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Abstract|This paper provides an approach toward solving
optimal control problems of switched systems. In general,
in such problems one needs to �nd both optimal continuous

inputs and optimal switching sequences, since the system
dynamics vary before and after every switching instant. Af-
ter formulating the optimal control problem, we propose a

two stage optimization methodology. Since many practi-
cal problems only concern Stage 1 optimization where the

number of switchings and the order of active subsystems are
given, we concentrate on Stage 1 and develop an algorithm
based on di�erentiations of the value function with respect

to the switching instants. The algorithm is also applied to
general switched linear quadratic problems and the advan-
tages are discussed.

Keywords| Switched Systems, Optimal Control, Nonlin-
ear Optimizations.

I. Introduction

A switched system is a hybrid system that consists of
several subsystems and a switching law specifying the ac-
tive subsystem at each time instant. Examples of switched
systems can be found in chemical processes, automotive
systems, and electrical circuit systems, etc.
Recently, optimal control problems of hybrid and

switched systems have been attracting researchers from
various �elds in science and engineering, due to the prob-
lems' signi�cance in theory and application. The available
results in the literature can be classi�ed into two categories,
theoretical and practical. [2], [8], [9], [10], [12], [16] primar-
ily focus on theoretical results. These results extend the
classical maximum principle or dynamic programming ap-
proaches to such problems. However, because there are no
eÆcient constructive methodologies suggested in these pa-
pers for obtaining optimal solutions, there is a signi�cant
gap between theoretical results and their applications to
real-world examples. As to the second category of practical
results, the researchers take advantage of the availability of
high speed computers and eÆcient nonlinear optimization
techniques to develop some methodologies for solving such
problems (see e.g., [1], [5], [6], [7], [11]).
It is worth noting that because there are many di�erent

models and optimal control objectives for hybrid systems,
the above papers often di�er greatly in their problem for-
mulations and approaches. Switched systems, on the other
hand tend to be described by similar models, and similar
optimal control problem formulations have appeared in the
literature (e.g, [5], [6], [7], [9], [11], [13]). For an optimal
control problem of a switched system, one needs to �nd
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both an optimal continuous input and an optimal switching
sequence since the system dynamics vary before and after
every switching instant. Due to the involvement of switch-
ing sequences, such a problem is diÆcult to solve. Most of
the methods in the literature that we are aware of are based
on some discretization of continuous-time space and/or dis-
cretization of state space into grids and use search methods
for the resultant discrete model to �nd optimal/suboptimal
solutions. But the discretization approaches may lead to
computational combinatoric explosions and the solutions
obtained may not be accurate enough. This paper pro-
vides an approach for solving optimal control problems of
switched systems that is not based on discretizations and
employs continuous nonlinear optimization to determine
the switching instants.

In Section II, we formulate the optimal control prob-
lem and discuss some of the related issues. In Section III,
a two stage optimization methodology is proposed under
some additional assumptions. Since the two stage opti-
mization is still diÆcult to implement, we concentrate on
Stage 1 optimization where the number of switchings and
the order of active subsystems are already given. Focusing
on Stage 1 problems is appropriate because in many prac-
tical situations, we only need to study problems with �xed
number of switchings and �xed order of active subsystems
(e.g. the speeding up of an automobile power train only
requires switchings from gear 1 to 2 to 3 to 4) and in such
cases the solution to Stage 1 is indeed the optimal solution
for the problem. On the other hand, Stage 1 optimization
itself is already challenging enough and the solution to it is
a �rst step toward solving the general problem which does
not possess a good solution up to now. In Section IV, we
derive a second-order search algorithm based on di�erenti-
ations of the value function with respect to the switching
instants, which is an extension of the algorithm in [14].
The algorithm is then applied to general switched linear
quadratic (GSLQ) problems in Section V with advantages
indicated. An example is given to illustrate our approach.

II. Problem Formulation

A. Switched Systems

We de�ne a switched system as follows.
De�nition 1 (Switched System) A switched system is a

tuple S = (D;F; L) where

� D = (I; E) is a directed graph indicating the discrete
structure of the system. The node set I = f1; 2; � � � ;Mg
is the set of indices for subsystems. The directed edge set
E is a subset of I � I � f(i; i)ji 2 Ig which indicates valid
events. If an event e = (i1; i2) takes place, the system
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switches from subsystem i1 to i2.
� F = ffi : Rn �Rm �R! Rn; i 2 Ig with fi describing
the vector �eld for the ith subsystem _x = fi(x; u; t).
� L = f�ej�e � Rn; e 2 Eg provides a logic constraint
which relates the continuous state and the mode switchings.
Note for e = (i1; i2) 2 E, �e 6= ;. Only when x 2 �e, a
switching from i1 to i2 is possible. 2

From De�nition 1, a switched system is a collection of
subsystems related by a switching logic described by D.
The continuous state x and the continuous input u satisfy
x 2 Rn and u 2 Rm. If a particular switching law is
speci�ed, then the switched system can be described as

_x(t) = fi(t)(x(t); u(t); t) (1)

i(t) = '(x(t); i(t�); t); (2)

where ' : Rn� I�R! I determines the active subsystem
at time t. Note that (1)-(2) are used as the de�nition of
switched systems in some of the literature (e.g., [5]). Here
we adopt De�nition 1 rather than (1)-(2) because in design
problems, in general, ' is not de�ned a priori and it is a
designer's task to �nd a switching law. A salient feature of
a switched system is that its continuous state x does not
exhibit jumps at switching instants.
For a switched system S, the inputs of the system consist

of both a continuous input u(�) and a switching sequence.
We de�ne a switching sequence as follows.
De�nition 2 (Switching Sequence) For a switched sys-

tem S, a switching sequence � in [t0; tf ] is de�ned as

� = ((t0; i0); (t1; e1); (t2; e2); � � � ; (tK ; eK)); (3)

with 0 � K <1, t0 � t1 � t2 � � � � � tK � tf , and i0 2 I ,
ek = (ik�1; ik) 2 E for k = 1; 2; � � � ;K.

We de�ne �[t0;tf ]
4
= f�'s in [t0; tf ]g. 2

A switching sequence � as de�ned above indicates that, if
tk < tk+1, then subsystem ik is active in [tk; tk+1) ([tK ; tf ]
if k = K); if tk = tk+1, then ik is switched through
at instant tk (`switched through' means that the system
switches from subsystem ik�1 to ik and then to ik+1 all at
instant tk). For a switched system to be well-behaved, we
generally exclude the undesirable Zeno phenomenon, i.e.,
in�nitely many switchings in �nite amount of time. Hence
in De�nition 2, we only allow nonZeno sequences which
switch at most a �nite number of times in [t0; tf ], though
di�erent sequences may have di�erent numbers of switch-
ings. We specify � 2 �[t0;tf ] as a discrete input.
Example 1 (An automotive system) A manual trans-

mission car with four gears is a good example of a switched
system. If we denote the lateral position as x1 and the ve-
locity x2, the system dynamics at gear i is

_x1 = x2
_x2 = �i(x2)u

where �i(x2)'s are the gear eÆciency functions. Here
I=f1; 2; 3; 4g. If the gear can only be shifted one gear up or
down, then E=f(1; 2);(2; 1);(2; 3);(3; 2);(3; 4); (4; 3)g; here
�(1;2)= �(2;1)= fxjx2 2 [10; 20]g, �(2;3)= �(3;2)= fxjx2 2

[20; 40]g, �(3;4)= �(4;3)= fxjx2 2 [40; 60]g. The inputs of
this system are the continuous input u (the throttle posi-
tion) and the switching sequence (gear shifting). 2

B. An Optimal Control Problem

Problem 1: Consider a switched system S = (D;F; L).
Find a pair of admissible �� 2 �[0;tf ] and u� 2 U =
fpiecewise continuous function u on [0; tf ] with u(t) 2

 � Rm, 8t 2 [0; tf ]g that have the properties:
(a) the system state trajectory is driven from x0 at t = 0 to
an (n� lf )-dimensional smooth manifold Sf = fxj�f (x) =
0; �f : R

n ! Rlf g at tf (tf is given) and

(b) J =  (x(tf )) +
R tf
0 L(x(t); u(t); t)dt is minimized. 2

Problem 1 is a basic optimal control problem with �xed
�nal time, and �nal state on a smooth manifold. In the fol-
lowing, we further assume that f ,  , L, �f possess enough
smoothness properties we need in our derivations.
The �xed �nal time formulation of Problem 1 is mainly

for the convenience of subsequent studies in this paper. For
a general problem with non-�xed �nal time, we can intro-
duce an additional state variable and translate the problem
into one with �xed �nal time (for details, see [15]).

C. The Maximum Principle and HJB Equations

Extensions of the maximum principle (MP) and the
Hamilton-Jacobi-Bellman (HJB) equations for problems
similar to Problem 1 have appeared in the literature. For
example, [8], [10], [12] provide the MP for hybrid and
switched systems, while [13], [16] derive the HJB equa-
tions for such systems. Note however these results are not
readily useful for �nding solutions for practical problems.

D. A Related Issue

A related issue is the existence of solutions. Even for sim-
ple switched systems consisting of linear subsystems, the
optimal solution may not exist because of the nonZenoness
requirement, as shown in the following example.
Example 2: Consider a switched system S = (D;F; L),

where D = (I; E) with I = f1; 2g, E = f(1; 2); (2; 1)g,
F = ff1 = x + u; f2 = �x + ug and �(1;2) = �(2;1) = R.
Find an optimal control (�; u) such that x(0) = 1, x(2) = 1

and J =
R 2
0
[(x(t) � 1)2 + u2(t)]dt is minimized.

Consider the switching sequence �K = ((0; 1);(1=K; (1; 2));
(2=K; (2; 1)); � � � ; ((2K � 1)=K; (1; 2))) and u(t) = 0 for all
t 2 [0; 2], then as K ! 1, J ! 0. But J = 0 cannot
be achieved because it requires in�nite switchings in �nite
time. So the problem has no optimal solution in � 2 �[0;2]

and u 2 U . 2

As seen from Example 2, the Zeno phenomenon may
prevent us from �nding an optimum. Two additional re-
quirements which may be introduced to avoid Zenoness are
proposed in [13]. They are the minimum dwell time switch-
ing requirement and the costs for switchings requirement.

III. Two Stage Optimization

In general, we need to �nd an optimal control input
(��; u�) for Problem 1 such that

J(��; u�) = min
�2�[0;tf ]; u2U

J(�; u): (4)
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Notice that for any �xed switching sequence �, Problem
1 reduces to a conventional optimal control problem for
which we only need to �nd an optimal continuous input u
which minimizes J�(u) = J(�; u). This observation leads
us toward solving Problem 1 using a two stage optimization
methodology under some additional assumptions.
Lemma 1: For Problem 1, if

(a) an optimal solution (��; u�) exists and
(b) for any given switching sequence �, there exists a cor-
responding u� = u�(�) such that J�(u) is minimized,
then the following equation holds

min
�2�[0;tf ]; u2U

J(�; u) = min
�2�[0;tf ]

min
u2U

J(�; u): (5)

Proof: First we prove that min�2�[0;tf ]; u2U J(�; u) �

inf�2�[0;tf ]
minu2U J(�; u). This is because for any �xed

�, there exists a u� = u�(�) such that J(�; u�(�)) =
minu2U J(�; u). But for this pair of (�; u�(�)), we must
have J(��; u�) � J(�; u�(�)), therefore we must have

J(��; u�) � inf
�2�[0;tf ]

J(�; u�(�)) = inf
�2�[0;tf ]

min
u2U

J(�; u):

(6)
While we also have the inequality

inf
�2�[0;tf ]

min
u2U

J(�; u) � min
u2U

J(��; u) = J(��; u�(��)): (7)

And we can choose u�(��) = u�, since for any other u,
we must have J(��; u�) � J(��; u) by the optimality of
(��; u�). Hence combining (6) and (7) we have

J(��; u�) � inf
�2�[0;tf ]

min
u2U

J(�; u) � J(��; u�(��)) = J(��; u�):

(8)
Hence all inequalities in (8) must be equalities and the
inf�2�[0;tf ]

can be replaced by min�2�[0;tf ]
so we obtain

J(��; u�) = min
�2�[0;tf ]; u2U

J(�; u) = min
�2�[0;tf ]

min
u2U

J(�; u):2

The right hand side of (5) needs twice the minimization
process. This supports the validity of the following two
stage optimization methodology.

Two stage optimization methodology

Stage 1 Fixing �, solve the inner minimization problem.
Stage 2 Regarding the optimal cost for each � as a function
J1 = J1(�) = minu2U J(�; u), minimize J1 with respect to
� 2 �[0;tf ]. 2

We can implement the above methodology by the follow-
ing algorithm.

A Two Stage Algorithm

Stage 1 (a) Fix the total number of switchings to be K
and the order of active subsystems, let the minimum value
of J with respect to u be a function of the switching in-
stants, i.e., J1 = J1(t1; t2; � � � ; tK), and �nd J1.
(b) Minimize J1 with respect to t1; t2; � � � ; tK .

Stage 2 (a) Vary the order of active subsystems to �nd
an optimal solution under K switchings.
(b) Vary the number of switchings K to �nd an optimal
solution for Problem 1. 2

The above algorithm has high computational cost. In
practice, many problems only require the solutions of the
optimal continuous input and the optimal switching in-
stants for Stage 1 where a �xed number of switchings and
a �xed order of active subsystems are given. In general,
explicit expressions of J1 are diÆcult to obtain or quite
complicated even for very simple problems (see e.g., Exam-
ple 1 in [13]). Therefore it is necessary to use optimization
methods that do not require explicit expression of J1 as a
function of tk's to develop algorithms.

IV. A Second-Order Approach

In the following we focus on the problem where the num-
ber of switchings and the order of active subsystems are
given (Stage 1) and we develop a second-order approach
to determine the optimal switching instants. This is an
extension of the algorithm in [14] which is motivated by
the approach in [3], [4]. Note that in the following, the
value functions we use may not be the optimal value func-
tions under �xed switching sequences. We assume that the
number of switchings is K and the order of subsystems
is i0; i1; � � � ; iK . The optimal switching instants t1; � � � ; tK
need to be determined (i.e., Step 1(b)).
In the derivations in this section, we assume that we have

a nominal control input u(�) and nominal switching instants
t1; t2; � � � ; tK (if possible, choose u(�) to be an optimal input
corresponding to the current values of switching instants,
but this is not mandatory). Assume u(�) not varying. We
can regard the value function V 0 at t0 (may not be optimal)
as a function of x0; t0; t1; � � � ; tK only. Similarly, the value
function V at ti will depend on x(ti); ti; ti+1; � � � ; tK only.
In the following we assume that the �nal set Stf = Rn. We

denote @V
@x

as a row vector Vx,
@2V
@x2

as Vxx and so on.

A. Single Switching

Let us �rst consider the case of a single switching. We
write a function with a superscript 0 whenever it is evalu-
ated at t0 and a superscript 1� (resp. 1+) whenever it is
evaluated at t1� (resp. t1+). It is not diÆcult to see that

V 0(x0; t0; t1) = V 1+(x(t1); t1) +

Z t1

t0

L(x; u; t)dt:

For a small variation dt1 of t1, we have

V 0(x0; t0; t1 + dt1)

= V 1+(x(t1 + dt1); t1 + dt1) +

Z t1+dt1

t0

L(x; u; t)dt

= V 1+(x(t1); t1) +

Z t1

t0

L(x; u; t)dt+ V 1+
x dx(t1)

+V 1+
t1
dt1 + L1�dt1 +

1

2
(dx(t1))

TV 1+
xx dx(t1)

+
1

2
V 1+
t1t1

dt21 + dt1V
1+
t1x
dx(t1) +

1

2
dt1L

1�
x dx(t1)
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+
1

2
dt1L

1�
u du(t1) +

1

2
L1�
t dt21 + o(dt21) (9)

where

dx(t1) = f1�dt1 +
1
2 (f

1�
t + f1�x f1� + f1�u _u1�)dt21 + o(dt21)

du(t1) = _u1�dt1 + o(dt1)

By substituting dx(t1) and du(t1) into (9), we obtain

V 0(x0; t0; t1 + dt1)
= V 0(x0; t0; t1) + (V 1+

x f1� + V 1+
t1

+ L1�)dt1+
1
2 [(f

1�)TV 1+
xx f

1� + V 1+
x (f1�t + f1�x f1� + f1�u _u1�)+

2V 1+
t1x
f1� + V 1+

t1t1
+ L1�

x f1� + L1�
u _u1� + L1�

t ]dt21 + o(dt21)
4
= V 0(x0; t0; t1) + V 0

t1
dt1 +

1
2V

0
t1t1

dt21 + o(dt21)

Now since V 1+(x(t1); t1) is the value function for �xed
u(�), we have the relationship

V 1+
t1

+ V 1+
x f1+ + L1+ = 0 (10)

By di�erentiating (10), we obtain

V 1+
t1x

= �(f1+)TV 1+
xx � V 1+

x f1+x � L1+
x

V 1+
t1t1

= �V 1+
t1x
f1+ � V 1+

x f1+t � L1+
t � (V 1+

x f1+u + L1+
u ) _u1+

= (f1+)TV 1+
xx f

1+ + (V 1+
x f1+x + L1+

x )f1+ � V 1+
x f1+t

�L1+
t � (V 1+

x f1+u + L1+
u ) _u1+

With the help of the expressions of V 1
t1x

and V 1
t1t1

, we
can write V 0

t1
and V 0

t1t1
in the following form:

V 0
t1
= L1� � L1+ + V 1+

x (f1� � f1+)
V 0
t1t1

= (f1� � f1+)TV 1+
xx (f1� � f1+)� (V 1+

x f1+x
+L1+

x )(f1� � f1+) + (V 1+
x (f1�x � f1+x ) + L1�

x � L1+
x )f1�

+V 1+
x (f1�t � f1+t ) + L1�

t � L1+
t + (V 1+

x f1�u + L1�
u ) _u1�

�(V 1+
x f1+u + L1+

u ) _u1+

If we know V 0
t1
, V 0

t1t1
, we can use second-order nonlinear

optimization methods to �nd the optimal switching instant.

B. Two or More Switchings

For switched systems with two or more switchings, we
need to have more information to construct a second-order
optimization algorithm. Assume that a system switches
from subsystem 1 to 2 at t1 and from subsystem 2 to 3 at
t2 (t0 � t1 � t2 � tf ). The value function then is

V 0(x0; t0; t1; t2) = V 1+(x(t1); t1) +
R t1�
t0

L(x; u; t)dt

= V 2+(x(t2); t2) +
R t2�
t0

L(x; u; t)dt

By similar derivation to the above equations as in Section
4.1, V 0

t1
, V 0

t1t1
, V 0

t2
, V 0

t2t2
can be obtained. To form a second-

order search algorithm, the additional information we need
is V 0

t1t2
. The following important observation reveals some

intrinsic relationship among di�erent switching instants is
helpful in the derivation of V 0

t1t2
. In particular

(a) If u does not vary and dt1 = 0, then dx(t1) = 0 regard-
less of the change dt2.
(b) However if u does not vary and dt2 = 0, the state at
t2 will still have a nonzero variation Æx(t2) which is the
propagated variation due to the variation dt1 at t1. 2

In the following, we refer to observations (a) and (b) as the
forward decoupling principle.
Lemma 2: To the �rst order, Æx(t2) is

Æx(t2) = A(t2; t1)(f
1� � f1+)dt1 (11)

where A(t2; t1) is the state transition function for the vari-
ational time-varying equation in [t1; t2]

Æ _x =
@f(x; u; t)

@x
Æx:

Proof: It can be readily obtained from the fact that (also
see �gure 1)

Æx(t2) = A(t2; t1+ dt1)[(f
1�� f1+)dt1+ o(dt1)]+ o(dt1):2

t1 t2t1 dt1+

f1-

f1+

f1- f1+- dt1( )dt1
+o( )

}
δx( t2 )}

Fig. 1. The variation Æx(t2).

Note that Lemma 2 is a special case of the needle-like
variations in the proof of Pontryagin's MP.
In order to obtain V 0

t1t2
, we need to consider dt1, dt2

at the same time and expand V 0(x0; t0; t1 + dt1; t2 + dt2)
to second-order to �nd the expression of the coeÆcient of
dt1dt2 which is V 0

t1t2
. The three terms that contribute to

the coeÆcient of dt1dt2 are:

1

2
(dx(t2))

TV 2+
xx dx(t2); dt2V

2+
t2x
dx(t2);

1

2
dt2L

2�
x dx(t2):

Using the forward decoupling principle, to �rst order

dx(t2) = A(t2; t1)(f
1� � f1+)dt1 + f2�dt2 (12)

The coeÆcient of the dt1dt2 term can then be obtained by
substituting (12) into the three terms and sum them.

V 0
t1t2

= (f1� � f1+)TAT (t2; t1)V
2+
xx f

2�

+V 2+
t2x
A(t2; t1)(f

1� � f1+) + 1
2L

2�
x A(t2; t1)(f

1� � f1+):

The forward decoupling principle can also be similarly
extended to the case of K switchings to relate Æx(tl) and
dtk (k < l) and the expression for V 0

tktl
can be obtained. We

summarize and extend the results obtained in this section
by the following theorem.
Theorem 1: For a switched system with K switchings,

V 0(x0; t0; t1 + dt1; t2 + dt2; � � � ; tK + dtK)

= V 0(x0; t0; t1; t2; � � � ; tK) +
PK

k=1 V
0
tk
dtk+

1
2

PK

k=1 V
0
tktk

dt2k +
P

1�k<l�K V 0
tktl

dtkdtl + o(
PK

k=1 dt
2
k)

where

V 0
tk
= Lk� � Lk+ + V k+

x (fk� � fk+)
V 0
tktk

= (fk� � fk+)TV k+
xx (fk� � fk+)� (V k+

x fk+x +
Lk+x )(fk� � fk+) + (V k+

x (fk�x � fk+x ) + Lk�x � Lk+x )fk�

+V k+
x (fk�t � fk+t ) + Lk�t � Lk+t + (V k+

x fk�u + Lk�u ) _uk�

�(V k+
x fk+u + Lk+u ) _uk+

V 0
tktl

= (fk� � fk+)TAT (tl; tk)V
l+
xx f

l� � ((f l+)TV l+
xx

+V l+
x f l+x + Ll+x )A(tl; tk)(f

k� � fk+)
+ 1

2L
l�
x A(tl; tk)(f

k� � fk+): 2
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With all the �rst and second derivatives of V 0 with re-
spect to tk's, the following second-order search algorithm
can be used to update the switching instants.

A Second-Order Search Algorithm

Step 1 Choose a nominal u(�) and nominal switching in-
stants t1; t2; � � � ; tK .
Step 2 Fix u(�) and calculate V 0

tk
, V 0

tktk
and V 0

tktl
.

Step 3 Find the descent direction �[V 0
tktl

]�1[V 0
t1
; V 0

t2
; � � � ;

V 0
tK
]T where [V 0

tktl
] is the square matrix whose (k; l)-th

component is V 0
tktl

. Update [t1; t2; � � � ; tK ]T by using line
search methods along this direction (If tnewk is outside
[t0; tf ], enforce it to be on the boundary of [t0; tf ]).
Step 4 Update u(�) by �nding the optimal (or suboptimal)
control input for the new switching instants.
Step 5 Repeat Step 2 to Step 4 until
k[V 0

tktl
]�1[V 0

t1
; V 0

t2
; � � � ; V 0

tK
]T k2 < � (� given). 2

Remark: This approach has advantages but also certain
drawbacks which are as follows.
(a) The conditions are derived under the assumption that
u(�) is not varying during a search iteration. Yet in most
cases, when the switching instants vary, the control input
needs to vary correspondingly. Therefore, this approach
can only give us the optimal switching instants for the nom-
inal u(�).
(b) In general, V 1+

x ; V 1+
xx ; _u

1�; _u1+ can only be determined
after signi�cant computational e�ort has been made.
(c) The computation of A(tl; tk) is in general not easy.
Problem (a) may be partly resolved by updating the u(�)

to be the corresponding optimal input (or near optimal) for
the new switching instant at each new iteration. For prob-
lem (b), we can �nd out the values for V 1+ at (x(t1); t1) by
integration and obtain a numerical approximation of V 1

x ,
(resp. V 1

xx) by observing the variation of V 1 (resp V 1+
xx )

with respect to small variation of x. Similarly we can also
�nd approximations for _u0; _u1+.

V. Application to General Switched Linear

Quadratic Problems

In this section, we consider a special class of optimal con-
trol problems for switched systems, i.e., general switched
linear quadratic (GSLQ) problems. For this class of prob-
lems, the above diÆculties can be successfully addressed.

A. General Switched Linear Quadratic Problems

Problem 2 (GSLQ Problem) Consider a switched sys-
tem S = (D;F; L) with E = I � I � f(i; i)ji 2 Ig, �e =
Rn;8e 2 E and linear subsystems _x = Aix+Biu; i 2 I . If
the order of active subsystems i0; i1; � � � ; iK is given, �nd
the optimal switching instants t1; � � � ; tK and the optimal
control input u(�) such that the cost functional in general
quadratic form

J = 1
2x(tf )

TQfx(tf ) +Mfx(tf ) + Lf +
R tf
t0
( 12x

TQx

+xTV u+ 1
2u

TRu+Mx+Nu+W )dt

is minimized, where t0, tf and x(t0) = x0 are given.
Qf ;Mf ; Lf ; Q; V;R;M;N;W are matrices of appropriate
dimensions, with Qf ; Q � 0 and R > 0. 2

Note that for the general quadratic control of a single
linear system _x = Ax + Bu, we can use the dynamic pro-
gramming approach to obtain the following results.
The optimal value function is

V �(x; t) =
1

2
xTP (t)x + S(t)x+ T (t)

where P (t) = P T (t) and

� _P (t) = Q+ P (t)A+ATP (t)
�(P (t)B + V )R�1(BTP (t) + V T )

� _S(t) =M + S(t)A� (N + S(t)B)R�1(BTP (t) + V T )

� _T (t) =W � 1
2 (N + S(t)B)R�1(BTST (t) +NT )

and the optimal control is in the feedback form

u(x(t); t) = �K(t)x(t) �E(t) (13)

where

K(t) = R�1(BTP (t) + V T ) (14)

E(t) = R�1(BTST (t) +NT ) (15)

B. Second-Order Search Algorithm for General Switched
Linear Quadratic Problems

Now the second-order search algorithm developed in Sec-
tion IV is to be used. Unlike Section IV, here we choose
the nominal K(�) and E(�) rather than u(�) to be �xed at
each iteration (but be updated after the iteration). This
can give us the 
exibility of letting u(�) vary as a function
of x since here u depends on x (see (13)). We now have

V k+
tkx

= �(fk+)TV k+
xx � V k+

x fk+x � Lk+x
�(V k+

x fk+u + Lk+u )uk+x ;

V k+
tktk

= �V k+
tkx

fk+ � V k+
x fk+t � Lk+t � (V k+

x fk+u + Lk+u )uk+t
= (fk+)TV k+

xx f
k+ + (V k+

x fk+x + Lk+x )fk+ � V k+
x fk+t

�Lk+t � (V k+
x fk+u + Lk+u ) _uk+:

Similar to the derivation in Section IV, it can be shown
that V 0

tk
is of the same form as in Theorem 1 and

V 0
tktk

= (fk� � fk+)TV k+
xx (fk� � fk+)� (V k+

x fk+x
+Lk+x )(fk� � fk+) + (V k+

x (fk�x � fk+x ) + Lk�x � Lk+x )fk�

+V k+
x (fk�t � fk+t ) + Lk�t � Lk+t + (V k+

x fk�u + Lk�u ) _uk�

�(V k+
x fk+u + Lk+u )(2uk+x fk� + _uk+):

V 0
tktl

can also be derived similarly to the derivation in
Section IV-B. However, there are some di�erences in this
case. Although the forward decoupling principle gives us
the same expression for Æx(t2) as (11), yet here

Æ _x =
@f(x; u; t)

@x
Æx+

@f(x; u; t)

@u
Æu = (A(t)�B(t)K(t))Æx:

And in addition to the three terms in Section IV-B, there is
one more term 1

2dtlL
l�
u du(tl) contributing to the coeÆcient

of dtkdtl. Hence we now have

V 0
tktl

= (fk� � fk+)TAT (tl; tk)V
l+
xx f

l� � ((f l+)TV l+
xx

+V l+
x f l+x + Ll+x + 1

2L
l�
x + 1

2L
l�
u ul�x )A(tl; tk)(f

k� � fk+):
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It can now be seen from the expressions of V 0
tk
, V 0

tktk
and

V 0
tktl

that all terms necessary for the evaluation of them are
readily available. In this case,

_uk� = � _Kk�x�Kk�fk� � _Ek�

_uk+ = � _Kk+x�Kk+fk+ � _Ek+

uk+x = �Kk+; ul�x = �Kl�; V k+
x = xTP + S; V k+

xx = P

where x; P; S are continuous at tk; _Kk�, _Kk+, _Ek�, _Ek+ are
functions of P; S obtainable by substituting the expressions
of _P and _S into the di�erentiation of (14) and (15). A(tl; tk)
is the state transition matrix for the time varying linear
system Æ _x = (A(t) �B(t)K(t))Æx which can be calculated
easily by numerical integrations.
Now that we have the expressions for V 0

tk
, V 0

tktk
and V 0

tktl
,

we can use the algorithm in Section IV to �nd the optimal
switching instants. Note here K(�) and E(�) are assumed
to be �xed at each iteration, but u(�) varies as a function
of x. The advantages of applying the algorithm to GSLQ
problems are that the diÆculty (a) is partly resolved while
diÆculties (b) and (c) are easily addressed.

C. An Example

Example 3: Consider a switched system consisting of

subsystem 1: _x =

�
�2 0
0 �1

�
x+

�
1
0

�
u;

subsystem 2: _x =

�
0:5 5:3
�5:3 0:5

�
x+

�
1
�1

�
u;

subsystem 3: _x =

�
1 0
0 1:5

�
x+

�
0
1

�
u:

Assume that t0 = 0, tf = 3 and the system switches at
t = t1 from subsystem 1 to 2 and at t = t2 from subsystem
2 to 3 (0 � t1 � t2 � 3). We want to �nd optimal t1; t2
and an optimal input u such that x(0) = [4 4]T and x(3)
is close to [�4:1437 9:3569]T and the cost functional J =
1
2

R 2
0
u2(t)dt is minimized.

For this problem, we add to J a penalty term [(x1(3) +
4:1437)2+(x2(3)�9:3569)2] and consider the expanded cost
functional Jexp. Using the second-order search algorithm
with initial values t1 = 0:8, t2 = 1:8, after 6 iterations
we �nd that the optimal switching instant is t1 = 1:0035,
t2 = 2:0040 and the corresponding optimal cost is 0:0135
(it is faster and more accurate than the result in [14]).
The corresponding state trajectory is shown in Figure 2(a).
This numerical solution is close to the theoretical optimal
solution topt1 = 1, topt2 = 2, Joptexp = 0 and uopt � 0. (Figure
2(b) shows the optimal cost for di�erent t1 < t2.) 2

VI. Conclusion

In this paper, we �rst formulated an optimal control
problem for switched systems. A two stage optimization
methodology was then proposed and a second-order search
algorithm was developed to implement it. The search al-
gorithm is an extension of [14] which was motivated by
the method in [3], [4]. The diÆculties of the application
of the algorithm are pointed out. For the special class of
GSLQ problems, some of the diÆculties can be addressed
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Fig. 2. Example 3: (a). The state trajectory. (b). The optimal cost
for di�erent t1 < t2.

eÆciently as shown in Section V. Note that similar earlier
results have appeared in [13], [14]. From the example, we
�nd that even for GSLQ problems, the optimal cost as a
function of switching instants may not be convex, which
adds into the diÆculties of the problem. The problems
of characterizing such a function and �nding the global
solution for optimal switching instants are to be further
explored.
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