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Abstract. This paper presents new results concerned with liveness, live-
ness of a subset of transitions and deadlock in Petri nets. Liveness is seen
as a particular case of what we call T -liveness: all transitions in the set
T are live. The first results characterize the relation between supervisors
enforcing liveness and T -liveness with supervisors preventing deadlock.
Then we introduce a class of Petri net subnets allowing us to extend two
well known results. Specifically we generalize the result relating dead-
lock to siphons to a necessary and sufficient condition, and we extend
the recent generalization of Commoner’s Theorem for asymmetric choice
Petri nets. We conclude by considering how the theoretical results of
this paper can be used for deadlock prevention, least restrictive deadlock
prevention and least restrictive T -liveness enforcement.

Keywords liveness, deadlock, synthesis of liveness supervisors, struc-
tural properties of Petri nets.

1 Introduction

In this paper we consider three supervisory problems: deadlock prevention, live-
ness enforcement, and T -liveness enforcement, where the latter denotes enforc-
ing that all transition in a transition subset T of a Petri net are live. Deadlock
prevention corresponds to preventing the system from reaching a state of total
deadlock. Liveness corresponds to the stronger requirement that no local dead-
lock occurs, or in other words, all transitions are live. T -liveness refers to all
transition in the set T being live. It is useful in problems where some transitions
correspond to undesirable system events (such as faults).
A way to study the liveness properties of a Petri net uses the reachability

graph. However this approach can only handle bounded Petri nets, needs the
initial marking to be known, and due to the state explosion problem, requires
reasonably small Petri nets. Unfolding has been proposed to reduce the com-
putational burden [2], however the other two limitations remain. In this paper
we consider the structural approach to the liveness problem. The structural ap-
proach relies on the algebraic properties of the incidence matrix. Thus the initial
marking is regarded as a parameter and unbounded Petri nets can be tackled.
Our work has been inspired by the incidence matrix properties of repetitive Petri
nets (e.g. [9]). Related work includes [1], presenting among others an extension of
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the relation between deadlocked Petri nets and siphons for generalized Petri nets,
and a generalization for asymmetric choice Petri nets of Commoner’s theorem.
However, our supervisory perspective, our concern on T -liveness and our consid-
eration of arbitrary Petri nets, including nonrepetitive Petri nets, differentiate
this paper from previous works.

The contribution of this paper is described in sections 3, 4 and the appendix.
To the authors’ knowledge, all results presnted in these sections and the appendix
are new, except for part (b) of Proposition 3.

We begin in section 3.1 by characterizing the relation which exists among
deadlock prevention, T -liveness enforcement and liveness enforcement. Thus we
answer the following questions: (a) Which are the Petri nets in which dead-
lock prevention, T -liveness enforcement or liveness enforcement is possible? and
(b) When deadlock prevention is equivalent to T -liveness enforcement or live-
ness enforcement? We answer question (a) in Proposition 3, and question (b) in
Theorems 2 and 3. Theorem 2 considers the case of the deadlock prevention su-
pervisors which are not more restrictive than liveness or T -liveness supervisors;
Theorem 3 considers the general case. We conclude the first part of the paper
with Theorem 4, which states that the transitions of a Petri net can be divided in
two classes: transitions which can be made live under an appropriate supervisor
for some initial markings, and transitions which cannot be made live under any
circumstances. Theorem 4 is very important for the theoretical developments
which follow in the remaining part of the paper.

The most important part of the paper is section 3.2. In this section we show
how to characterize Petri nets for deadlock prevention and liveness enforcement
based on a special type of subnets. Thus we begin by defining what we call the
active subnets of a Petri net. Then we define a special class of siphons, which we
call active siphons. Proposition 5 is a necessary condition for deadlock which gen-
eralizes the known result that a deadlocked ordinary Petri net contains an empty
siphon. Proposition 6 is a further extension, as it gives a sufficient condition in
terms of empty active siphons for deadlock to be unavoidable. Commoner’s The-
orem on free-choice Petri nets has been recently extended to asymmetric-choice
Petri nets in [1]. We further extend the result of [1] in Theorem 5: we show
that each dead transition is in the postset of an uncontrolled siphon. Then in
Theorem 6 we provide a necessary and sufficient condition for T -liveness in an
asymmetric choice Petri net.

We conclude our paper with section 4, which shows the significance of our
results for deadlock prevention and liveness enforcement. Examples are included.
In sections 4.1 and 4.3 we consider deadlock prevention and T -liveness enforce-
ment. Least permissive T -liveness enforcement is the subject of a different paper
[3, 6], and so we only give some of the ideas of our approach. In section 4.2 we
include Theorem 7, which shows how to do least restrictive deadlock prevention.

The appendix contains the proof of a technical result and polynomial com-
plexity algorithms for the computation of active subnets.
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2 Preliminaries

We denote a Petri net by N = (P, T, F,W ), where P is the set of places, T the
set of transitions, F the set of transition arcs and W the transition arc weight
function. We use the symbol µ to denote a marking and we write (N , µ0) when
we consider the Petri net N with the initial marking µ0. The incidence matrix
of a Petri net is denoted by D, where the rows correspond to places and the
columns to transitions. Also, by denoting a place by pi or a transition by tj , we
assume that pi corresponds to the i’th row of D and tj to the j’th column of D.
We use the notation µ[σ > µ′ to express that the marking µ enables the firing
sequence σ and µ′ is reached by firing σ.
A Petri net N = (P, T, F,W ) is ordinary if ∀f ∈ F : W (f) = 1. We

will refer to slightly more general Petri nets in which only the arcs from places
to transitions have weights equal to one. We are going to call such Petri nets
PT-ordinary, because all arcs (p, t) from a place p to a transition t satisfy the
requirement of an ordinary Petri net that W (p, t) = 1.

Definition 1. Let N = (P, T, F,W ) be a Petri net. We call N PT-ordinary
if ∀p ∈ P ∀t ∈ T, if (p, t) ∈ F then W (p, t) = 1.

A siphon is a set of places S ⊆ P , S 6= ∅, such that •S ⊆ S•. A siphon
S is minimal if there is no siphon S′ ⊂ S. A well known necessary condition
for deadlock [10] is that a deadlocked ordinary Petri net contains at least one
empty siphon. It can easily be seen that the proof of this result also is valid for
PT-ordinary Petri nets.

Proposition 1. A deadlocked PT-ordinary Petri net contains at least one empty
siphon.

In general we may not want all transitions to be live. For instance some
transitions of a Petri net may model faults and we want to insure that some
other transitions are live. This is the reason for the following definition.

Definition 2. Let (N , µ0) be a Petri net and T a subset of the set of transitions.
We say that the Petri net is T-live if all transitions t ∈ T are live.

A live transition is not the opposite of a dead transition. That is, a transition
may be neither live or dead. Indeed, a transition is live if there is no reachable
marking for which it is dead. Note also that T -liveness corresponds to liveness
when the set T equals the set of all Petri net transitions. In what follows we
define what we mean by a supervisor.

Definition 3. Let N = (P, T, F,W ) be a Petri net,M the set of all markings of
N and U ⊆M. A supervisor Ξ is a function Ξ : U → 2T that maps to every
marking a set of transitions that the Petri net is allowed to fire. The markings
in M\ U are called forbidden markings.
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We denote by R(N , µ0, Ξ) the set of reachable markings when (N , µ0) is
supervised with Ξ. We say that deadlock can be prevented in a Petri net N
if there is an initial marking µ0 and a supervisor Ξ such that (N , µ0) supervised
by Ξ is deadlock-free. Similarly, we say that liveness can be enforced in N if
there is an initial marking µ0 and a supervisor Ξ such that (N , µ0) supervised
by Ξ is live. It is known that if (N , µ0) is live, then (N , µ) with µ ≥ µ0 may
not be live. The same is true for deadlock-freedom, as shown in Figure 1. The
next result shows that if liveness is enforcible at marking µ or if deadlock can
be prevented at µ, then this is also true for all markings µ′ ≥ µ.
Proposition 2. If a supervisor Ξ which prevents deadlock in (N , µ0) exists,
then for all µ ≥ µ0 there is a supervisor which prevents deadlock in (N , µ). The
same is true for liveness enforcement and T -liveness enforcement.

Proof. Let µ1 ≥ µ0. A supervisor for (N , µ1) is Ξ1 defined as follows:

Ξ1(µ+ µ1 − µ0) =
{
Ξ(µ) ∩ Tf(µ) for µ ∈ R(N , µ0)
∅ otherwise

where Tf(µ) denotes the transitions enabled by the marking µ, apart from the
supervisor. ut
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Fig. 1. A Petri net which is live for the initial marking µ0 shown in (a) and not even
deadlock-free for the initial marking µ ≥ µ0 shown in (b).

As we prove in the next section, the Petri net structures in which liveness
can be enforced (for some initial markings) are the repetitive Petri nets, and
the Petri net structures in which deadlock can be prevented are the partially
repetitive Petri nets. In what follows we formally define these two Petri net
classes.

Definition 4. [9] A Petri net is said to be (partially) repetitive if there is a
marking µ0 and a firing sequence σ from µ0 such that every (some) transition
occurs infinitely often in σ.
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A test allowing to check whether a Petri net is (partially) repetitive uses the
incidence matrix D and is next presented. Linear programming techniques can
be used to implement the test.

Theorem 1. [9] A Petri net is (partially) repetitive iff a vector x of positive
(nonnegative) integers exists, such that Dx ≥ 0 and x 6= 0.

3 Results

3.1 Conditions for Deadlock Prevention and Liveness Enforcement

In general it may not be possible to enforce liveness or to prevent deadlock
in an arbitrary given Petri net. This may happen because the initial marking is
inappropriate or because the structure of the Petri net is incompatible with such
a supervision purpose. The next proposition characterizes the structure of Petri
nets which allow supervision for deadlock prevention and liveness enforcement,
respectively. It shows that Petri nets in which liveness is enforcible are repetitive,
and Petri nets in which deadlock is avoidable are partially repetitive. Part (b)
of the proposition also appears in [12].

Proposition 3. Let N = (P, T, F,W ) be a Petri net.
(a) Initial markings µ0 exist such that deadlock can be prevented in (N , µ0) iff
N is partially repetitive.

(b) Initial markings µ0 exist such that liveness can be enforced in (N , µ0) iff N
is repetitive.

(c) Initial markings µ0 exist such that T -liveness can be enforced in (N , µ0) iff
there is an initial marking µ0 enabling an infinite firing sequence in which
all transitions of T appear infinitely often.

Proof. (a) If deadlock can be avoided in (N , µ0) then µ0 enables some infinite
firing sequence σ, and by definition N is partially repetitive. If N is partially
repetitive let Ξ be a supervisor defined for µ0 of Definition 4 and Ξ only allows
firing the infinite firing sequence of Definition 4. Then Ξ prevents deadlock in
(N , µ0) and so markings µ0 exist such that deadlock can be prevented in (N , µ0).
(b) and (c) The proof is similar to (a). ut

If N is partially repetitive, a constructive way to obtain a marking for which
deadlock can be prevented is implied by Theorem 1: there is a nonnegative vector
x, x 6= 0 such that Dx ≥ 0. Let σx be a firing sequence associated to a firing
vector q = x and let q1 denote the firing vector after the first transition of σx
fired, q2 after the first two fired, and so on to qk = q. If the rows of the incidence
matrix D are dT1 , d

T
2 , . . ., d

T
|P |, then a marking which enables σx is

µ0(pi) = −min(0, min
j=1...k

dTi qj) i = 1 . . . |P | (1)

5

Marian V. Iordache and Panos J. Antsaklis, “Generalized Conditions for Liveness Enforcement and Deadlock 
Prevention in Petri Nets,” Application and Theory of Petri Nets 2001, pp. 184-203, Jose-Manuel Colom and 
Maciej Koutny Eds., Lecture Notes in Computer Science (LNCS) Vol. 2075, Springer Berlin, 2001. 
Proceedings of the 22nd International Conference on Application and Theory of Petri Nets (ICATPN2001), 
Newcastle upon Tyne, UK, 25-29 June 2001.



At least one deadlock prevention strategy exists for µ0: to allow only the firing
sequence σx, σx, σx, . . . to fire. This infinite firing sequence is enabled by µ0
because µ0 +Dx ≥ µ0 and µ0 enables σx.
Next we introduce a technical result which is necessary in order to prove

some of the main results of this paper.

Lemma 1. Let N = (P, T, F,W ) be a Petri net of incidence matrix D. Assume
that there is an initial marking µI which enables an infinite firing sequence σ.
Let U ⊆ T be the set of transitions which appear infinitely often in σ.
(a) There is a nonnegative integer vector x such that Dx ≥ 0, ∀ti ∈ U : x(i) 6= 0
and ∀ti ∈ T \ U : x(i) = 0.

(b) There is a firing sequence σx containing only the transitions with x(i) 6= 0,
such that ∃µ∗1, µ∗2 ∈ R(N , µI): µ∗1[σx > µ∗2 and each transition ti appears
x(i) times in σx.

Proof. See appendix. ut
In order to characterize the supervisors which prevent deadlock, or enforce

liveness or T -liveness, we define the properties P1, P2 and P3 below, in which
N = (P, T, F,W ) is a Petri net, Tx ⊆ T and σ denotes a firing sequence.
(P1) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1[σ > µ′1 and µ′1 ≥ µ1)
(P2) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1[σ > µ′1, µ′1 ≥ µ1 and all transitions of T appear

in σ)
(P3) (∃σ ∃µ′1, µ1 ∈ R(N , µ): µ1[σ > µ′1, µ′1 ≥ µ1 and all transitions of Tx appear

in σ)

The following theorem clarifies the relation which exist between supervisors
enforcing deadlock prevention, Tx-liveness or liveness. In general it is naturally
to assume that a deadlock prevention supervisor will not be more restrictive
than a supervisor enforcing a stronger requirement, such that liveness or even
T -liveness. Such cases are considered in the parts (d) and (e) of the following
theorem.

Theorem 2. Let N = (P, T, F,W ) be a Petri net and Tx ⊆ T .
(a) Deadlock can be prevented in (N , µ) iff (P1) is true.
(b) Liveness can be enforced in (N , µ) iff (P2) is true.
(c) Tx-liveness can be enforced in (N , µ) iff (P3) is true.
(d) Consider an arbitrary initial marking µ0. All supervisors preventing deadlock
in (N , µ0) which are not more restrictive than any supervisor enforcing live-
ness in (N , µ0), enforce liveness as well iff for all markings µ ∈ R(N , µ0),
if (P1) is true then (P2) is true.

(e) All supervisors preventing deadlock in (N , µ0) which are not more restrictive
than any supervisor enforcing Tx-liveness in (N , µ0), enforce Tx-liveness as
well iff for all markings µ ∈ R(N , µ0), if (P1) is true then (P3) is true.
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Proof. (a) If (P1) is true, then a deadlock prevention strategy is to allow only a
firing sequence that leads from µ to µ1, and then only the infinite firing sequence
σ1, σ1, σ1, . . .. Furthermore, if deadlock can be prevented, there is an infinite
firing sequence enabled by the initial marking. Then, by Lemma 1, it follows
that (P1) is true.
(b) The proof is similar to (a).
(c) The first part of the proof is similar to (a). If Tx-liveness can be enforced,

there is an infinite firing sequence σ enabled by the initial marking, and the
transitions in Tx appear infinitely often in σ. Then, by Lemma 1, it follows that
(P3) is true.
(d) This is a particular case of (e) for T = Tx.
(e) “⇒” Assume the contrary. Then there is a supervisor Ξ which prevents

deadlock and ∃µ ∈ R(N , µ0, Ξ) such that (P1) is true and (P3) is not. Then
by part (b), (N , µ) cannot be made Tx-live, so Ξ does not enforce Tx-liveness,
which is a contradiction.
“⇐” Let Ξ be a supervisor which prevents deadlock in (N , µ0). The proof

checks that for all µ ∈ R(N , µ0, Ξ) there is a firing sequence enabled by µ,
accepted by Ξ, and which includes all transitions in Tx. Let µ ∈ R(N , µ0, Ξ).
Because deadlock is prevented, (P3) is true since (P1) is true. Let ΞL be the
supervisor that enforces Tx-liveness in (N , µ0) by firing σ1σ2σσ . . . σ . . ., where
µ0[σ1 > µ[σ2 > µ1, and σ, µ and µ1 are the variables from (P3). Because Ξ is
more permissive than any liveness enforcing policy, Ξ is more permissive than
ΞL. Thus Ξ allows σ2σ to fire from µ. Therefore all transitions of Tx appear in
some firing sequence enabled by µ and allowed by Ξ. ut
In practice it may be difficult to check the conditions of Theorem 2(d-e), in

order to see whether a deadlock prevention supervisor will also enforce liveness or
T -liveness. In contrast, the conditions of the next theorem can be easily verified
using linear programming.

Theorem 3. Let N = (P, T, F,W ) be a Petri net, D its incidence matrix, Tx ⊆
T , n = |T | the number of transitions, M = {x ∈ Zn+ : x 6= 0, Dx ≥ 0},
N = {x ∈M : ∀i = 1 . . . n : x(i) 6= 0} and P = {x ∈M : ∀ti ∈ Tx : x(i) 6= 0}.
(a) M 6= ∅ and M = N iff supervisors which prevent deadlock exist for some
initial marking, and for all initial markings µ0 all supervisors preventing
deadlock in (N , µ0) also enforce liveness in (N , µ0).

(b) M 6= ∅ and M = P iff supervisors which prevent deadlock exist for some
initial marking, and for all initial markings µ0 all supervisors preventing
deadlock in (N , µ0) also enforce Tx-liveness in (N , µ0).

(c) N 6= ∅ and N = P iff supervisors which enforce Tx-liveness exist for some
initial marking, and for all initial markings µ0 all supervisors enforcing Tx-
liveness in (N , µ0) also enforce liveness in (N , µ0).

Proof. (a) This is a particular case of (b) for T = Tx.
(b) “⇒” Let µ0 be the initial marking and let Ξ be an arbitrary supervisor

which prevents deadlock in (N , µ0). By Theorem 2(a), (P1) is true for all µ ∈
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Fig. 2. Examples for Theorems 2 and 3

R(N , µ0, Ξ). For an arbitrary µ which is reached, let x be the firing vector
associated to the firing sequence σ from (P1). In (P1), µ

′
1 ≥ µ1 implies Dx ≥ 0,

so M = P implies ∀ti ∈ Tx: x(i) 6= 0. Hence σ includes all transitions of Tx.
Because µ was arbitrary, and µ1 reached from µ enables σ, for all reachable
markings µ no transition of Tx is dead. So Ξ also enforces Tx-liveness.
“⇐” Assume the contrary. Then there is a nonnegative integer vector x,

x 6= 0, such that Dx ≥ 0 and x(i) = 0 for some ti ∈ Tx. Let Ξ be a deadlock pre-
vention supervisor for (N , µ0), where µ0 is such that it enables a firing sequence
σx and σx depends on x as in Lemma 1(b). If Ξ is defined to only allow firing
σxσxσx . . . σx . . ., then deadlock is prevented but Tx-liveness is not enforced, as
σx does not include all transitions of Tx. Contradiction.
(c) The proof is identical to (b) if we substitute in (b) deadlock prevention

with Tx-liveness enforcement, Theorem 2(a) with Theorem 2(c), Tx with T and
(P1) with (P3). ut
Figure 2(a) shows an example for Theorem 3(a): all nonnegative vectors x

such that Dx ≥ 0 are a linear combination with nonnegative coefficients of
[1, 2, 1, 1]T and [2, 3, 3, 3]T . Figure 2(b) shows an example for Theorem 2(d).
Indeed, all markings µ that enable any of t1, t2 or t4 satisfy (P2). Also, a marking
that enables only t3 either leads to deadlock or enables the sequence t3, t4 and
hence satisfies (P2). For instance, the deadlock prevention policy that repeatedly
fires t2, t1 does not enforce liveness because it does not satisfy the requirement
of Theorem 2(d) to be more permissive than any liveness enforcing supervisor.
With regard to Theorem 2(d-e), note that designing deadlock prevention

supervisors less restrictive than liveness enforcing supervisors has been demon-
strated for instance in [4, 5, 7, 8].

Theorem 4. Consider a Petri net N = (P, T, F,W ) which is not repetitive.
Then at least one transition exists such that for any given finite initial marking
it cannot fire infinitely often. Let TD be the set of all such transitions. There
are initial markings µ0 and a supervisor Ξ such that ∀µ ∈ R(N , µ0, Ξ), no
transition in T \ TD is dead.
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Proof. Let ‖x‖ be the support of the vector x, that is ‖x‖ = {i : x(i) 6= 0}.
There is an integer vector x ≥ 0 with maximum support such that Dx ≥ 0,
which means that for all integer vectors w ≥ 0 such that Dw ≥ 0, ‖w‖ ⊆ ‖x‖.
Indeed if y ≥ 0, z ≥ 0 are integer vectors and Dy ≥ 0, Dz ≥ 0, then D(z+y) ≥ 0
and so y + z ≥ 0 and ‖y‖, ‖z‖ ⊆ ‖y + z‖.
If tj ∈ T can be made live, there is a marking that enables an infinite firing

sequence σ such that tj appears infinitely often in σ. Therefore by Lemma 1
∃y ≥ 0 such thatDy ≥ 0 and y(j) > 0. Since x has maximum support, ‖y‖ ⊆ ‖x‖
and so tj ∈ ‖x‖. This proves that all transitions that can be made live are in
‖x‖. Therefore TD is nonempty. Next, the proof shows that all transitions in ‖x‖
can be made live, which implies that T \ TD = ‖x‖.
Let σx be a firing sequence associated with x, i.e. every ti ∈ T appears x(i)

times in σx. Then there is a marking µ0 given by equation (1) which enables
the infinite firing sequence σxσxσx . . . σx . . .. Also, we may choose Ξ to restrict
all possible firings to the former infinite firing sequence, so all transitions in ‖x‖
can be made live. ut

In Theorem 4, TD is nonempty. Otherwise, since all transitions from T \ TD
could simultaneously be made live, this would imply that N is repetitive, which
is a contradiction. A special case is T \ TD = ∅, when the Petri net is not even
partially repetitive, and so deadlock can not be avoided for any marking.

It was already shown that only repetitive Petri nets can be made live (Propo-
sition 3). Theorem 4 shows that the set of transitions of a partially repetitive
Petri net can be uniquely divided in transitions that can be made live and tran-
sitions that cannot be made live. So the liveness property of partially repetitive
Petri nets is that all transitions that can be live are live (T \ TD-liveness). For
an example, consider the Petri nets of Figure 4(a) and (b). For the first one
TD = {t4, t5}, and for the second one TD = {t1, t2, t3}.

3.2 A Characterization of Petri Nets Based on Subnets which Can
Be Made Live, in View of Deadlock Prevention and Liveness
Enforcement

We denote by the active subnet a part of a Petri net which can be made live
for appropriate markings by supervision. In the following definition we use the
notations from Theorem 4.

Definition 5. Let N = (P, T, F,W ) be a Petri net, D the incidence matrix
and TD ⊆ T be the set of all transitions which cannot fire infinitely often given
any initial marking. NA = (PA, TA, FA,WA) is an active subnet of N if
PA = TA•, FA = F ∩ {(TA × PA) ∪ (PA × TA)}, WA is the restriction of W
to FA and TA is the set of transitions with nonzero entry in some nonnegative
vector x which satisfies Dx ≥ 0. Themaximal active subnet of N is the active
subnet NA = (PA, TA, FA,WA) such that TA = T \ TD. A minimal active
subnet has the property that the vector x defining it has minimum support.
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Definition 6. Given an active subnet NA of a Petri net N , a siphon of N is
said to be an active siphon (with respect to NA) if it is or includes a siphon of
NA. An active siphon is minimal if it does not include another active siphon
(with respect to the same active subnet.)

In Figure 3(a) and (c) two Petri nets are given. Figure 3(b) shows the minimal
active subnets of the Petri net in Figure 3(a). The union of the two subnets is the
maximal active subnet. Figure 3(d) shows the only nonempty active subnet of
the Petri net of Figure 3(c). The minimal active siphons of the Petri net in Figure
3(a) with respect to the active subnet having TA = {t6, t7, t9} are {p1, p5, p6, p7}
and {p6, p7, p8}. The minimal active siphons of the Petri net of Figure 3(c) are
{p1, p4, p7}, {p2, p5, p7}, {p3, p5, p7} and {p6, p7}.
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Fig. 3. Two Petri nets: (a) and (c), and their active subnets: (b) and (d), respectively.

Proposition 4. A siphon which contains places from an active subnet is an
active siphon with respect to that subnet.

Proof. Using the notations from Definition 5, let S be a siphon such that S ∩
PA 6= ∅. •S ⊆ S• implies that •S ∩ TA ⊆ S • ∩TA. If t ∈ TA and for some
p ∈ P : t ∈ p•, then p ∈ PA, by Definition 5. Hence S •∩TA ⊆ (S ∩PA)• and so
S •∩TA = (S ∩PA)•∩TA. Note also that •(S∩PA)∩TA ⊆ •S∩TA. Therefore
•S ⊆ S• implies •(S ∩ PA) ∩ TA ⊆ (S ∩ PA) • ∩TA, which proves that S ∩ PA
is a siphon of NA. ut

The significance of the active subnets for deadlock prevention can be seen in
the following propositions. First we prove a technical result.

Lemma 2. Let NA = (PA, TA, FA,WA) be an active subnet of N . Given a
marking µ of N and µA its restriction to NA, if t ∈ TA is enabled in NA, then
t is enabled in N .
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Proof. By definition, there is an nonnegative integer vector x ≥ 0 such that
Dx ≥ 0 (D is the incidence matrix) and x(i) > 0 for ti ∈ TA and x(i) = 0 for
ti ∈ T \ TA. This implies that there are markings such that the transitions of
TA can fire infinitely often, without firing other transitions (see equation (1).)
If t is not enabled in N , there is p ∈ •t such that p /∈ PA (the • operators are
taken with respect to N , not NA,) since t is enabled in NA. Note that p /∈ PA
implies •p ∪ TA = ∅. If •p = ∅, t cannot fire infinitely often, which contradicts
the definition of TA, since t ∈ TA. If tx ∈ •p, the transitions of TA cannot fire
infinitely often without firing tx, which again contradicts the definition of T

A.
Therefore t is also enabled in N . ut
Note that in a repetitive Petri net all siphons are active with respect to the

maximal active subnet. The next result is a generalization of the well known
Proposition 1.

Proposition 5. Let NA be an arbitrary, nonempty, active subnet of a PT-
ordinary Petri net N . If µ is a deadlock marking of N , then there is at least one
empty minimal active siphon with respect to NA.
Proof. Since µ is a deadlock marking and N = (P, T, F,W ) is PT-ordinary,
∀t ∈ T ∃p ∈ •t: µ(p) = 0. The active subnet is built in such a way that if
the marking µ restricted to the active subnet enables a transition t, then µ
enables t in the total net (Lemma 2.) Therefore, because the total net (N , µ)
is in deadlock, the active subnet is too. In view of Proposition 1, let s be an
empty minimal siphon of the active subnet. Consider s in the total net. If s is
a siphon of the total net, then s is also a minimal active siphon; therefore the
net has a minimal active siphon which is empty. If s is not a siphon of the total
net: •s \ TA 6= ∅. Let S be the set recursively constructed as follows: S0 = s,
Si = Si−1∪{p ∈ •(•Si−1 \Si−1•) : µ(p) = 0}, where µ is the (deadlock) marking
of the net. In other words S is a completion of s with places with null marking
such that S is a siphon. By construction S is an active siphon and is empty for
the marking µ. Hence an empty minimal active siphon exists. ut
The practical significance of Proposition 5 is that it can be used for deadlock

prevention, since deadlock is not possible when all active siphons with respect
to a nonempty active subnet cannot become empty. A less restrictive condition
is given in the next result.

Proposition 6. Deadlock is unavoidable for the marking µ if for all minimal
active subnets NA there is an empty active siphon with respect to NA.
Proof. For any empty (active or not) siphon, all transitions in the postset of
that siphon are empty. Therefore for all active minimal subnets, some of their
transitions are dead. If deadlock is avoidable, after some transitions firings a
marking can be reached which enables σxσxσx . . . σx . . ., where σx is a finite
firing sequence. Let q be the firing count vector for σx. Then Dq ≥ 0. If the
active subnet for q is minimal, we let x = q, but if it is not, there is x such
that ‖x‖ ⊂ ‖q‖, x 6= 0, x ≥ 0, Dx ≥ 0 and the active subnet associated to x
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is minimal. But it must be an active siphon with regard to that active subnet,
therefore not all of the transitions of ‖x‖ can fire, which implies that not all of
the transitions of σx can fire, which is a contradiction. ut
Propositions 5 and 6 generalize Proposition 1. Thus a Petri net will certainly

enter deadlock if for all minimal active subnets NA there is an empty active
siphon with respect to NA. Conversely a deadlock state implies that for each
active subnet there is an empty active siphon with regard to that subnet. Propo-
sition 6 suggests an approach for least restrictive deadlock prevention, and we
consider it in section 4.2.
An asymmetric choice net is a Petri net N = (P, T, F,W ) with the prop-

erty that ∀p1, p2 ∈ P , p1 • ∩p2• 6= ∅ ⇒ p1• ⊆ p2• or p2• ⊆ p1•. The following
new result can be seen as the correspondent for T-liveness of a previous result
for liveness in [1]. However, note that even for liveness the next result is stronger,
as it relates the dead transition to an empty siphon.

Theorem 5. Consider a PT-ordinary asymmetric choice Petri net N and a
marking µ such that a transition t is dead. Then there is µ′ ∈ R(N , µ) such that
S is an empty siphon for the marking µ′ and t ∈ S•.
Proof. In an asymmetric choice Petri net, •p1 ∩ •p2 6= ∅ implies p1• ⊆ p2• or
p2• ⊆ p1•. Therefore given n places such that pi •∩pj• 6= 0, ∀ i, j ∈ {1, 2, . . . n},
we have pi1• ⊆ pi2• ⊆ . . . pin•, where i1, . . . in are distinct and ij ∈ {1, 2, . . . n}
for all j = 1 . . . n.
Let •t = {p1, . . . pn}, where the notation is chosen such that p1• ⊆ p2• ⊆

. . . pn•. We prove first that ∃µ1 ∈ R(N , µ) and ∃j ∈ {1, . . . n} such that
∀µx ∈ R(N , µ1): µx(pj) = 0. Assume the contrary. Let i be the least number in
{1, . . . n} such that ∃µ1,1 ∈ R(N , µ1): µ1,1(pi) = 0 (i exists, for t is dead and N
is PT-ordinary). Then ∃µ1,2 ∈ R(N , µ1,1): µ1,2(pi) ≥ 1 and ∃µ1,3 ∈ R(N , µ1,2):
µ1,3(pi) = 0. Therefore ∃µ1,4 ∈ R(N , µ1,2) and ∃ti ∈ pi• such that µ1,4 enables
ti. Note that ti ∈ pj• ∀j = i . . . n. Therefore µ1,4(pj) ≥ 1 ∀j = i . . . n. By the
choice of i, µ1,4(pj) ≥ 1 ∀j = 1 . . . i− 1. Therefore µ1,4 enables t. Contradiction.
Therefore, ∃µ1 ∈ R(N , µ) and ∃j ∈ {1, . . . n} such that ∀µx ∈ R(N , µ1):

µx(pj) = 0. We recursively use this property to construct S. Note that all
transitions in •pj are dead for µ1. Let S0 = ∅ and S1 = {pj}. We recur-
sively construct S by generating S2, . . . Sm+1 and the markings µ2, . . . µn+1.
Si for i ≥ 1 is such that all transitions in •Si are dead for some marking
µi. The construction in a iteration is as follows. Let µi+1 ∈ R(N , µi) such
that ∀t ∈ •(Si \ Si−1) ∀µx ∈ R(N , µi+1) ∃p ∈ •t: µx(p) = 0. Then we let
Si+1 = Si

⋃
tx∈•(Si\Si−1)

{p ∈ •tx : ∀µx ∈ R(N , µi+1) : µx(p) = 0}. There is n such
that Sn+1 = Sn, for the Petri net has a finite number of places. We let S = Sn
and µ′ = µn. Since pj ∈ S, t ∈ S•. By construction S is a siphon, S is empty
for µ′, and µ′ ∈ R(N , µ). ut
Definition 7. Let N be a Petri net, T a subset of the set of transitions and
NA = (PA, TA, FA,WA) an active subnet. We say that NA is T-minimal if
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T ⊆ TA and TA 6⊆ TAx for any other active subnet NAx = (PAx , TAx , FAx ,WAx )
such that T ⊆ TAx .
In general the T -minimal active subnet is not unique. However, as shown in

the next theorem, any T -minimal active subnet can be used to characterize T -
liveness. We also note that computing a T -minimal active subnet has polynomial
complexity (it involves solving linear programs).

Theorem 6. Given a PT-ordinary asymmetric choice Petri net N , let T be a set
of transitions and NA a T-minimal active subnet which contains the transitions
in T . The Petri net is T-live iff all of the minimal active siphons with respect to
NA are controlled (i.e. they cannot become empty for any reachable marking).
If the Petri net is T -live, it also is TA-live.

Proof. If there is a reachable marking µ such that an active siphon S is empty,
let T1 = S•∩TA, where TA is the set of transitions of the active subnet. Because
S is active, T1 is nonempty; because S is empty, the transitions of T1 are dead. If
the Petri net is still T-live, there is an enabled infinite firing sequence σ enabled
by µ in which the transitions of T1 do not appear and all transitions of T appear
infinitely often. Therefore, by Lemma 1, there is x ≥ 0 such that Dx ≥ 0 (D is
the incidence matrix) and T ⊆ ‖x‖ ⊂ TA. But this contradicts the fact that NA
is T-minimal.
Conversely, assume that no active siphon becomes empty. If there is a reach-

able marking such that a transition t ∈ TA is dead (and T ⊆ TA), by Theorem
5 there is a reachable marking such that a siphon S is empty and t ∈ S•. How-
ever t ∈ S• implies S ∩ PA 6= ∅, and by Proposition 4 S is an active siphon.
Contradiction, for S is empty. ut

4 Implications and Discussion

4.1 Deadlock Prevention

Proposition 1 implies that if the marking of any of the minimal siphons of a
Petri net can never become zero, the Petri net is deadlock-free. This is an useful
property for repetitive Petri nets, but not always for nonrepetitive Petri nets. For
partially repetitive Petri nets Proposition 5 is much more useful. For instance
consider the Petri net of Figure 4(a). There is only one nonempty active subnet,
which has TA = {t1, t2, t3}. After firing t4, {p4} is an empty siphon. However,
there is no empty active siphon (the minimal active siphons are {p1, p3, p4},
{p2, p3, p5} and {p2, p3, p6}), and thus we can see from Proposition 5 that the
Petri net is not in deadlock, while this cannot be ascertained from Proposition 1.
The same is true for the Petri net in Figure 4(b): {p1, p3} is an empty siphon,
but the only minimal active siphon, {p4, p5, p6, p7}, is not empty, and therefore
the Petri net is not in deadlock by Proposition 5.
Proposition 5 is more useful than Proposition 1 even for repetitive Petri nets,

as seen in Figure 4(c). The Petri net of Figure 4(c) has several active subnets.
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While with respect to some of them there are empty active siphons, if we take
the active subnet NA defined by TA = {t1, t2}, the only minimal active siphon
with respect to NA is {p1, p2, p5}, which is not empty. Thus Proposition 5 is
able to detect that the Petri net is not in deadlock.

In the applications in which deadlock prevention is desired to approximate
liveness enforcement, Proposition 5 can be used for the maximal active subnet.
Thus it would be desirable that no active siphon with respect to the maximal
active subnet ever becomes empty. Indeed, if an active siphon S with respect of
the maximal active subnet is empty, all transitions in S• are dead, and some of
them are in the set of T \ TD of Theorem 4.
For the applications in which least restrictive deadlock prevention is desired

rather than a liveness approximation, see the next section.

The usage of Proposition 5 for deadlock prevention is as follows. Using some
methodology, the Petri net can be extended by adding additional places con-
nected to the transitions of the original Petri net. If the methodology ensures
that place invariants are created such that no active siphon of the extended Petri
net (with respect to the chosen active subnet) can become empty, then the ex-
tended Petri net is deadlock-free. The extended Petri net can be regarded as the
original Petri net in closed loop with the supervisor, where the supervisor cor-
responds to the additional places and their connections. We have designed such
a methodology in [5]. The methodology of [5] produces two sets of constraints:
Lµ ≥ b and L0µ ≥ b0. Thus Lµ ≥ b defines the supervisor (the set of additional
places insuring that all active siphons are invariant controlled), defined for all
initial markings µ0 satisfying both Lµ0 ≥ b and L0µ0 ≥ b0. For an example,
consider the Petri nets in Figure 5(a) and (b). They are supervised for deadlock
prevention using the methodology of [5]. The additional places (the supervisor)
contains, in both cases, the places C1, C2 and C3. It can be easily checked that
all minimal active siphons are invariant controlled in both cases. In the case (a)
the inequalities Lµ ≥ b are µ(p1) + µ(p3) + µ(p4) ≥ 1 (so µ(C1) = µ(p1) +
µ(p3)+µ(p4)−1), µ(p2)+µ(p3)+µ(p5) ≥ 1 (µ(C2) = µ(p2)+µ(p3)+µ(p5)−1)
and µ(p2) + µ(p3) + µ(p6) ≥ 1 (µ(C3) = µ(p2) + µ(p3) + µ(p6) − 1); L0µ0 ≥ b0
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contains the inequalities µ0(p1) + µ0(p2) + µ0(p3) + µ0(p4) + µ0(p5) ≥ 2 and
µ0(p1) + µ0(p2) + µ0(p3) + µ0(p4) + µ0(p6) ≥ 2. In the case (b), the inequalities
Lµ ≥ b are µ(p1) + µ(p2) ≥ 1 (µ(C1) = µ(p1) + µ(p2) − 1), µ(p3) + µ(p4) ≥ 1
(µ(C2) = µ(p3) + µ(p4) − 1) and µ(p1) + µ(p2) + µ(p3) + µ(p4) ≥ 3 (µ(C3) =
µ(C1) + µ(C2)− 1); there are no constraints L0µ0 ≥ b0. Moreover, by Theorem
3, the supervisors also enforce {t1, t2, t3}-liveness in case (a), and liveness in case
(b).
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4.2 Least Restrictive Deadlock Prevention

Assume that we have u supervisors for deadlock prevention in N0: Ξ1, Ξ2, . . .
Ξu. Each supervisor can prevent deadlock if the initial marking is in the setsM1,
M2, . . .Mu, respectively. Let Ξ be the supervisor defined onM =

⋃
i=1...u

Mi,

which allows a transition to fire only if at least one of the supervisors Ξi, defined
for the current marking, allows that transition to fire. We denote the supervisor

by Ξ =
u∨
i=1

Ξi. Obviously, Ξ is a deadlock prevention supervisor and is no more

restrictive than any of Ξi.

Theorem 7. Let N0 be a Petri net and NAi , for i = 1 . . . u, the minimal active
subnets of N0. Let Ti denote the set of transitions of NAi and let Ξi, for i =
1 . . . u, be deadlock prevention supervisors. Assume that each Ξi is defined for
all initial markings for which Ti-liveness can be enforced and that each Ξi is no

more restrictive than any Ti-liveness enforcing supervisor. Then Ξ =
u∨
i=1

Ξi is

the least restrictive deadlock prevention supervisor of N0.
Proof. The only thing which is to be proved is that a marking unacceptable
to Ξ leads to deadlock. Consider such a marking µ. Let x1, x2, . . . xu be the

15

Marian V. Iordache and Panos J. Antsaklis, “Generalized Conditions for Liveness Enforcement and Deadlock 
Prevention in Petri Nets,” Application and Theory of Petri Nets 2001, pp. 184-203, Jose-Manuel Colom and 
Maciej Koutny Eds., Lecture Notes in Computer Science (LNCS) Vol. 2075, Springer Berlin, 2001. 
Proceedings of the 22nd International Conference on Application and Theory of Petri Nets (ICATPN2001), 
Newcastle upon Tyne, UK, 25-29 June 2001.



nonnegative integer vectors defining NA1 , NA2 , . . . NAu in Definition 5. Thus
Ti = ‖xi‖ for i = 1 . . . u. Since µ is unacceptable to all of Ξi and each Ξi is
more permissive than any Ti-liveness enforcing supervisors, for all i = 1 . . . u
not all transitions of Ti can be made live given the marking µ. Deadlock can be
prevented from µ, so there is an infinite firing sequence σ enabled by µ. Let Tx
be the set of transitions which appear infinitely often in σ. By Lemma 1 there is
a nonnegative integer vector x such that Tx = ‖x‖ and Dx ≥ 0, where D is the
incidence matrix. Since NA1 , NA2 , . . . NAu are all the minimal active subnets of
N0, there is j ∈ {1, 2, . . . u} such that ‖xj‖ ⊆ ‖x‖. But this contradicts the fact
that not all transitions of ‖xj‖ can be made live given µ. ut

Given a Petri net, the supervisors Ξi required by the Theorem above can
be found using the procedure for deadlock prevention that we present in [5].
As an example, consider the Petri net of Figure 5(c). There are three minimal
active subnets NA1 , NA2 and NA3 , defined by TA1 = {t1, t2}, TA2 = {t3, t4} and
TA3 = {t2, t4, t5, t6, t7, t8, t9}, respectively. Three deadlock prevention supervisors
corresponding to NA1 , NA2 and NA3 are Ξ1, Ξ2 and Ξ3, defined as follows. For
simplicity of notation, we let µi = µ(pi). Ξ1 requires µ1 + µ2 + µ5 + µ6 ≥
1∧µ1+µ2+µ3+µ4+µ5+µ7 ≥ 1 (the inequalities correspond to the two minimal
active siphons with respect to NA1 ); Ξ2 requires µ3+µ4+µ5+µ7 ≥ 1∧ µ1+µ2+
µ3+µ4+µ5+µ6 ≥ 1; Ξ3 requires µ1+µ2+µ5+µ6 ≥ 1∧µ3+µ4+µ5+µ7 ≥ 1, and
the initial marking µ0 to satisfy in addition

∑
i=1...7

µ0,i ≥ 2. It can be easily seen
that Ξ = Ξ1 ∨Ξ2 ∨Ξ3 is the least restrictive deadlock prevention supervisor. In
this particular case Ξ1 ∨ Ξ2 ∨ Ξ3 = Ξ1 ∨ Ξ2.

4.3 T -liveness enforcement

We demonstrate a procedure for least restrictive T -liveness enforcement in [3, 6].
The procedure is based on Theorem 6. It has been already noticed in [11] that
liveness enforcing policies of a free choice equivalent of a Petri net can be used
to enforce liveness in the original Petri net. Our procedure in [3, 6] uses a Petri
net transformation to asymmetric choice Petri nets.

Consider the Petri net of Figure 6(a), in which it is desired to insure T -liveness
for T = {t1, t2, t3}. For the displayed marking all of t1, t2 and t3 are dead. How-
ever we cannot use Theorem 5, as the Petri net is not with asymmetric choice.
Figure 6(b) shows the same Petri net transformed to be with asymmetric choice.
Theorem 5 is verified, as the minimal active siphon S = {p1, p2, p3, p4, p5, p6, p7}
(with respect with the active subnet with set of transitions T ) is uncontrolled.
Indeed, by firing t4, t5 and t13, S becomes empty. The Petri net of Figure 6(a)
is not T -live for most initial markings. By applying our T -liveness enforcement
approach from [3, 6], the least restrictive T -liveness supervisor of the Petri net
of Figure 6(a) enforces 2µ1 + 2µ2 + 2µ3 + µ4 + µ5 + µ6 + 2µ7 ≥ 2.
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5 Conclusion

We have introduced new theoretical results which are practical for deadlock
prevention, liveness and T -liveness enforcement. The relation among deadlock
prevention, T -liveness and liveness enforcement is also characterized.

A Proof of Lemma 1

Proof. Let µ0 be the marking reached after all transitions which appear finitely
often in σ have fired. We are to prove that a vector of nonnegative integers x,
x(i) 6= 0 ∀ti ∈ U exists, such that Dx ≥ 0. After the marking µ0 has been
reached, let µ1 the marking reached after each transition from U fired at least
once, . . . µk the marking reached after each transition from U fired at least k
times.
Let Vn be a nonempty set of the form Vn = {y ∈ Nn :6 ∃yi ∈ Vn, y 6= yi, y ≥

yi or y ≤ yi}. Next it is proved by induction that Vn is finite (i.e. it cannot have
infinitely many elements). Assume that any Vn−1 is finite. Then, let ys,n ∈ Vn;
Vn ⊆

⋃
k,u

Ck,u, where Ck,u = {y ∈ Nn : y(jk) = u, y(ik) > ys,n(ik), 6 ∃yi ∈ Vn, y 6=
yi, y ≥ yi or y ≤ yi}, is defined for 0 ≤ u < ys,n(jk) and k = 1, 2 . . . n(n − 1)
corresponds to the possibilities in which ik 6= jk, 0 ≤ ik, jk ≤ n can be chosen.
The induction assumption implies that each Ck,u is finite, because the component
jk of the vectors is fixed and only the remaining n − 1 can be varied. So Vn is
finite.
LetM be recursively constructed as follows: initially M0 = {µ0}; for all i,

Mi = Mi−1 ∪ {µi} if 6 ∃y ∈ M : y ≥ µi or y ≤ µi and else Mi = Mi−1. The
previous paragraph showed that ∃n0 ∈ N: ∀k > n0,Mk =Mn0 . LetM =Mn0

and M̃ = {y ∈ Nn : ∃yx ∈M, y ≤ yx}. Both are finite sets.
Here it is shown that 6 ∃i, j, 0 ≤ i < j, such that µi ≤ µj leads to contradiction.

Assuming the contrary, ∀k > 0 ∃yx ∈ M such that µk+n0 ≤ yx and µk+n0 6= yx.
If y ∈ Nn, yx ∈ M and yx ≥ y, then for u such that u 6≥ yx and u 6≤ yx either
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y ≤ u or both y 6≤ u and y 6≥ u; for u such that u 6≥ y and u 6≤ y either yx ≥ u
or both yx 6≤ u and yx 6≥ u. Let M(1) be constructed in a similar way as M,
but starting fromM(1)

0 = (M∪ {y}) \ {u ∈ M : u ≥ y}, where y = µ1+n0 , and
using µn0+i instead of µi forM(1)

i . For the same reason the construction ends in

finitely many steps. Also,M(1) ⊆ M̃ and ∃n0,1 such that ∀k > 0 ∃yx ∈M such
that µk+n0,1 ≤ yx and µk+n0,1 6= yx. So we can continue in the same way with
M(2), . . .M(j), also subsets of M̃. However these operations cannot be repeated
infinitely often: j ≤ N , where N is the cardinality of M̃, becauseM(j) contains

at least one element from M̃ \
j−1⋃
i=1

M(i). (This is so because y ≤ u, y 6= u,
u ∈ M(i) ⇒ y /∈ M(i), also u ∈ M(i) \ M(i−1) ⇒ ∃v ∈ M(i−1): v ≥ u, hence
∃u ∈ M(i): y ≤ u implies ∃v ∈ M: y ≤ v.) So, M(j+1) cannot be constructed
for some j, which implies µ1+n0,j 6≤ u, ∀u ∈M(j), which is contradiction.
Therefore ∃j, k, j < k, such that µj ≤ µk. Let qj and qk be the firing

count vectors: µj = µ0 + Dqj and µk = µ0 + Dqk; let x = qk − qj . Then
µk − µj ≥ 0 ⇒ Dx ≥ 0, and by construction x ≥ 0, x(i) > 0 ∀ti ∈ U and
x(i) = 0 ∀ti ∈ T \ U . Also, we may take µ∗1 = µj and µ∗2 = µk. ut

B The Computation of the Active Subnets

The active subnets of special significance in section 4 have been the minimal, T -
minimal and maximal active subnets. Note that the minimal subnets of a Petri
net are the t-minimal subnets, for each transition t of the Petri net. The following
algorithm computes a T -minimal subnet or, if none exists, a Tx-minimal subnet
such that Tx ⊂ T and there is no Ty ⊂ T , Tx ⊂ Ty such that a Ty-minimal
subnet exists. A T -minimal subnet does not exist iff some of the transitions of
T cannot be made live under any circumstances.

Input: The Petri net N0 = (P0, T0, F0,W0) and its incidence matrix D; a
nonempty set of transitions T ⊆ T0; an optional set Z (default is Z = ∅) of
transitions which cannot be made live for reasons other than structural.

Output: The active subnet NA = (PA, TA, FA,WA).
1. Check the feasibility of Dx ≥ 0 s.t. x ≥ 0, x(i) ≥ 1 ∀ti ∈ T and x(i) = 0
∀ti ∈ Z.
If feasible then let x0 be a solution; T

A = minactn(T0, x0, D, T )
else TA = maxactn(T0, D, T , Z) (no T -minimal solution exists, and so
an approximation is constructed)

2. The active subnet is NA = (PA, TA, FA,WA), PA = TA•, FA = F0 ∩
{(TA × PA) ∪ (PA × TA)} and WA is the restriction of W0 to FA.

minactn(T0, x0, D, T )

Let M = ‖x0‖ and xs = x0.
For ti ∈M \ T do
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Check feasibility of Dx ≥ 0 subject to x ≥ 0, x(i) = 0, x(j) = 0
∀tj ∈ T0 \M and x(j) ≥ 1 ∀tj ∈ T .
If feasible then let x∗ be a solution; M =M \ ‖x∗‖ and xs = x∗.

Return ‖xs‖

maxactn(T0, D, T , Z)

Let M = T and xs = 0|T0|×1
While M 6= ∅ do
Check feasibility of Dx ≥ 0 subject to x ≥ 0, ∑

ti∈M
x(i) ≥ 1 and x(i) = 0

∀ti ∈ Z.
If feasible then let x∗ be a solution; M =M \ ‖x∗‖ and xs = x∗ + xs.
Else M = ∅.

N = minactn(T0, xs, D, T ∩ ‖xs‖)
Return N

Using a nonempty set Z adds to the feasibility problems of the algorithm
above the additional constraints that x(j) = 0 ∀j ∈ Z. The set Z may also be
used to specify transitions which are not desired to be live (for instance transi-
tions modeling system faults.) While the function minactn is used to compute
minimal active subnets, maxactn is used to compute maximal active subnets.
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