the predecessor operator to a piecewise linear region of the
state space. The resulting region is still piecewise linear, it can be represented using only
linear equalities and inequalities, and it can be computed using the algorithms for
elimination of guantifiers presented in Section 3. The above algorithm can be used to
determine if the region R, is N-reachable trom R, using the following theorem.

THEOREM 3 Consider a PLHDS described by (1)-(2) and the regions R, = (@), P,) und
Ry = (Qs, Py). Then. the setset CRY AR} is piecewise lincar and the region R is direcily
N-reachable from R\ if and onlv if RI SCRY [(R2).

Proof: The set set CRN (R,) is piecewise linear since it is computed using finite unions
and intersections of pu.utwuse linear sets. At the k iteration of the algorithm, the set R
contains all the states in R that can be driven in R in7 < AT [F R, QCR}‘{I (R.) then there
exists controls so that every state [g,.x) € R, can be drivento R, in ¢ £ ¥T without entering
a third region. n

Furthermore. since the set CR:,‘(,'I(R:) is piccewise linear. the reachability problem
between R, uml R, can be solvedusing linear programming techniques similarly to the
safety conditions (see Subsection 5.2). For regions that are not adjacent. a feasible path
connecting these regions which consists of adjucent must be established. Note that this can
be done at the higher level of abstraction, since the necessary information is the existence
of a control policy and not the actual policy.

Example—Temperature Control Svstem: We illustraie the reachability algorithm using the
temperature  control  system  presented in Section 2. Consider the regions
R, =g q1}-£)) and Ry = ({gy.4,}. P~} where

P, = {xe R0 £ 5, S20VA (=20 < x, < 0)}
and

Pr={xeR 0 < x, €204 (0< vz € 5)}

It is desirable that every state [rom R, can be driven to R without entering a third region.
Such a specification may arise, for example, at the startup procedure of the system, where
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Figure {1, Coreachable ser for the wmperature control system,

it is required for the state of the system to reach the safe region 0 <., < 5 without
enlering the unsate region x; = 20,

In order to compute the set of states in the region R, that can be driven to R, using
appropniate control inputs, we apply the reachability algorithm presented in Subsection
6.1. The coreachable set of states for three iterations of the algorithm is shown in Figure
L. The region R, is directly reachable from R, in r = 37" Therefore, there exists control
policy which sclects the control input e/ and possibly forces appropriate discrete
transitions so that every state (¢, x) €R| can be driven to the region R,.

6.2. Grid-Based Approximation

In this section. we formulate an approximation-based methodology in order io guarantee
that the algorithm for the successive computation of the predecessor operator will
terminate. The reachability algorithm based on the successive computation of the

i~
[¥5]
-1
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Figure I2. Prmary partition for the system.

predecessor operator is semi-decidable and therefore, its termination is not guarameed. In
the following, we present such an example.

Example: Consider the discrete-time linear system x(r + 1) = Ax(r} with

A= 11036 —0.0315
= lo1051  0.9984

Suppose we are given the partition shown in Figure 12 described by the hyperpianes
W) =2 +3. () =x +2,3(x) = x5 ~ 1, and Ay(x) = xa + L.
We consider the regions

Pr={xeR|(-3<x S -DAr(~1<x, <)}

1A

and
Py={reR(-3<x, £ -Da(-1<x <))

and our objective is 1o test if the region P is reachable from P,.
The linear system x(r + 1) = Ax(¢) is an unstable system with complex conjugate
eigenvalues 1.0510 + f0.0235. We use the reachability algorithm to compute the set of
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Figure 13 The buckward reachability algonthim does not necessarily terminate.

states in P\ that can be driven in P,. At the every iteration of the reachability algorithm we
have that Pf = prcr(P)" NP, # B. Therefore, we add new states to the coreachable set of
FPa at every iteration and the algorithm will not terminate. In Figure 13 we show the lincar
constraints computed by the algorithm by applying successively the predecessor operator
for twenty iterations,

In order to guaraniee that the reachability algorithm will always terminate we formulate
a practicat termination condition. The termination condition is based on quantization of
the state space. The basic idea is that the algorithm should terminate if the set pre{R*} is
not ““substantially different’” than the set pre(R*~+). By “‘substantiaily different’’ we
mean whether new cells of the quantized space have been added to the set of states that can
be driven to R. L is a parameter selected by the designer and depends on the sampling
period and the quantization of the state space. If the sampling period is smail and the
quantization levels are large, it is possible that no new states will be added in the
coreachable set in one time step and we have to use a parameter L > {.

First, we select quantization levels A, for each continuous state x, R, and the range of
each state v, ., and x;,.. which is assumed to bebounded. These choices lead to a
yuantization of the plant state space into a finite number of n-dimensional cells. A given
piecewise linear set 7 C R” is then approximated by the union of all the cells that belong
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Figure 4. Grid-based approximation for reachability.

1o the set. The membership of a cell to the set P is defined as follows. A n-dimensional cell
satisfies the constraint ¢"x < w if and only if all the vertices of the cell satisfy the
constraint. The cell belongs to the set P if it satisfies all the constraints that define P. We
formally define this approximarion technique using the mapping grid: 2% — 2% The set
grid(P) is defined as the union of all the cells that belong to the set P. The set grid{P) is a
conservative approximation of P since x € grid(P) implies that xe P.

Algorithm for the computation of CR(R) using the grid-based approximation

R() =R
G® = grid(P)
™ =RIQ:

while ~{pre(R*) = R*)
Rk-;—l — R"Upre(Rk‘.;
Gl = grid(PE 1)
Tk+[ ____RR-+!|Q.‘
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ithk+1=>Lthenj=4k+1~Lelsej=0;
G 26 and TH 1S T then exin:
end

The above ulgorithm computes the coreachable set for the region R by successive
application of the predecessor operator. At the &-th iteration, the algorithm computes the
set pre(R*) of states that can be driven 10 the region R in & time sieps. Note that
pre(R'}Spre(RY+!) since at every iteration of the algorithm we add more reachable
states. The algorithm will terminate if no new cells are added to the coreachable set for L
iterations. The algorithm is guaranteed w terminate since by the guantization assumption
we consider finitely many #-dimensional cells. Note that the approximation of the set
pre(RY) is used only in the termination condition. The algorithm procecds for the
computation of the set pre{&* *' ) using the exact representation of pre(R*), thercfore there
is no accumulition of error due to the approximation.

Example: Consider the linear system x(r + 1) = Ax(¢) presented earlier in the section.
Figure 14 shows an approximation of the set of states from P, that can be driven to P. The
guantized levels for the example are Ax, = 0.5 and the design parameter L = 2. In this
case the coreachable set can be underapproximated by the shaded region since in the last
L =2 iterations of the algorithm no new cells were added to the coreachable set.

7. Conclusions

In this paper, a mathematical model that can capture both discrete and continuous
phenomena is formulated. The continuous dynamics are described by linear difference
equations and the discrete dynamics by finite automata. The interaction between the
continuous and discrete part is defined by piccewise linear maps. We refer to this class of
systems as piecewise linear hybrid dynamical systems in order to emphasize the hybrid
nature of rhe systems and problems of interest. The proposed modeling formalism
separates the physical plant to be controlled from the control specifications and the
controller. It provides the necessary mathematical tools to describe explicitly what control
actions are available in order to influence the behavior of the plant so that the control
specifications are satisfied.

We present @ new methodology for the construction of discrete abstractions of the
continuous dynamics. The main characteristic of the approach is that the available control
inputs are faken into consideration in order to simplify the system. The predecessor
operator for piecewise linear systemns is defined and computer algorithms for refining the
partition of the state space are developed. Furthermore, we formulate conditions for safety
and reachability specifications for piecewise linear hybrid dynamical systems. In order to
study safety specifications for piecewise hybrid dynamical systems, we introduce-the
notion of quasideterminism. Quasideterminism represents the case when the future
behavior only for the next time imerval of the actual system can be uniquely determined by
the current state of the induced sysiem. We show that this property can be used to
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formulate conditions for salety specifications for piecewise linear hybrid dymamical
systems. The safety conditions can be tested using efficient linear programming
techniques. Reachability conditions are also formulated. Our approach is based on
conditions that guarantee that the state can be forced to reach a desirable region of the stute
space by selecting appropriate controls. The main advaniage of the proposed approach is
that it provides a convenicnt general framework not only for analysis, but more
importantty for controller synthesis.

Practical hybrid systems are often characterized by nonlinear continuous dynamics. The
most important question that arises is whether the backward reachability analysis
developed tor piecewise linear hybrid dynamical systems can be applied etficiently tor the
analysis of nonlinear hybrid systems. Piecewise lineur systems can be used to approximate
the nontinear dynamics, However, in order to obiain good approximations we may need tu
use a large number of subsystems and therefore the comesponding analysis and synthesis
algorithms will be in general computationally inefficient. The extension of the anulysis
and synthesis techniques based on discrete abstractions of the continuous dynamics For
nonlinear hybrid systems is 2 very impornant research direction.
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