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Abstract

This paper successfully addresses an important class
of hybrid optimal control problems of practical signif-
icance. It provides a viable general approach to hy-
brid optimal control based on nonlinear optimization
and it shows that when this approach is applied to lin-
ear quadratic problems it leads to computationally at-
tractive algorithms, Unlike conventional optimal con-
trol problems, optimal control problems for switched
systems require the solutions of not only optimal contin-
uous inputs but also optimal switching sequences. Many
practical problems only involve optimization where the

~number of switchings and the sequence of active sub-
systems are given. This is stage 1 of the two stage op-
timization method proposed by the authors in previous
papers. In order to solve stage 1 prablems using efficient
nonlinear optimization techniques, the derivatives of the
optimal cost with respect to the switching instants need
to be known. In this paper, we focus on and solve a
special class of optimal control problems, namely, gen-
eral switched linear quadratic problems. The approach
first transcribes a stage 1 problem into an equivalent
problem parameterized by the switching instants and
then obtains the derivative values based on the solution
of an initial value ordinary differential equation formed
by the general Riccati equation and its differentiations.
Examples illustrate the results.

1 Introduction

A switched system is a particular kind of hybrid sys-
tem that consists of several subsystems and a switching
law specifying the active subsystem at each time instant.
Many real-world processes such as chemical processes,
automotive systems, and electrical circuit systems, etc.,
can be modeled as switched systems.

Optimal control problems are one of the most chal-
lenging and important classes of problems for switched
systems. For an optimal control problem of a switched
system, one needs to find both an optimal continuous
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input and an optimal switching sequence since the sys-
tem dynamics vary before and after every switching in-
stant. The available results in the literature on such
problems can be classified as theoretical and practical.
[2, 8, 9, 10, 15] contain primarily theoretical results.
These results extend the classical maximum principle or
the dynamic programming approach to such problems.
As to practical results, researchers took advantage of the
availability of high speed computers and efficient non-
linear optimization techniques to develop methodologies
for solving such problems (see e.g., [3, 4, 5, 6, 7, 11]).
Most of the practical methoads that we are aware of are
based on some discretization of continuous time space
and/or discretization of state space into grids and use
search methods for the resultant discrete problem to find
optimal/suboptimal solutions. But the discretization of
time space may lead to computational combinatoric ex-
plosion and the solutions obtained may not be accurate
enough. In view of this, in some previous papers by the
authors (see [12, 13]), approaches that are not based on
discretization of continuous time space were explored.
In [12], a two stage optimization methodology was pro-
posed. Since in general the two stage optimization is dif-
ficult to solve fully and moreover, many practical prob-
lems only involve the stage 1 optimization where the
number of switchings and the sequence of active subsys-
tems are given (yet the switching instants are unknown),
in [13] the authors developed an algorithm for such stage
1 optimization based on the differentiations of the value
function with respect to the switching instants.

In this paper, we focus on stage 1 optimization of
an important class of optimal control problems, namely,
general switched linear quadratic (GSLQ) optimal con-
trol problems, where each subsystem is linear and the
cost functionals are in general quadratic forms. A con-
ceptual algorithm for solving stage 1 problem is first
given. In order to apply it, the derivatives of the optimal
cost with respect to the switching instants need to be
known. By exploiting the special structure of the prob-
lem, an approach for solving GSLQ problems is derived.
The approach is more accurate and efficient than that
in [13]. The approach first transcribes a GSLQ problem
into an equivalent conventional problem parameterized
by the switching instants and then obtains the derivative
values based on the solution of an initial value ordinary
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differential equation (ODE) formed by the general Ric-
cati equation and its differentiations.

The structure of the paper is as follows. In Section
2, we introduce the model of switched systems and for-
mulate the GSLQ problems. In Section 3, we review the
two stage optimization algorithm proposed in [12] and
propose a conceptual algorithm for stage 1 optimization.
From Section 4 on, we concentrate on stage 1 problems.
In Section 4, we propose a method that transcribes a
GSLQ problem into an equivalent conveational optimal
control problem. In Section 5, it is shown how to ob-
tain the derivatives of the optimal cost with respect to
the switching instants based on the solution of an initial
value ODE formed by the parameterized Riccati equa-
tion and its differentiations. Important additional com-
ments concerning the approach are also given. Section 6
provides some examples to illustrate our approach. Sec-
tion 7 concludes the paper.

2 Problem Formulation

2.1 Switched Systems
The switched systems we shall consider in this paper
are defined as follows.

Definition 1 (Switched System) A switched system
is a tuple S = (D, F) where

e D = (I,E) is a directed graph indicating the
discrete structure of the system. The node set
I = {1,2,---,M} is the set of indices for sub-
systems. The directed edge set E is a subset of
I'xI—{{i,i)|i € I} which contains all velid events.
If an event e = (i1,i3) tokes place, the system
switches from subsystem i1 to is.

e F={fi : R* xR™ 5 R*, { € I} is a collection
of vector fields, with f; describing the vector field
for the ith subsystem & = fi{z,u). m

In view of Definition 1, a switched system is a collec-
tion of subsystems whose discrete structure is specified
by D. A salient feature of a switched system is that its
continuous state 2 does not exhibit jumps at switching
instants.

For a switched system §, the input of the system
consists of both a continuous input u(t),t € [to, t¢] and
a switching sequence defined as follows.

Definition 2 (Switching Sequence) For a switched
system S, a switching sequence o in [to, tg] is defined as

o = ((to,%0), (t1,€1), (t2,€2), -~ , (tx,ex)}, (1)

with 0 < K < oo, typ £t <ip <o <tg < iy, and
'i(;E], Ek=(7:k_1,ik)EEfOTk=1,2,"',K.
We define Zpy, 4 = {o’s in [to, t5]}. m]

A switching sequence ¢ as defined above indicates
that subsystem ¢, is active in [tg,tg+1). For a switched

system to be well-behaved, we exclude the undesirable
Zeno phenomenon, i.e., infinitely many switchings in fi-
nite amount of time. Hence in Definition 2, we only
allow nonZeno sequences which switch at most a finite
number of times in [tg, ¢s], though different sequences
may have different numbers of switchings. We specify
o € X, 4,1 28 a discrete input to the system.

2.2 General Switched Linear Quadratic (GSLQ)
Optimal Control Problems

In this paper, we shall consider the following GSLQ
optimal control problems.

Problem 1 (GSLQ Problem) Consider a switched
system S with Lneer subsystems © = A,z + Biu,i € I.
Given & fixed time interval [to, t7], find o continuous én-
put u(t),t € [to, tf] and a switching sequence o € Eyy 4,
such that the cost functional in general quadratic }orm

1 T 1
Jo= galty) Qralt) + Mpst)+ Wi+ | (5o Qe
to
+aTVu + -;-uTRqu Mz+ Nu+W)dt (2)

is minimized. Here tg, ty and z(to) = zo are given;
Q5 Mg, Wy, Q,V,R, M, N,W are matrices of appropri-
ate dimensions with Q¢ > 0, ¢ >0 and R > 0. a

3 Two Stage Optimization

For general optimal control problems for switched
systems, in [12], we proposed a two stage optimization
methodology and a two stage algorithm. Here we restate
the two stage algorithm as follows.

Algorithm 1 (A Two Stage Algorithim)

Stage 1. (a). Fix the total number of switchings to be
K and the sequence of active subsystems and
let the minimum value of J with respect to
u be a function of the K switching instants,
Le, Jy = Jilti,ta, tx) for K > 0 (tp <
t1 St2S"'StK Stf)- Find .]1.

(b). Minimize J; with respect to t;,%e, -+ ,#x.

Stege 2. (a). Vary the order of active subsystems to
find an optimal solution under KX switchings.

(b). Vary the value of K to find an optimal solu-
tion for the optimal control problem. D

The above algorithm has high computational costs.
In the following, we concentrate on stage 1 optimiza-
tion for GSLQ problems. Note that many real world
problems are in fact stage 1 optimization problems. For
example, the speeding-up of a power train in an au-
tomobile only requires switchings from gear 1 to 2 to
3.to 4. As can be seen from Algorithm 1, stage 1
can further be decomposed into two sub-steps (a) and
{b) (A similar hierarchical decomposition method can
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be found in [3]). stage 1(a) is in essence a conven-
tional optimal control problem which seeks the mini-
mum value of J with respect to u under a given switch-
ing sequence o= ((to,%0), (t1,€1), -+, (tx,ex)). We de-
note the corresponding optimal cost as a function J; (f),

where { 2 (t1,t2, -+ ,tk)T. stage 1(b) is in essence a
constrained nonlinear optimization problem
ming Jy (£) (3)

A subject to & T
where T = {f = (t1,t2,- - ,tx) o €t <t < --- <
tg < ty}, which can be solved using feasible direction
methods such as the gradient projection method and the
constrained Newton’s method [1].
The following algorithm provides a framework for
stage 1 optimization in the subsequent sections.

Algorithm 2 (A Conceptual Algorithm for Stage
1 Optimization)

(1). Set the iteration index j = 0. Choose an initial /.

(2). By solving an optimal control problem (stage
1{a)), find Jy(#¥).

(3). Find & () and Z4(8).

(4). Use the gradient projection method or the con-
strained Newton’s method to update ## to be
tit! = {4 addi! (here the stepsize o is cho-
sen using the Armijo’s rule [1]). Set the iteration
index 7 =5+ 1.

(5). Repeat Steps (2), (3), (4) and (5), until a prespec-
ified termination condition is satisfied. u]

It should be pointed out that the key elements of the
above algorithm are

(a). An optimal control algorithm for Step (2).

ati 8J 8%J
(b). The derivations of %7 and - for Step (3).

(c). A nonlinear optimization algorithm for Step (4).
Note that (a) can be dealt with by using numerical
methods for conventional optimal control problems and
" (¢} can be dealt with by using for example feasible di-
rection methods for constrained nonlinear optimization.
However, (b) poses an obstacle because the analytical
expressions of Jj (f) are almost impossible to obtain ex-
cept for very few classes of problems. The unavailability
of analytical expressions of Ji(f) hence makes the val-
ues of &4 and L& difficult to obtain. It is the task

at a2
of the subsequent sections to address (b) and derive an

. . 2
approach for deriving the values of 2% and 5kt

4 An Equivalent Problem Formulation

Henceforth, we focus on the stage 1 optimization for
GSLQ problems and develop an approach for finding the
derivative values of Ji so that Algorithm 2 can be ap-
plied. For the general nonlinear case see [14]. In this
section, we transcribe a GSLQ problem into an equiv-
alent conventional optimal control problem parameter-
ized by the unknown switching instants. A specific fea-
ture of the equivalent problem is that the independent

time variable has the property that the switching in-
stants are fixed with respect to it.

For convenience of notation and clarity of the pre-
sentation of the main idea of our approach, in Sections
4 and 5, we will concentrate on the case of two subsys-
tems (see Problem 2) where subsystem 1 is active in the
interval [to,¢1) and subsystem 2 is active in the interval
[t1,t] (t1 is the switching instant to be determined).
The approach works similarly for more than one switch-~
ings, and at the end of Section 5 we will comment on
this.

Problem 2 For a switched system

= A+ By, o<t <y, (4)

£ = Asx+ Bou, t; £t <y, (5)

find an optimal switching instant t; and an optimal u{t)
such that the cost functional in general quadratic form
(2) is minimized. Here to, t; and 2(to) = zo. |

In [16], a methodology used in solving boundary
value problems with unknown end-time is applied to
similar problem formulations to transcribe them into
equivalent problems. Here we outline similar transcrip-
tion for Problem 2 in the followings.

We introduce a new variable z,, corresponding to
the switching instant ¢). Let z,; satisfy

’L’%ﬂ =0, Tas1(0) = t1. (6)
Next a new independent time variable 7 is introduced.
A piecewise linear correspondence relationship between
t and T is established as follows.
= { to + (Tnt1 — to)T,
Tnp1 + (b = Tap)(T — 1),

0<7<1,
1<r<2 7

Note 7 = 0 corresponds to t = tg, 7 = 1 to t = t;, and
T = 2 to t = t;. By introducing 2,43 and 7, Problem 2
can be transcribed into

Problem 3 (Equivalent Problem) For - a system
with dynemics

dz(T)

3 = (@nn—to)(Aww + Biw), (8)

ATasr

dr =0 &)

Jort €[0,1) and

d—:f# = (t5 — Zat1)(A2z + Bau), (10)

dxpni1 _ ‘

Lort _ (1)

for 7 € (1,2}, find optimal ©ni1 and u(t) such that the
cost functional

J = 1a(2)TQra(2) + Msz(2) + Wy
+ ) e Lz, wydr + [2(t; — o)Lz, w)dr  (12)
where

Liz,u) = %ITQm +aTVu+ %uTRu + Mz +Nut+W (13)

is minimized. Here x(0) = zq is given. ]
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Remark 1 Problem 3 and 2 are equivalent in the sense
that a solution for Problem 3 is also a solution for Prob-
lem 2 by a proper change of independent variables as in
(7) and by regarding 41 = t;, and vice versa. ]

Remark 2 Problem 3 provides us with the advantage
that it no longer has a varying switching instant. Ac-
tually, because z,1; is actually an unknown constant
throughout 7 € [0,2], Problem 3 can be regarded as a
conventional optimal control problem with an unknown
parameter &,.;. The problem is conventional because
it has fixed time instant when the system dynamics
changes. In the subsequent discussions, we regard z,,+1
as an unknown parameter for optimal control problem
with cost (12) and subsystems (8) and (10), i.e., we re-
gard Problem 3 as an optimal control problem parame-
terized by the switching instant z,y1. o

5 The Development of the Approach

In this section, based on the equivalent problem for-
mulation in Section 4, we develop an approach for find-
ing 3 QJ—L by studying the equivalent Problem 3.

As indicated in Remark 2, the equivalent Problem 3
can be regarded as a GSLQ problem parameterized by
the switching instant #,4;. Assume we are given a fixed
Znt1 and assume the optimal value function is

V. (m, T, mn-[—l) = %ETP(Tz $n+l)z
+S(T: In+1)$ + T(Tr 9311+1) (14)

where PT(7,&p11) = P(7,Zp41). By using the dynamic
programming approach and solving the resultant HJB
equation for T € [0,1) and 7 € [1, 2] (see [14] for details),
we can obtain the optimal control for 7 € [0, 1) as

&z, T, Tat1) = —K (7, Tnt1)2(7, Tng1) — E(1,Tny1)  (15)

where
K(r,zn41) = R UBIP(r,anp)+VT),  (16)
Blr,@n) = R UBTS (r,ona)+NT), (@17)

and P(7,Tnt1), S(7, Zny1) and (7, zn41) (abbreviated
as P, S and T) satisfy the following parameterized gen-
eral Riccati equation (parameterized by T,41)

—% = (tn41 — 1)@+ PAy + ATP — (PB,
+WVYRYBTP +VTY), (18)
—%g = (a4 —t0)(M + 541 — (N
+SBO)RYBIP+V™)), (19)
~IL = = )W - SN
+8B)R™ (BT ST + NTY). (20)

The optimal control for = € [1,2] is

Wz, T, Tnt1) = —K(r Zrp1)2 (T, Tns1) — B(r, 2ap1)  (21)
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where

= R YUBIP(r,zan)+VT), (22)
= RYBTST(r,#ap) +NT), (23)

K(T, xn-i-l)
B(r,2041)

and P, S and T satisfies the following parameterized
general Riccati equation

“g_f = (ty — a1 )(Q+ PAs + AT P — (PB:
+V)RTHBI P+ V")), (24)
‘g‘g = (5 —znp1)(M + 842 — (N
+8B;)R™H (B P+ V7)), (25)
‘g_f = (ty —@ap)(W - -;—(N
+8B;)R™}(BF §T + NT)). (26)

Once we have solved (18-20) and (24-26) (for a fixed
Zn+1), We can obtain the parameterized optimal cost at
7 =0, i.e., the optimal J; under fixed ., as

Ji(t1) = Ji(@a+1) = V' (20,0, Zn41)
= %onP(O, Zn+1)Z0 + S(0, Tat1)xo + T(0,Tn41). (27)
From (27), we have

—_ 1.7 48P
am e (1’030 Tnt1) = 20 Br,yg (0,

B2 (@) =

:Bn+1)mo + —3Iﬂ+l (0, ﬂﬂn+1)fﬂo + ——Bwn+l (07 -’17n+1)' (28)

In order to obtain the value of -d-z% from (28), we need

8P 85 T :
to know Fonry? Bwors and ooy & (0, zp41). To obtain

these values, we differentiate (18-20) and (24-26) with -
respect to zp41 to obtain

-2 =(Q+PAa+ATP - (PB

HVRBTP + V7)) + (201 ~ o) (722 A
+A1Ta;”’+1—(a¢,, BORBIP+ V™))
—(PB; +V)R— Bl 6m“+1)))

(29)

(Gfs+1) ={(M+ SA1 (N+SB1)R"YBTP
+VT)) + (@ng1 = to) (72541 ~ (ax B )R Y(B{P

+VT) ~ (N + SBi)R-l(BT 22))

(30)
& (ol ) = (W s+ SB1)R™Y(BI'ST + N™))
+($n+1 to)(~ 3 By)R™Y(B{S" + NT)
LNV + SB)R (BT (52 25)7)

(31)
for 7 € [0,1) and
- & (52~ 2T F_)y=—(Q+PAy+ AT P - (PB,
+V)R (B P+VT))+(1;,—93,1%)((.,1,“1 Az (32)

+A7 52 (;ﬁ-n—Bz)R YBIP+VTY)
—~(PB, - ¥ V)R“ (Bf 520))

Z(g25) = ~(M + 5As — (N + 8B2)R™ (B P
VT)) +(tf — Tnn) (52 Ar — (522 B))R™(BL P

+VT) — (N +SB2)R™(B] 5257))

(33)
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- fﬁl)——(w L(N + SB2)R™(BTST + NT))
+(tf—$n+1)( 2 ‘9”7% B2)R™Y(BFST + NT)
2(N+SBQ) ( (6z _H)T))

(34)
for 7 € [1,2].
The equations (18-20) and (29-31) for 7 € [0,1) and
the equations (24-26) and (32-34) for 7 € [1, 2] together
with the following boundary conditions at 7 = 2

P(2,zn11) = Qy, S(2,znt1) = My,

T(2 $n+1) = Wy, M—PT(zgxn+1) =0, (35)
a’?n+l (2 1'n+1) =0, a,?"—_n(zxxn-irl) =0,

form an initial value ordinary differential equation
as aT .
(ODE) for P, S5, T, Bm +1, F and pren which can
be solved efficiently using the function ode45 in MAT—
LAB. From the solution of this ODE, values of 45—

+1 y
_05 ar
7oy and 72— at (0,2n41) can be obtained and sub-

stituted into (28) to obtain the value of %IL. Algorithm
2 can then be applied.

Remark 3 (Several Subsystems and More Than
One Switchings) For GSLQ problems with K sub-
systems and more than one switchings, we can similarly
transcribe the problem into an equivalent problem in 7 €
[0, K +1]. It is then straightforward to differentiate the
Riccati equation parameterized by z,y1, " Znirkx (e,
ti, -+ ,tx) to obtain additional differential equations for
af'ik’ ) Ba?ik 's and af{rk 's. Along with the bound-
ary conditions P = Qy, S = My, T = Wy, 522 =0,

o = 0and 52— = Oall at (K+1,Zn41, ", Znt k)
for all 1 < k¥ < K, we can solve the resultant initial value
ODE backwards in  to find their values at 7 = 0. Once
we have their values at 7 = 0, we can substitute them

into

a.J
5;1: oy (20,0, En1,  Entc)
1. T
= EEO a;,; +k (0 TS PR ,En.{.k)ﬂ'}o + ﬁ%(nazn—kh
' 7wn+k)z0 + g B:z: (0 Tn41,t e )mn+k) (36)
to derive the accurate values of -‘g—t‘%’s. O

Remark 4 (Second Order Derivatives) If we take
second order partial derivatives of equation (27), we ob-
tain

2
m:(t 1) = (930,0 Tnt1) = %-’EoTa—'zﬁ;(U, Tn1)T0
2
+W:(07 En41)To + 5%%(0, Tnt1)- (37

Following similar ideas of differentiation of the param-
eterized Riccati equation, we can take first and second-
order differentiations of (18)-(20) and (24)-(26) with re-
spect to Zp4 and form a set of ODEs. Along with the

initial condltlons (35) and 0’s at 7 = 2 for a—ﬁp—, ﬁ:s—

and %’-’_—’ the resultant initial value ODE for P, S,
n4l

ap as aT 2P %5 a*r
T, Ornt1? BTags’ Ozngr’ 822 0 Bl and 822 | can

2
be solved and hence the accurate value of %QL]'L* can be
nl

obtained and the constrained Newton's method can be
applied in Step (4) in Algorithm 2. m]

6 Some Examples

The approach developed above is applied to the fol-
lowing examples,

Example 1 Consider a switched system consisting of
06 1.2 1
[ 0.8 34 ]““r[ 1 ]“’ (38)

[_41 g]z+[_21]u (39)

Assume that #g = 0, t; = 2 and the system switches
once at t = t; (0 < #; < 2) from subsystem 1 to 2. We
want to find optimal ¢; and u such that

subsystem 1: &

]

subsystem 2: &

+-;-(z2(2)-2)2+% /ﬂ  (oa(t)=22 R ()

J = s @@=
is minimized. Here z(0) = [0, 2]7.

‘We use the approach in this paper to obtain the value
of %l From an initial nominal ¢; = 1.0, by using Al-
gorlthm 2 with the gradient projection method, after
12 iterations we find that the optimal switching instant
is #; = 0.1897 and the corresponding optimal cost is
9.7667. After translating the result into the form suit-
able for the original problem, we show the corresponding
continuous control and state trajectory in Figure 1 (a)
and (b). Figure 2 shows the optimal cost for different
t’s. a

Example 2 Consider a switched system consisting of
-2 0 1

[ 0 _1]m+[0]u, (40)
0.5 5.3 1

[ ~53 0.5 ]“’*[ -1 ]“ (41)

. _ 1 0 0
subsystem 3: £ = [U 1.5]:64-[1]11. (42)

subsystem 1: & =

subsystemn 2: &£ =

Assume that tp = 0, t; = 3 and the system switches
at t = ¢; from subsystem 1 to 2 and at t = ¢ from
subsystem 2 to 3 (0 < #; < 3 € 3). We want to find
optimal ¢;,t; and u such that J = [(z,(3) + 4.1437)% +
(z2(3) — 9.3569)°] + & f u?(t) dt is minimized. Here
z(0) = [4, 4]7.

We use the approach in this paper to obtain the val-
ues of %L and %%l From initial nominal values ¢; = 0.8,
ta = 1.8, by using Algorithm 2 with the gradient pro-
jection method, after 20 iterations we find that the op-
timal switching instant is t; = 0.9982, t; = 1.9983 and
the corresponding optimal cost is 4.4087 x 1073, Af-
ter translating the result into the form suitable for the
original problem, we show the corresponding continu-
ous control and state trajectory in Figure 3 (a) and (b).
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Note that the theoretical optimal solutions for this prob-
lem are 57" = 1, t57* = 2, u°Pt = 0 and JoPt =0, so the
result we obtained is quite accurate. Figure 4 shows the
optimal cost for different ¢1 < to. O

It can be observed from Figure 4 that the function
J1(t1,t2) has several ripples. Hence it is not convex
even for this simple GSL(Q) problem; that is why such
problems pose significant difficulties.

al
| I e S 28
24
2
N 23]
F » 23]
-+
. \/

2
18]
16}
12| 14

C2 03 086D | (214 18 14 ‘- Bl ] 1 F] 3 +
1

*y
@) L]

Figure 1: Example 1: (a) The control input. (b) The state
trajectory.
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Figure 2: The optimal cost for Example 1 for different ¢,’s.
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Figure 3: Example 2: (a) The control input. (b) The state
trajectory.

7 Conclusion

In this paper, an approach for solving GSLQ optimal
control problems is proposed. The approach is mainly
developed in Sections 4 and 5 and it is applicable to
GSLQ problems with many subsystems and more than
one switchings as pointed out in Remark 3. The ap-
proach is based on solving the parameterized Riccati
equations and their differentiations. Derivatives of the
optimal cost with respect to the switching instants can
be obtained accurately, therefore nonlinear optimization
algorithms can be used to find the optimal switching in-
stants for the original GSLQ problem.

References

(1]  D. P. Bertsekas, Nonlinear Programming, Second Edi-
tion, Athena Scientific, 1999.

Figure 4: The optimal cost for Example 2 for different
(#1,t2)’s.

[2] M. S. Branicky, V. 8. Borkar, 8. K. Mitter, A uni-
fied framework for hybrid control: model and optimal control
theory, In IEEE Trans. on Auto. Contr., 43(1), pp. 31-45,
January, 1998.

[3] K. Gokbayrak, C. G. Cassandras, A hierarchical de-
composition method for optimal control of hybrid systems, In
Proc. of the 39th IEEE CDC, 2000.

[4]  S.Hedlund, A. Rantzer, Optimal control of hybrid sys-
tems, In Proc. of the 38th IEEE CDC, pp. 3972-3977, 1999.
[5] M. Johansson, Piecewise Linear Control Systems,
Ph.D. Dissertation, Lund Inst. of Tech., Sweden, 1999.

[6] B. Lincoln, B. M. Bernhardsson, Efficient pruning of
search trees in LQR control of switched lLinear systems. In
Proc. of the 39th IEEE CDC, pp. 1828-1833, 2000.

[7] J. Lu, L. Liao, A. Nerode, J. H. Taylor, Optimal con-
trol of systems with continuous and discrete states, In Proc.
of the 32nd IEEE CDC, pp. 2292-2297.

[8] B. Piccoli, Hybrid systems and optimal control, In
Proc. of the 37th IEEE CDC, pp. 13-18, 1998.

[9] T I Seidman, Optimal control for switching systems,
In Proc. of the 21st Annual Conf. on Infor. Sci. and Sys., pp.
485-489, Baltimore, Maryland, 1987.

[10] H. Sussmann, A mazimum principle for hybrid optimal
control problems, In Proc. of the 38th IEEE CDC, 1999.
[11] L. Y. Wang, A. Beydoun, J. Cook, J. Sun, I. Kol-
manovsky, Optimal hybrid control with applications to auto-
motive powertrain systems, in LNCIS 222, Springer-Verlag,
1997.

[12] X. Xu, P. J. Antsaklis, Optimal control of switched
systems: new results and open problems, In Proc. of the 2000
ACC, pp. 2683-2687, 2000.

[13] X. Xu, P. J. Antsaklis, A dynamic programming ep-
proach fer optimal control of switched systems, In Proc. of
the 39th IEEE CDC, pp. 1822-1827, 2000.

[14] X. Xu, Analysis and design of switched sys-
temns, Ph.D. Dissertation, Department of Electrical En-
gineering, University of Notre Dame, 2001, TURL:
http://www.nd.edu/~isis/oap.html.

[15] J. Yong, Systems governed by ordinary differential
equations with continuous, switching and impulse controls,
Appl. Math. Optim., 20(1989), pp. 223-235.

[16] M. Zefran, Continuous methods for motion planning,
PL.D. Dissertation, Department of Computer and Informa-
tion Science, University of Pennsylvania, 1996.

2483

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 20, 2009 at 16:05 from IEEE Xplore. Restrictions apply.



