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This paper presents a novel framework for hierarchical control of piecewise linear hybrid
dynamical systems. The main characteristic of this class of hybrid systems is that the
continuous dynamics are described by linear difference equations, the discrete dynamics by
finite automata, and the interaction between the continuous and the discrete part is defined by
piecewise linear maps. Control design is formulated as a regulator problem and algorithms for
the synthesis of dynamical controllers are developed. Control specifications are modeled as
finite automata. Both static specifications that do not change as time progresses and dynamic
specifications that include sequencing of events and eventual execution of actions are
considered. Control design is implemented using finite automata and linear programming
techniques. Simulation results of a tank system are used to illustrate the approach.
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1. Introduction

This paper presents a novel framework for hierarchical control of piecewise linear
hybrid dynamical systems. Control design is formulated as a regulator problem and
algorithms for the synthesis of dynamical controllers are developed. Our work is
motivated by the need to address challenging problems in the control and coordination
of modern complex engineering applications such as chemical and manufacturing
plants, autonomous vehicles, and multiple robotic systems. A mathematical model that
can capture both discrete and continuous phenomena that arise in such systems is
presented. The continuous dynamics are described by linear time invariant difference
equations and the discrete dynamics by finite automata. The interaction between the
continuous and discrete parts is defined by piecewise linear maps characterized by sets
of linear equalities and inequalities. We refer to this class of systems as piecewise linear
hybrid dynamical systems in order to emphasize the hybrid nature of the systems and
problems of interest. Piecewise linear hybrid dynamical systems are a class of systems
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that is general enough to describe important engineering applications, but simple
enough to facilitate the development of analysis, and more importantly, synthesis tools.
Typical control specifications investigated in this paper are formulated in terms of

partitions of the state space of the system. Examples include safety problems, where the
controller guarantees that the plant will not enter an unsafe region, for example,
guaranteeing that two interacting robots will not collide. Also reachability problems
where the controller drives the plant from an initial operating region or state to a
desired one; this is the case for example in the startup procedure of a chemical plant.
Safety and reachability specifications can be characterized as static specifications since
they do not change as time progresses. In this paper, we also present a formal
framework for dynamic specifications that involve sequencing of events and eventual
execution of actions. In a manufacturing system, for example, the assembly of a
component may require that a set of tasks is executed in a specific order while each task
is satisfying safety specifications.
The proposed framework is based on a formulation of the regulator problem for

piecewise linear hybrid dynamical systems. In general, a regulator requests certain
types of outputs from the plant and these are to be attained in the presence of
disturbances. The desired outputs can be described as the outputs of another
dynamical system, called the exosystem. Our objective is to design a controller so that
the closed loop system consisting of the plant and the controller exhibits the same
behavior as the exosystem. The main question is whether there exists a controller so
that the closed loop system follows the behavior of the exosystem. This question is
directly related to the existence of appropriate control resources in order for the plant
to achieve the desired behavior. We formalize this notion using the attainability of the
specified behavior. In this work, attainable behavior refers to behavior that can be
forced on the plant by a control mechanism. Based on the proposed notion of
attainability for the desired behavior of piecewise linear hybrid systems, we present a
systematic procedure for controller design. We present a convenient representation for
the controller as a dynamical system which consists of three agents: the event
generator, the control automaton, and the actuator. The plant and the exosystem are
linked by a controller to form a regulator. A feedback controller can be designed to
regulate the system. Simulation results are used to illustrate the proposed
methodology using a tank system.
We present a new control design framework for piecewise linear hybrid systems. We

follow a hierarchical approach that separates the control task into two levels. The task
at the higher level aims at establishing conditions that guarantee that safety and
reachability specifications are attainable, meaning that there exist appropriate control
inputs for the plant so that the closed loop system satisfies the specifications. These are
conditions that can be tested off-line based on the feasibility of appropriate
optimization problems and have been presented in [1]. This paper focuses on the
lower level task of designing a control policy for selecting control input signals
assuming that the specification is attainable. The task of computing the control signals
is performed online by solving quadratic and linear programming problems. In
addition, we design hybrid controllers for a broad class of specifications that are
described by deterministic I/O finite automata. Our methodology results in controllers
that can force events and guarantee the eventual execution of actions. This framework
leads naturally to an input-output representation of the constituent systems which is
more similar to classical control design than the supervisory control framework. Note
that this paper reports results from [2]. Early results and applications of the
methodology have been reported in [3, 4, 5]. Software tools and the extension of the
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approach to a class of uncertain hybrid systems have been presented in [6, 7]
respectively.

The approach presented in this paper is directly related to supervisory control
framework for hybrid systems [8, 9]. Similar approaches based on approximations of
the continuous dynamics by a discrete event system have also been proposed in [10, 11,
12, 13]. Supervisory control of hybrid systems is based on the fact that if undesirable
behaviors can be eliminated from the discrete model then these behaviors can likewise
be eliminated from the actual system. Therefore, the supervisory control framework is
not suitable when we want to guarantee that the plant will achieve its goals and it will
eventually execute the desired actions. A related approach for hierarchical control of
hybrid systems based on the notion of dynamical consistency has been studied in [14].
The use of dynamical consistency aims at the computation of abstractions that preserve
the controllability properties of hybrid control systems. A lattice of hierarchical
partitions is defined in [14] and used to investigate dynamical consistency. However, no
constructive algorithms for the computation of the partitions are given.

The first investigations of piecewise linear hybrid systems can be found in [15, 16,
17]. The main problems studied in this framework were stability, controllability, and
input-output regulation. Piecewise linear hybrid systems also arise in the switching
control paradigm [18] where the behavior of the plant is controlled by switching
between different controllers for each region of the state space. It should be noted that
the class of piecewise linear systems has been studied extensively in the circuit theory
community; see for example [19] and the references therein. Here, we are interested in
approaches that have been developed for modeling, analysis, and synthesis of hybrid
control systems. Piecewise linear dynamical systems have been considered also in [20]
where a methodology for approximating the reachable states is developed and a
supervisory control framework is used for controller design. Mixed logical dynamical
systems [21] can represent hybrid systems consisting of linear dynamic equations
interacting with linear threshold events, automata, and logic propositions. A
comparison between these models and piecewise linear systems can be found in [22].
Methods and tools for optimal control of such systems have been developed based on
optimization algorithms that involve real and integer variables including an approach
driven by the computation of reachable sets [23, 24]. Piecewise linear systems were also
studied in [25] to develop computational algorithms for the analysis of nonlinear and
uncertain dynamical systems.

The hybrid system model used in this paper can be viewed as an input-output hybrid
automaton evolving in discrete-time. Hybrid automata provide a general modeling
formalism for the formal specification and algorithmic analysis of hybrid systems [26].
Formalisms for input/output hybrid automata have been also proposed in [27, 28].
Here, we consider a larger class of inputs which may contain both discrete and
continuous control inputs as well as discrete and continuous disturbances. Computa-
tional methods for reachability analysis of hybrid systems have been also presented in
[29, 30] where the continuous flow of the hybrid system with arbitrary dynamics is
approximated using polygonal flow pipes. Finite-state approximations are then used
for the verification of the hybrid system properties. Safety and reachability of piecewise
linear hybrid systems based on discrete abstractions of the continuous dynamics that
does not require approximation of reachable sets has been presented in [1].
Computation of safe sets for a class of discrete-time linear systems using an elimination
of quantifiers approach has been also presented in [31]. Conditions for reachability of
continuous-time piecewise linear hybrid systems on simplices and rectangles have been
presented in [32]. Finally, several approaches for optimal control of switched and
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hybrid systems have been recently proposed [33, 34, 35]. In these approaches, the
control objective is to minimize a predetermined performance cost and is achieved by
making simplifying assumptions that restrict the switching sequences of the system. In
our approach, the control specifications are described by a finite automaton, the
performance costs are computed on-line, and all feasible switching sequences are
allowed.
This paper is organized as follows. In section 2, we present the modeling framework

for piecewise linear hybrid dynamical systems. The regulator problem for hybrid
systems is formulated in section 3. Section 4 presents the notion of attainability as well
as techniques for testing attainability based on linear programming. Section 5 presents
the control design framework. Finally, concluding remarks are presented in section 6.

2. Piecewise linear hybrid dynamical systems

In the following, we define the class of piecewise linear hybrid dynamical systems. The
main characteristic of this class is that the continuous dynamics are described by linear
difference equations, the discrete dynamics by finite automata, and the interaction
between the continuous and the discrete part is defined by piecewise linear maps. First,
we present some basic notions and the necessary notation that are used in the modeling
formalism.
A piecewise-linear (PL) subset [16] of a finite dimensional vector space V is the union

of a finite number of sets defined by (finitely many) linear equations f (x)= a and linear
inequalities f(x) 4 a. A PL relation R�X6Y between PL sets is one whose graph is a
PL set. A PL map is defined similarly. Equivalently, the map f: X ? Y is PL if there
exists a partition of X by PL subsets Xi such that the restrictions fjXi are all affine
(linear + translation).
Our control design approach is based on PL partitions of the state space. Consider

the collection {hi}i=1,2,. . .,‘, hi :<n?< of real-valued functions of the form
hiðxÞ ¼ gTi x� wi, where gi 2 <n and wi 2 <. Let

Hi ¼ kerðhiÞ ¼ fx 2 <n : hiðxÞ ¼ gTi x� wi ¼ 0g

and assume that Hi is an (n71)-dimensional hyperplane (rhiðxÞ ¼ gTi 6¼ 0). We define
the function ĥi : <n ! f�1; 0; 1g by

ĥiðxÞ ¼
�1 if hiðxÞ50
0 if hiðxÞ ¼ 0
1 if hiðxÞ40:

8<
:

Then, a PL partition is defined by pðxÞ ¼ ½ĥiðxÞ; . . . ; ĥ‘ðxÞ�T. The mapping p defines an
equivalence relation Ep on the set X in the natural way x1 Ep x2 iff p(x1)= p(x2).The
image of the mapping p is called the quotient space of X by Ep, is denoted by X/Ep, and
can be represented as X/Ep={Pi}, i=1, . . ., jpj where each Pi corresponds to a
polyhedral region of <n and jpj denotes the number of equivalence classes.
Let X � <n denote the continuous state space, Q the finite set of discrete states or

modes of the system, U( <m the continuous input space, S the set of input events, and
Y the output set of the hybrid system. Often, it is desirable to distinguish between
controlled and uncontrolled inputs, and we may include a space of continuous
disturbances D ( <p which are assumed to be unknown but measurable. It is assumed
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that the input set U and the disturbance set D are bounded. Furthermore, the set of
input events can be written as S=Sc[Su. The set Sc represents the controllable events
which are associated with discrete state transitions which can be issued by a control
mechanism. The set Su contains the uncontrollable events generated by the
environment. Note that this definition is different than the definition of supervisory
control [36] where uncontrollable events are events that can be disabled by the
controller. The output set may also contain a discrete and a continuous part.

Definition 1 A piecewise linear hybrid dynamical system (PLHDS) is defined by

xðtþ 1Þ ¼ Aqðtþ1ÞxðtÞ þ Bqðtþ1ÞuðtÞ þ Eqðtþ1ÞdðtÞ ð1Þ

qðtþ 1Þ ¼ dðqðtÞ; pðxðtÞÞ; scðtÞ; suðtÞÞ; qðtþ 1Þ 2 actðpðxðtÞÞÞ ð2Þ

yðtÞ ¼ gðqðtÞ; xðtÞ ð3Þ

where x(0)= x0 2 <n, q(0)= q0 2 Q and p :X?X/Ep partitions the continuous state
space <n into polyhedral equivalence classes, act :X/Ep ? 2Q defines the active mode
set for every region of the partition, Aq 2 <n6m, and Eq 2 <n6p are the system matrices
for the discrete state q, d :Q 6 X/Ep 6 Sc 6 Su ? Q is the discrete state transition
function, and g :Q 6 X ? Y is the output function which is assumed to be piecewise
linear.

The dynamic evolution of the system is defined as follows. A change in the discrete
state of the system can be caused by two type of events. First, an input event generated
by either the controller or the environment. Second, an event generated by the
continuous dynamics when the continuous state enters a polyhedral region of the
continuous state space defined by the partition. The set of events generated by the
continuous dynamics is called the set of plant events. After a discrete transition, the
system is at mode (discrete state) q and the continuous state evolves according to the
difference equation (1) driven by the control input u(t).

The interaction between the discrete and continuous dynamics is defined as follows.
For each discrete mode, we assign a region of the state space using the mapping inv:
Q ? 2X/Ep. The continuous state may evolve according to the difference equation
determined by the discrete state q only if x(t) 2 inv(q). The regions inv(q) are often
called invariants. In our modeling framework, the invariants do not necessarily
correspond to disjoint regions of the state space. The system may switch from q1 to q2
at time t upon receiving an external command s(t) if x(t) 2 invq1 \ invq2. An
alternative way to describe the notion of invariants that will be useful in our analysis is
by defining the set of feasible modes for each region of the primary partition. The
active mode set is defined by the mapping act :X/Ep ? 2Q. From the definition of the
invariants and the active mode sets, it follows that for each discrete state q2Q and for
each region of the primary partition P2X/Ep we have P2 inv(q) , q2 act(P).

Assume that the current discrete state is q and that q’ 2 act(p(x(t))) for some state
x(t)2<n, then q’ is a possible new state, and the transition q ? q’ (or (q,q’)) may occur.
These are discrete state transitions that are associated either with a controllable event
sc2Sc or an uncontrollable event su2Su. A controllable event is issued by a control
mechanism and forces the transition to occur. An uncontrollable event is generated by
the environment and can also force a discrete state transition. As is described in the
previous definition, the discrete state transition function is assumed to be deterministic
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which means that for a given plant event or input the next discrete state can be uniquely
determined. The following definition guarantees that for every state in the region R
there is a possible evolution of the system.

Definition 2 A region of the state space is defined as R=(M, P) where M�Q is a set of
modes and P(<n is a piecewise linear set and for every x2P there exists q2M such
that q2 act(p(x)).

Remark. The state transitions are synchronized by a clock. At every clock tick an input
event may be triggered and an event caused by the continuous dynamics may occur.
Therefore, every change in the state occurs synchronously to a clock. Since the hybrid
model evolves in discrete-time, the generator will not be able to identify the exact
moment that a hyperplane is crossed. It identifies the first sample after a crossing has
occurred. In many physical systems, however, events occur asynchronously at time
instants that do not necessarily coincide with the clock ticks. Discrete-time systems can
be used as approximations of physical processes. The approximation is based on the
assumption that events that occur asynchronously are detected in the next clock tick
(using digital computers). In many situations, the discrepancy in the time instants of
the event occurrences can be studied by considering continuous disturbances in the
model. Discrete-time modeling offers significant computational advantages; however, it
cannot be used to study the behavior of the system between sampling instants. For
example, it is possible that a sequence of two or more plant events will occur in a
sampling interval. In our model, it is assumed that the plant events are generated based
only on the value of the state at the sampling instants.

Example. We present a tank system to illustrate the piecewise linear hybrid model and
to demonstrate our approach later in the paper. This example has been proposed as a
benchmark for control reconfiguration in [37] and has been used for demonstrating
estimation, fault detection, and control reconfiguration methods for hybrid systems in
[38, 39]. The system consists of three identical cylindrical tanks filled with water. The
tanks are connected by two pipes at levels 0 and are shown in figure 1. Tank 3 is used as

Figure 1. Tank system.
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redundant hardware in case tank 1 fails. The input flow Qin is provided by a pump to
tank 1. Switching of the valves controls the flow between the pipes and the outflow. We
consider a configuration where we can switch only Va while V1 and V2 are always open.
We assume that the flow q through a valve is linearly related to the water level across
the valve Dx according to q=Dx/R where R is the valve resistance. The flow through
the valve Va, if it is open, depends on the water levels x1 and x2 at tank 1 and tank 2
respectively as

Qa ¼

0 if x14h ^ x24h ðmode 1Þ
x1�h
Ra

if x14h ^ x24h ðmode 2Þ
� x2�h

Ra
if x14h ^ x24h ðmode 3Þ

jx1�x2j
Ra

if x14h ^ x24h ðmode 4Þ:

8>>><
>>>:

If Va closes, the system transitions to the mode q=1 where there is no flow through
Va. Figure 2 shows a hybrid system model for the tank system where the continuous
dynamics at each mode describe the rate of change of the water level _xi =(in-flowi 7
out-flowi)/A where A is the base area of each tank. Discrete-time representations of the
continuous dynamics are obtained using zero-order hold sampling. The transitions
between modes are triggered either by plant events, for example, when x14 h or by
control events, for example, when a control command closes Va. The parameters of the
tank system are summarized in table 1.

Let’s assume that for safety we require that the water level x1 is between 0.3 and 0.5
and the water level x2 is between 0.2 and 0.5. This is a safety specification described
by the set P={x 2 <2 : 0.34 x14 0.5^ 0.24 x24 0.5}. A partition of the
continuous state space is obtained by considering the hyperplanes that define the
mode transitions and the safety specification and it is shown in figure 3. The safe set P
consists of two polyhedral regions P1= {x 2 <2 : 0.3 4 0.5 ^ 0.2 4 x2 4 0.3}, and
P2={x 2 <2 : 0.3 4 x1 4 0.5 ^ 0.3 5 x2 4 0.5}. The active mode sets are {q1,q2} 2
act (P1), {q1,q4} 2 act (P2) respectively.

Figure 2. Hybrid model of the tank system.
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3. Hybrid system regulator

In this section, we present a hierarchical control framework for hybrid systems based
on a formulation of the regulator problem. In general, a regulator requests certain
types of outputs from the plant so that these are attained in the presence of
disturbances. The desired outputs can be described as the outputs of another dynamical
system, called the exosystem. In this paper, we assume that the exosystem is
represented by a deterministic input-output (I/O) finite automaton. The control
specifications are described using the language generated by the automaton. The
objective is to design a controller so that the closed loop system shown in figure 4
follows the behavior of the exosystem. Note that by convention it is assumed that the
disturbances, which are unknown but measurable, are described as outputs of the
exosystem.
The control specifications are modeled by an input-output (I/O) deterministic finite

automaton described by E ¼ ðXe;Ve;Ye; de; le;R0Þ where Xe is the set of states, Ve is
the input alphabet, Ye is the output alphabet, de :Xe 6 Ve ? Xe is the state transition

Table 1. Parameters for the tank system.

Parameter Description Value

Ts Sampling period 0.1 sec
R1=R2 Valve resistance 5 � 103 m72 sec
Ra Valve resistance 10 � 103 m72 sec
h Height of the connecting pipe for valve Va 0.3 m
A Base area of each tank 0.0154 m2

Qin,max Maximum input flow 0.16 1073 m3/sec

Figure 3. Partition for the tank system.
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function, le :Xe ? Ye is the output function returning the output associated with each
state, and R0 is the initial state.

The set of states is defined as Xe= {R1, R2, . . ., RM} where Ri={Qi, Pi) are piecewise
linear regions of the hybrid state space. Since we assume that the primary partition is
fine enough to describe the specifications, for every region we can write Ri�Q6X/Ep.
Note that in order to reduce the number of states of the finite automaton that models the
specifications, each region Ri may contain more than one discrete mode and/or more
than one region of the continuous state space if those are adjacent. The regions Ri are
disjoint as subsets of the hybrid state space Q 6 X. Therefore, each state (q, x)
corresponds to exactly one region Ri. We assume that the function de is non-total, which
means that not every input can be applied to every state of the automaton. We also
assume that every state is reachable and therefore, there exists appropriate input
sequences so that every state can be reached. Note that the I/O finite automaton which
describes the specifications is a deterministic Moore automaton [40].

The behavior of the exosystem is described by Be� (Ve6Ye)
I and consists of all the

input-output pairs that the exosystem can generate [41]. The ‘‘time’’ axis is described by
the index set I which represents an ordering of events related to the specifications. The
specification is defined only with respect to the output set and it is represented by
Bsp � YI

e. The output behavior of the exosystem can be described by the set of
sequences of symbols from Ye that it can generate. Denote by Y* the set of all strings
formed by concatenation of symbols from the output alphabet Y where the * operation
is called the Kleene closure [40]. A language is formally defined as a subset of Y	

e . The
output behavior of the exosystem can be described by the output language L(Y*. The
usual set operations, such as union, intersection, difference, complement (with respect
to Y*) are applicable to languages; details can be found in [40]. In addition, the prefix-
closure of L, denoted by �L, is defined as the set of all prefixes of strings in L. The
language L is said to be prefix-closed if all the prefixes of the language are also in L, or
equivalently if L ¼ �L. Note that the language describing the output behavior is
different than the language accepted by an automaton. The former is defined with
respect to the output symbols generated by the output function, while the latter is
defined with respect to the input symbols and the state transition function [40]. The
language generated by the exosystem is defined as follows.

Definition 3. Given the finite set Ye and the sequence y : I ? Ye, then y2L if there exist
xe2Xe and ve2Ve such that the following conditions hold:

Figure 4. Hybrid sysem regulator.
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xe½nþ 1� ¼ deðxe½n�; ve½n�Þ; 8n 2 I

y½n� ¼ leðxe½n�Þ; 8n 2 I

Each specification can be described by a language K(L. A language generated by
the exosystem may contain two types of symbols. First, it may contain terminating
output symbols that represent safe regions of the state space. If the hybrid state reaches
a safe region then it remains in that region indefinitely. Note that this blocking
behavior describes the safety of a region and it is not undesirable as in discrete event
systems. Second, the language K may contain non-terminating output symbols. The
transition from one state of the exosystem to the next represents reachability for the
corresponding regions of the hybrid state space.

Example. We consider the tank system presented in section 2. The safety specification
for the system is described by the region

R1 fq1; q2g; fx 2 <2g0:35x140:5 ^ 0:25x240:3g
� �
\ fq1; q4g; fx 2 <2j0:35x140:5 ^ 0:35x240:5g
� � : ð4Þ

Dynamic specifications involve also sequencing of events. For example, in the startup
procedure, we may require that x1 crosses the connecting pipe at h=0.3 before x2 4 0.
We describe the additional regions as

R2 ¼ fq1; q2g; fx 2 <2j0:35x140:5 ^ 05x240:2g
� �

; ð5Þ

and

Re ¼ fq1g; fx 2 <2j05x150:3 ^ 05x250:2g
� �

: ð6Þ

The specifications are modeled by the finite automaton shown in figure 5. The output
function is defined by l(R3)= a, l(R2)= b, and l(R1)= c. We consider the following
specifications that can be described using the exosystem shown in figure 5. For safety
the desired behavior is described by the language K1= c, where c is viewed here as a
constant function from the index set I to Ye. During the startup procedure the desired
behavior can be described by the language K2= abc. This a piecewise constant function
from I to Ye. During the operation of the system we may require a periodic behavior
described by the language K3 ¼ ðabcbÞ	.
The problem considered in this paper is the design of a controller so that the closed

loop system shown in figure 4 exhibits the same behavior as the exosystem. Next, we

Figure 5. Exosystem for the tank system.
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formally define the composition of the plant with the controller and the behavior of
interest of the closed loop system.

Plant. The plant is a piecewise linear hybrid dynamical system represented by
P ¼ ðXp;Up;Yp;Mp; fp; gp;mpÞ where Xp=Q 6 X is the hybrid state space, Up=(Su

6 Sc) 6 (D 6 U) is the input set, Su is the set of events generated by the environment
and Sc the set of events generated by the controller, D is the set of continuous
disturbances, U is the set of continuous control inputs, Yp={R1, . . ., RM} is the output
set consisting of the regions of the hybrid state space which are used to describe the
control specifications, and Mp=Q 6 X is the measurement space. The hybrid state
transition function fp :Xp 6 Up ? Xp is described by (1) and (2). The output function
gp :Xp ? Yp described by (3) is implemented by a filter that determines the membership
of the state into a region Ri of the state space. The measurement function is mp :Xp ?
Mp assuming full state feedback.

Controller. The controller is represented by C ¼ ðXc;Uc;Yc; fc; gcÞ where Xc is the set of
states, Uc=Mp is the input set which coincides with the measurement set of the plant,
Yc=Sc 6 U is the output of the controller consisting of the continuous control input
and the controller events that may trigger a (feasible) discrete transition, fc :Xc 6 Uc ?
Xc is the state transition function, and gc :Xc 6 Uc ? Uc is the output function of the
controller.

Composition. The plant and the controller are connected in a feedback configuration as
shown in figure 4. The closed loop system is described by CL ¼ ðXcl;Ucl;Ycl; fcl; gclÞ
where Xcl=Xp 6 Xc is the state set of the closed loop system, Ucl=Su 6 D is the set
of exogenous inputs, Ycl=Yp is the output set, fcl :Xcl 6 Ucl ? Xcl is the state
transition function, and gcl :Xcl 6 Ucl ? Ycl is the output function of the closed loop
system. Since the control requirement is for the closed loop system to exhibit the same
(output) behavior as the exosystem, we define the behavior of the plant with respect to
the output set Ycl={R1, . . . RM}. Since the closed loop system is a discrete-time
dynamical system, in order to compare the behaviors of the event-driven exosystem
and the time-driven closed loop system, we abstract the time information by defining
an index function acl. Consider the index k2N. The state of the discrete-time
dynamical system is associated with the index k meaning the state at time t= kT. Then
define acl :N ? I as follows:

acl½0� ¼ 0 ð7Þ

acl½n� ¼ minft ¼ kT4acl½n� 1� : yclðtÞ 6¼ yclðacl½n� 1�Þg: ð8Þ

Let I=Imacl denote the image of the function acl, then the behavior of the closed loop
system is defined as Bcl � YI

cl.

Definition 4. Given the exosystem E and the piecewise linear hybrid dynamical system
P, we say that the regulator problem has a solution if there exists a controller C such
that the output behavior of the closed loop system follows the specified behavior of the
exosystem, that is Bcl=Bsp.

The design of the controller can be decomposed in two levels. In the higher level, we
are concerned only with conditions for the existence of appropriate control inputs for
safety and reachability specifications. Such conditions are based on the feasibility of
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appropriate optimization problems [1] and can be tested off-line. Assuming that there
exist appropriate control resources to satisfy the specifications, the implementation of
the controller, and therefore the selection of the actual control input signal, is done by
solving an on-line optimization problem. In this paper, we focus on the second problem
of selecting control inputs by solving appropriate optimization problems. The solution
to the first problem has been presented in [1] where conditions for the existence of
appropriate control inputs for safety and reachability specifications.

4. Attainability and the regulator problem

Our control objective is that the closed loop system consisting of the plant and the
controller exhibits the same behavior as the exosystem. The main question is whether
there exists a controller so that the closed loop system follows the behavior of the
exosystem. This question is directly related to the existence of appropriate control
resources in order for the plant to achieve the desired behavior. We formalize this
notion using the attainability of the specified behavior. In this work, attainable
behavior refers to behavior that can be forced on the plant by a control mechanism.

Definition 5. The specification behaviour Bsp is said to be attainable if there exists a
solution to the regulator problem, that is a controller such that the output behavior of
the closed loop system satisfies Bcl=Bsp.

Practically, the attainability of the specification behavior Bsp can be tested off-line using
algorithms for reachability analysis of piecewise linear hybrid systems. Given region
R=(M, P), we consider the predecessor operator pre : 2Q6X?2Q6X to compute the
set of states for which there exists a control input so that the state will be driven in R
for every disturbance. The action of the operator is described by

preðRÞ ¼ fq 2 Mg 
 fx 2 Xj9u 2 U; 8d 2 D;Aqxþ Bquþ Eqd 2 Pg:

The set pre(R) is piecewise linear and can be always represented using only linear
equalities and inequalities. Such a description is based on the fact that piecewise-linear
algebra admits elimination of quantifiers [16] which means that any PL set defined
using quantifiers can be also defined using only propositional connectives. The
elimination of quantifiers can be performed using Fourier-Motzkin elimination [42] for
computing appropriate projections, linear programming techniques for eliminating
redundant constraints, and equivalences from predicate logic [43] to combine the
constraints. Details can be found in [1].
Since the set pre(R) is piecewise linear, we can apply the predecessor operator

recursively to obtain

preN ðRÞ ¼ preð. . . preðRÞÞ:
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{N times

For a given region R, we define the coreachable set CR(R) as the set of all states that can
be driven to R. The coreachable set for a region of the hybrid state space can be
represented by successive application of the predecessor operator CR(R)=pre*(R)
where * denotes the fixed point of the predecessor operator. It should be noted that the
algorithm for the computation of the coreachable set for a region R is semi-decidable.
The procedure produces the correct answer if it terminates, but its termination is not
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guaranteed. Infinite time problems for piecewise linear systems are, in general,
undecidable [17]. For finite time problems, backward reachability algorithms for
piecewise linear hybrid systems areNP-complete [17]. This follows from the definition of
the predecessor operator which is formulated using the existential quantifier over all
possible inputs. The number of linear constraints that are used to represent the
coreachable region grows exponentially at every iteration of the algorithm. Practically,
many constraints are redundant and can be eliminated by performing Fourier-Motzkin
elimination at every time step. For example, reachability analysis between two regions
R1 and R2 is based on the computation of the set pre(R2)\R1 at every time step. Some
of the constraints for pre(R2) will be redundant and can be eliminated for the
computation of the set pre(pre(R2)\R1). The elimination of redundant constraints is
itself computationally expensive; however, the attainability tests are performed only at
design-time. If the specification is attainable, the run-time controller presented in
Section 5 needs to perform only one-step optimization algorithms that are very efficient.

Testing attainability involves testing safety for the regions that correspond to
terminating symbols of the specification language K and reachability for non-
terminating symbols. In the following, we briefly present the related results from [1].

Definition 6. [1] Given a set of safe states described by the region R�Q6X and an
initial condition (q0, x0) 2 R, we say that the system is safe if (q(t), x(t)) 2 R for every t.

Lemma 1. [1] A PLHDS is safe with respect to the region R�Q6X if and only if
R� pre(R).

The safety condition is illustrated in figure 6 where the piecewise linear set pre(R)
contains the safe set R. Let RjX and pre(R)jX be the projection of R and pre(R) into the
continuous state space X. The sets RjX and pre(R)jX are piecewise linear but not
polyhedral, and therefore they are not necessarily convex. In order to test whether
RjX� pre(R)jX, we represent the constraints in disjunctive normal form (DNF) and we
test the feasibility of finite set of linear programming problems.

Next, we consider non-terminating symbols of the specification language K and the
corresponding regions of the state space. Reachability between two regions R1 and R2

is defined so that the state is driven to R2 directly from the region R1 while staying in
R1[R2. This is a problem of practical importance in hybrid systems since it is often
desirable to drive the state to a target region of the state space while satisfying
constraints on the state and input during the operation of the system. Further, we only
consider regions of the form R1= (Q1,P1) and R2= (Q2,P2) for which P1 and P2 are

Figure 6. Safety condition.
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adjacent polyhedral regions of the primary partition. In this case, the regions P1 and P2

have a common boundary which is represented by a (n71)-dimensional hyperplane
h(x)= gT x 7 w. The reachability problem between any two regions can be solved by
finding a path consisting of adjacent reachable regions.
The problem of deciding if a region R2 is directly reachable from R1 can be solved by

recursively computing all the states that can be driven to R2 from R1 using the
predecessor operator. Our approach is based on conditions that guarantee that state
can be forced to cross the hyperplane h(x) in finite time by selecting appropriate
controls. For this purpose, we consider a finite time horizon defined by NT where T is
the sampling period and N2N. Consider a PLHDS described by the equations (1)-(3)
and assume that the initial condition is (q(t0), x(t0)) 2 R1.

Definition 7. [1] The region R2 is directly N-reachable from R1 if for every initial state
(q(t0), x(t0)) 2 R1 there exist control inputs for the PLHDS and k 2 N, 05 k4N so
that (q(t), x(t)) 2 R1 for t0 4 t 5 t0 + kt and (q(t0 + kt), x(t0 + kt)) 2 R2.

Wedenote byCNN
R1
ðR2Þ the coreachable set of all states that canbe driven from the region

R1 toR2 in the finite time t4NTwithout entering a third region. The setCRN
R1
ðR2Þ can be

computed using the predecessor operator pre : 2Q6X? 2Q6X. Given the regionsR1 and
R2, we compute all the states that can driven from R1 to R2. At every iteration k of the
algorithm we consider the intersection of the set pre(Rk) with the set R1 since we are
interested only in states that can be driven to R2 directly from the region R1 without
entering a third region. At every iteration of the algorithm we apply the predecessor
operator to a piecewise linear region of the state space and we take the intersection
between two piecewise linear sets. Hence, the resulting region is still piecewise linear, it
can be represented using only linear equalities and inequalities, and the following holds.

Lemma 2. [1] Consider a PLHDS described by (1)-(2) and the piecewise linear regions
R1= (Q1, P1) and R2= (Q2, P2). Then, the region R2 is directly N-reachable from R1 if
and only if CRN

R1
ðR2Þ.

The N-reachability condition is illustrated in figure 7 where the region R2 can be
reached from R1 in at most four steps. Since the set CRN

R1
ðR2Þ is piecewise linear, the

reachability problem between R1 and R2 can be solved using linear programming
techniques similarly to the safety conditions.

Figure 7. Reachability condition.
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Based on the safety and reachability properties describe above, we formulate
attainability conditions for dynamic specifications defined by the languages generated
by the exosystem. Let y= y0y1 . . . yn71 2 K denote a sequence of symbols from the
specification language K.

Proposition 1. The specification behaviour Bsp is attainable if and only if there exists a
language K that satisfies the following conditions:

(i) y0= g(q0,x0)= g(q(0), x(0)),
(ii) if yn71 is a terminating output symbol, then for every t4acl [n71] there exist

control input u(t) and controllable events sc (t) so that for every disturbance d(t)
and uncontrollable event su(t), we have that y(t)= g(q(t),x(t))= yn71, and

(iii) if yn71 is not a terminating output symbol, then there exists t’4aal[n71] so that
for every t such that acl[n71]5t5t’, there exist u(t) and s (t) such that for every
d(t) and su(t) we have yn 2 K, acl[n]= t’ where

yðt0Þ ¼ gðqðt0Þ; xðt0ÞÞ ¼ yn

yðtÞ ¼ gðqðtÞ; xðtÞÞ ¼ yn�1; acl½n� 1�5t5t0:

Proof. The above conditions require that for every prefix of the specification language
K, there exist controls that will force the next output symbol of the closed loop system
to remain in K and therefore, Bsp is attainable.

Proposition 2. The specification behavior Bsp is attainable if and only if every terminating
state yn71 corresponds to a region Rn71 that is safe and for every nonterminating state
yn71, there exists yn so that for the corresponding regions we have that Rn is directly
reachable from Rn71.

Proof. First, we have y0= g(q0 ,x0) 2 K by the definition of attainability. Next, if yn71

is a terminating output symbol, consider Rn71 ( Q 6 X the corresponding region of
the state space. Then, the attainability of the language K implies that the region Rn71 is
safe and by the definition of safety, there exists a control policy that will force the state
to remain in Rn71 for every disturbance. Finally, if yn71 is not a terminating output
symbol, consider the regions Rn71 and Rn corresponding to the output symbols yn71

and yn respectively. Since K is attainable, there exists a control policy so that Rn is
reachable from Rn71, and therefore there exists a control policy so that the sequence
y= y0y1 . . . yn71yn 2 K.

5. Controller design

In this section, we present a systematic procedure for controller design. It is assumed
that the desired behavior is attainable and therefore there exists a control policy so that
the plant will follow the output of the exosystem. A controller is designed as a
dynamical system to implement the desired control policy. We have already shown that
if the specification behavior is attainable, there exists a control policy so that the closed
loop system will satisfy the specification. Our objective is to build a convenient
representation of the controller. The design of the controller is based on the regions
(R1, . . . RM} that are used to define the control specifications. The proposed
representation for the controller is shown in figure 8. The controller consists of three
agents. The event generator receives the discrete-time measurement signal of the hybrid
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plant, and issues appropriate events when the state (q(t, x(t)) enters a new region Ri of
the hybrid state space. The control automaton is a finite automaton whose states
correspond to the regions Ri and its main purpose is to select an appropriate cost
functional based on the control objective. Finally, the actuator determines the control
input which is applied to the hybrid plant. The control input consists of a continuous
component u2U and a discrete component sc2Sc which triggers feasible discrete
transitions. In the following, we formally define the controller.

Event generator. The event generator abstracts the discrete-time signal (q(t), x(t)) from
the plant to a sequence of events that describe the membership of the state to the
regions Ri. The event generator is defined by the following equations:

ac½0� ¼ 0

ac½n� ¼ minft4ac½n� 1� : ðqðtÞ; xðtÞÞ 2 Rj 6¼ Ri 3 ðqðac½n� 1�Þ; xðac½n� 1�ÞÞg
~u½n� ¼ ‘cðRi;RjÞ

where ac :N ? I is an index function representing the order of events and
‘c : Xe 
 Xe ! ~U a (non-total) label function assigning an event to every pair of
regions with adjacent continuous parts.

Control automaton. The control automaton is an I/O deterministic (Moore) finite
automaton [40] defined as Xc; ~U; ~Y; ~d; ~l where Xc={R1, . . . RM} is the set of states, ~U is
the set of input events, ~Y ¼ f~y1; . . . ; ~yMg is the set of output events, ~d : Xc 
 ~U ! Xc is
the state transition function, and ~l : Xc ! ~Y is the output function.

The control automaton is deterministic, and therefore the next state can be uniquely
determined from the current state and the input event which is an abstraction of the
state of the hybrid plant. This is a realistic assumption for practical applications of
hybrid systems. The input events represent the measurements from the hybrid plant.
An event ~u is generated when the state crosses to a new region Ri of the state space.

The actuator. The actuator determines the control input to be applied to the plant using
an optimization algorithm based on the desired output provided by the exosystem. The
output of the actuator is a discrete-time control signal (sc(t), u(t)). At every time step,
the control input is selected as the solution to a mathematical programming problem.
In the following, we formulate the optimization problem that is used by the actuator.

Figure 8. Controller diagram.
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Consider the specification behavior described by the language K= y0y1 . . . yn71, yi 2
Ye and let Ri be the corresponding region to the output symbol yi.

First, we consider terminating output symbols that represent safety conditions for the
corresponding region of the state space. Let yn71 be a terminating state and
Rn71= (Sn71, Pn71)( Q6X the corresponding region. We define the cost functional
Jn71 :Q 6 <n 6 <m 6 <p ? <

Jn�1ðq; x; u; dÞ ¼ kAqðtÞxðtÞ þ BqðtÞuðtÞ þ EqðtÞdðtÞ � �xn�1k22 ð9Þ

where �xn�1 2 Pn�1 is a point selected by the designer. For example, �xn�1 can be selected as
the epicenter of Pn71. It should be noted that the cost functional can include weighting
matrices for the case where the states have different physical units or importance. The
control signal is selected as the solution to the following optimization problem:

min Jn�1ðq; x; u; dÞ
q 2 actðpðxðtÞÞÞ s:t: AqxðtÞ þ BquðtÞ þ EqdðtÞ 2 Pn�1:

u 2 U
ð10Þ

The constraints and the cost functional are computed at every time step. The control
action is selected by solving a quadratic programming problem for each feasible
discrete mode q 2 act(p(x(t))). Let q’ be the mode that corresponds to the minimum
cost, then the control input is selected as (sc(t), u(t)) where q’= d(g(t), p(x(t)), sc(t), e
and u=argminu2UJn71 (q’, x, u, d).

Next, we consider two non-terminating output symbols yk and yk+1 which describe
a reachability specification between the regions Rk=(Sk, Pk) and Rk+1= (Sk+1,
Pk+1). The control objective is to drive every state in Rk to Rk+1. As it is explained in
section 4, we can assume that Pk and Pk+1 are adjacent polyhedral regions of the state
space and we denote h(x)= gTx – w their common boundary. Let P be the polyhedral
set defined by all the linear constraints that define Pk except h(x). It is assumed without
loss of generality that h(x)40 for every x2P. We define the cost functional Jh :Q6 <n

6 <m 6 <p ? <

Jhðq; x; u; dÞ ¼ gT½AqðtÞxðtÞ þ BqðtÞuðtÞ þ EqðtÞdðtÞ� � w: ð11Þ

The control signal is selected as the solution to the following optimization problem:

min Jhðq; x; u; dÞ
q 2 actðpðxðtÞÞÞ s:t: AqxðtÞ þ BquðtÞ þ EqdðtÞ 2 P:

u 2 U
ð12Þ

Similarly, this problem can be solved very efficiently by solving a linear programming
problem for each feasible discrete mode q act(p(x(t))), Let q’ be the mode that
corresponds to the minimum cost, then the control input is selected as (sc(t), u(t))
where q’= d(q(t), p(x(t)), sc(t), e and u=argminu2UJh(q’, x, u, d).

Proposition 3. Consider the controller shown in figure 8 with the event generator, control
automaton, and actuator as defined above. If the specification behavior is attainable, the
output behavior of the closed loop system follows the specified behavior of the exosystem,
that is Bcl=Bsp.
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Proof. Each terminating output symbol yi represents a safety specification for the
region Ri. By the attainability assumption, there exists a control policy that guarantees
safety. Therefore, there exists a solution to the optimization problem (10) and the
corresponding control input satisfies the safety objective. Similarly, for non-
terminating output symbols yk and yk+1. By the attainability assumption, there exists
a control policy that guarantees that the region Rk+1 is reachable from Rk . Therefore,
there exists a solution to the optimization problem (12) and the corresponding control
input satisfies the reachability objective.

A major advantage of the approach is that it decouples the synthesis problem into two
tasks. The first task that establishes the attainability of the specifications is
computationally very expensive but it is performed off-line. The complexity of the
algorithms for testing attainability of safety and reachability specifications in the worst
case is exponential on the number of state space constraints and on the number of steps
of the time horizon [1]. The second task that selects the control inputs signals is based
on quadratic and linear programming problems that can be solved very efficiently and
allow real-time implementations of the hybrid controllers.

Example. In the following, we illustrate the controller design methodology using the
tank system. The control specifications are described by the exosystem presented in
section 3. The attainability of the specification behavior can be verified using linear
programming techniques [1]. We present a hybrid controller for the startup procedure
of the tank system. During startup, it is desired for the state to transition from the
initial region R3 to the operating region R1 through region R2. This specification is
described by the language K2= abc.
The controller consists of the event generator, the control automaton, and the

actuator. The event generator determines the membership of the state (q, x) in one of the
regions R1 , R2 , or R3 described in equations (5), (5), and (6) respectively. The control
automaton is shown in figure 9. Every output of the of the control automaton
corresponds to a cost functional. The control input is selected by minimizing this cost
functional at every time step over all the possible control actions u2 [0 0.16 1073] and
Va2 {0,1} while ensuring that the mode q is feasible, q2 act(p(x)), for the current state x.
In region R3, since the only feasible mode is q=1, the control input is selected as the

solution to

min gT3 ½A1xðtÞ þ B1uðtÞ� � w3

u 2 ½0; 0:1
 10�3� s:t: 0

0

� �
4A1xðtÞ þ B1uðtÞ4

0:5

0:2

� �

Figure 9. Control automaton for the tank system.
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where gT3 ¼ ½�1; 0� and w3=70.3. In region R2, the modes q=1 and q=2 are
feasible. The control action includes the input flow u and position of the valve Va and is
selected as

min gT2 ½AqxðtÞ þ BquðtÞ þ BquðtÞ þ Eq� � w2

q 2 actðpðxÞÞ s:t:
0:3
0

� �
4AqxðtÞ þ BquðtÞ þ Eq4

0:5
0:2

� �
u 2 ½0; 0:1
 10�3�

where gT2 ¼ ½0;�1� and w2=70.2. Finally, in region R1 the modes q=1 and q=2 are
feasible when x250.3 and the modes q=1 and q=4 are feasible when x240.3. The
control action is selected as

min kAqxðtÞ þ BquðtÞ þ Eq � �xk22
q 2 actðpðxÞÞ s:t:

0:3
0:2

� �
4AqxðtÞ þ BquðtÞ þ Eq4

0:5
0:5

� �
u 2 ½0; 0:1
 10�3�

where �x ¼ ½0:4; 0:35�T. In figure 10 we show the trajectory of the continuous state, the
discrete mode, and the control input. Note that the continuous state is driven to the
region R1 and then remains inside R1 indefinitely. The controller guarantees that every
state in the region R3 can be driven to first to the region R2, then to the safe region R3

and remain safe for every t.

Figure 10. Tank system simulation for x0= [0,0]T.
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6. Conclusions

In this paper, we consider hybrid systems in which the continuous dynamics are
described by linear difference equations, the discrete dynamics by finite automata, and
the interaction between the continuous and discrete part is defined by piecewise linear
maps. The proposed modeling formalism separates the physical plant to be controlled
from the control specifications and the controller. It provides the necessary
mathematical tools to describe explicitly what control actions are available in order
to influence the behavior of the plant so that the control specifications are satisfied. We
present a novel methodology for the control design of piecewise linear hybrid
dynamical systems based on a formulation of the regulator problem. We present a
formal control design framework for both static specifications that do not change as
time progresses and dynamic specifications that involve sequencing of events and
eventual execution of actions. The main characteristic of the approach is that the
feedback controller contains a control automaton that is used to select appropriate cost
functionals that are minimized by selecting specific control actions.
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