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Optimal Control of Switched Systems Based on
Parameterization of the Switching Instants
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Abstract—This paper presents a new approach for solving
optimal control problems for switched systems. We focus on
problems in which a prespecified sequence of active subsystems
is given. For such problems, we need to seek both the optimal
switching instants and the optimal continuous inputs. In order
to search for the optimal switching instants, the derivatives of
the optimal cost with respect to the switching instants need to
be known. The most important contribution of the paper is a
method which first transcribes an optimal control problem into an
equivalent problem parameterized by the switching instants and
then obtains the values of the derivatives based on the solution
of a two point boundary value differential algebraic equation
formed by the state, costate, stationarity equations, the boundary
and continuity conditions, along with their differentiations. This
method is applied to general switched linear quadratic problems
and an efficient method based on the solution of an initial value
ordinary differential equation is developed. An extension of
the method is also applied to problems with internally forced
switching. Examples are shown to illustrate the results in the
paper.

Index Terms—Hybrid systems, linear quadratic problems, op-
timal control, switched systems.

I. INTRODUCTION

SWITCHED systems are a particular class of hybrid sys-
tems that consist of several subsystems and switching laws

orchestrating the active subsystem at each time instant. Many
real-world processes such as chemical processes, automotive
systems, and manufacturing processes, etc., can be modeled as
such systems.

Optimal control problems for switched systems, which re-
quire the solutions of both the optimal switching sequences and
the optimal continuous inputs, have attracted many researchers
recently. This phenomenon is due to the problems’ significance
in theory and application. Many results, which report progresses
regarding theoretical or practical issues for continuous-time or
discrete-time versions of such problems, have appeared in the
literature (see, e.g., [4], [5], [7]–[13], [15], [16], and [18]–[32]).
However, there are many issues not yet addressed. For example,
even for problems with linear subsystems and quadratic costs,
how to obtain a closed form solution of the optimal switching

Manuscript received August 21, 2001; revised April 18, 2002 and October 5,
2003. Recommended by Associate Editor A. Bemporad. This work was sup-
ported by the National Science Foundation under Grant NSF ECS99-12458
and Grant CCR01-13131, and by the DARPA/ITO-NEST Program under Grant
AF-F30602-01-2-0526.

X. Xu is with the Department of Electrical and Computer Engineering, Penn
State Erie, Erie, PA 16563 USA (e-mail: Xuping-Xu@psu.edu).

P. J. Antsaklis is with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN 46556 USA (e-mail: antsaklis.1@nd.edu).

Digital Object Identifier 10.1109/TAC.2003.821417

instants is still a largely open problem. For more discussions
on various literature results, the reader is referred to [26], [30],
[31], and the references therein.

In this paper, we explore numerical solutions to such optimal
control problems. Since many practical problems only involve
optimizations in which a prespecified sequence of active sub-
systems is given (e.g., the speeding up of an automobile power
train only requires switchings from gear 1–4), we concentrate on
such problems. For discussions on possible solution methodolo-
gies for general optimal control problems, the reader is referred
to [30, Sec. 3] and [31, Sec. 4]. Given a prespecified sequence
of active subsystems, one needs to seek the solutions of both the
optimal switching instants and the optimal continuous input. In
[26], [30], and [31], we proposed an idea of decomposing the
problem into stage (a), which is a conventional optimal control
problem that finds the optimal cost given the sequence of ac-
tive subsystems and the switching instants, and stage (b), which
is a nonlinear optimization problem that finds the local optimal
switching instants. It is worth mentioning that in [10], [11], Cas-
sandras et al. proposed a similar two-stage hierarchical decom-
position idea through their independent studies of similar prob-
lems for hybrid systems. In [11], Cassandras et al. studied a
problem motivated by manufacturing systems and a quadratic
optimal control problem with linear subsystems. The two prob-
lems were solved by an iterative methodology which first finds
the analytical solutions to the lower level (i.e., finds the contin-
uous input and the optimal cost) and then substitute the results
into the high level and seek the optimal switching instants using
nonlinear optimization methods. However it should be pointed
out that it is not always possible to derive analytical solutions to
the lower level optimal control problems. This is evident from
the fact that only few classes of conventional optimal control
problems possess closed form solutions. Even for the case of
linear quadratic (LQ) problems, it is well known that the op-
timal costs are quadratic forms in which the coefficients can be
obtained numerically by solving Riccati equations backward in
time. Therefore, we do not even have a closed form solution for
an LQ problem. Being presented with such difficulties, we pro-
pose a different solution approach in this paper. Our approach is
motivated by the observation that, in order to solve stage (b), it is
not necessary to find closed form solutions to stage (a). As long
as we know the derivatives of the optimal cost with respect to the
switching instants, the nonlinear optimization in stage (b) can be
carried out using constrained nonlinear optimization techniques.

In general, it is hard to obtain the values of the derivatives
of the stage (a) optimal cost with respect to the switching in-
stants. To address these difficulties, in a previous paper [30],
we proposed an approach which approximates such derivatives
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by direct differentiations of value functions. In this paper, a
method is proposed which can provide us with accurate nu-
merical values of the derivatives instead of approximations. The
method is faster and more straightforward than the approxima-
tion method when implemented. The method is based on the
solution of a two point boundary value differential algebraic
equation (DAE) formed by the state, costate, stationarity equa-
tions, the boundary and continuity conditions, along with their
differentiations. We also apply the method to general switched
linear quadratic (GSLQ) problems and show that the burden of
solving a DAE can be reduced to solving an initial value ordi-
nary differential equation (ODE). The method is much easier to
implement and much faster than the approximation method for
GSLQ problems. Finally, an extension of the method is applied
to problems with internally forced switching (IFS). Overall, we
believe the method is new and is the first one that can obtain
accurate derivative values of the optimal costs.

The structure of the paper is as follows. In Section II, we
formulate the optimal control problem studied in this paper. In
Section III, we outline the two stage decomposition idea and
discuss each stage. In Section IV, we transcribe a problem into
an equivalent problem parameterized by the switching instants
and develop a method to obtain the derivative value based on
the solution of a two point boundary value DAE. Similar ideas
are applied to GSLQ problems in Section V and a more efficient
method based on the solution of an initial value ODE is devel-
oped. Section VI reports results for problems with IFS. Exam-
ples are given in Section VII to illustrate the effectiveness of the
method. Section VIII concludes the paper.

II. PROBLEM FORMULATION

A. Switched Systems

In this paper, we consider switched systems consisting of the
subsystems

(1)

In order to control a switched system, one needs to choose
not only a continuous input but also a switching sequence. A
switching sequence in regulates the sequence of
active subsystems and is defined as

(2)

where , , and
for . Note here indicates that at instant

, the system switches from subsystem to subsystem ;
during the time interval ( if ), sub-
system is active. For a switched system to be well-behaved,
we only consider nonZeno sequences which switch at most a fi-
nite number of times in , though different sequences may
have different numbers of switchings. If we regard as a dis-
crete input, then the overall control input to the system is a pair

. Finally, we note that the feature distinguishing a switched
system from a general hybrid system is that its continuous state
does not exhibit jumps at the switching instants. Such a feature
makes the computation of continuous inputs amenable via the
usage of conventional optimal control methods.

B. Optimal Control Problem

In the sequel, we define
; in other words, is the set of piecewise continuous

functions for that take values in . Since many
practical problems only involve optimizations in which a pre-
specified sequence of active subsystems (i.e., the untimed se-
quence ) is given, we concentrate on such prob-
lems. (Such problems appear, e.g., in the speeding up of an au-
tomobile power train which only requires switchings from gear
1–4.)

Problem 1: Consider a switched system consisting of
subsystems , . Given a fixed time interval

and a prespecified sequence of active subsystems
, find a continuous input and

switching instants such that the corresponding
continuous state trajectory departs from a given initial
state and meets an -dimensional smooth
manifold at and the
cost functional

(3)

is minimized.
Problem 1 is a basic optimal control problem in Bolza form.

As in the usual practice of formulating optimal control problems
(see [1]), in the sequel, we assume that , are continuous
and have continuous partial derivatives with respect to ; is
continuously differentiable; has twice continuous derivatives.
Besides these assumptions, whenever necessary, we will further
assume that they possess enough smoothness properties we need
in our derivations.

The way we formulate Problem 1 with a fixed final time is
mainly for the convenience of subsequent studies. For a problem
with free final time , we can introduce an additional state vari-
able and transcribe it to a problem with fixed final time. Analyt-
ical tools such as the maximum principle and the Hamilton–Ja-
cobi–Bellman (HJB) equation for hybrid and switched systems
have been derived in the literature (see [18], [23], [25], [26],
[31], and [32]). However, it is difficult to directly use these re-
sults to find optimal controls even for switched systems with
linear subsystems. For details and comments on the difficulties
of using them to obtain optimal solutions, see [31] and [27, Ch.
5].

III. TWO STAGE DECOMPOSITION

In [26], [30], and [31], we proposed an idea which decom-
poses Problem 1 into two stages. Stage (a) is a conventional
optimal control problem which seeks the minimum value
of with respect to under a given switching sequence

. In the sequel, we denote
the corresponding optimal cost as a function , where

. Stage (b) is a constrained nonlinear opti-
mization problem

(4)

where .
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In order to solve Problem 1, one needs to resort to not only
optimal control methods, but also nonlinear optimization tech-
niques. Except for very few classes of problems (e.g., minimum
energy problems in [27] and the two examples in [11]), ana-
lytical expressions of are almost impossible to obtain.
This is evident from the fact that very few classes of conven-
tional optimal control problems possess analytical solutions.
The unavailability of analytical expressions of henceforth
makes stage (b) optimization difficult to carry out. However,
even without the expressions of , if we can find the values
of the derivatives and , we can still solve stage
(b) by employing some nonlinear optimization techniques. Let
us elaborate more on stages (a) and (b) in the following.

Stage (a): In stage (a), we need to find an optimal contin-
uous input and the corresponding minimum . Although dif-
ferent subsystems are active in different time intervals, stage (a)
which seeks for the corresponding is
conventional since these intervals are fixed. The only difference
between stage (a) and most of the conventional optimal control
problems is that in stage (a), the system dynamics changes with
respect to different time intervals. However, it is not difficult
to use the calculus of variations techniques (see, e.g., [14]) to
prove the following necessary conditions (in fact, it is a form
of the maximum principle). For simplicity of notation, in the
following theorem, we assume that subsystem is active in the
time interval for and subsystem
is active in where .

Theorem 1—Necessary Conditions for Stage (a): Consider
the stage (a) problem for Problem 1. Assume that subsystem
is active in for and subsystem
in where . Let be a contin-
uous input such that the corresponding continuous state trajec-
tory departs from a given initial state and meets

at . In order for
to be optimal, it is necessary that there exists a vector function

, , such that the following
conditions hold.

a) For almost any the following state and costate
equations hold:

(5)

(6)

Here, , if
( if ).

b) For almost any , the stationarity condition holds

(7)

c) At , the function satisfies

(8)

where is an -dimensional vector.

d) At any , , we have

(9)

Proof: See Appendix A.
These necessary conditions will be used in Section IV in the

development of a method for finding and . In
general, it is difficult or even impossible to find an analytical ex-
pression of using the above conditions. The reason is that
conditions (a)–(d) present a two point boundary value differen-
tial algebraic equation (DAE) which, in most cases, cannot be
solved analytically. However, the above DAE can be solved effi-
ciently using many numerical methods (e.g., shooting methods).

Stage (b): In stage (b), we need to solve the constrained
nonlinear optimization problem (4) with simple constraints.
Computational methods for finding local optimal solutions
of such problems are abundant in the nonlinear optimiza-
tion literature. For example, feasible direction methods and
penalty function methods are two commonly used classes of
methods. These methods use first-order derivative
and second-order derivative . In the computation
of the examples in this paper, we use the gradient projection
method (using ) and its variations (see [6, Sec. 2.3] for
details). For more information on various methods for solving
constrained nonlinear optimization problems, see [3] and [17].

Remark 1: In this paper, we use methods using gradient in-
formation as opposed to nongradient ones for stage (b). The
reasons are as follows. First, we note that, albeit conceptually
applicable, nongradient methods that are based on brute force
perturbation of usually incur heavy computations (note for
each perturbation of , an optimal control problem needs to be
solved, which incurs nontrivial computational effort) and con-
verge quite slowly; while gradient information provides a better
direction for searching and hence reduces computational burden
and help the methods converge faster. Second, in the case of
more than two switchings, stage (b) poses a problem in higher
dimensional spaces, which will create a huge number of pos-
sible perturbation directions for the nongradient method; how-
ever, the effectiveness of gradient based methods will not be hin-
dered by higher dimensionalities.

A Conceptual Algorithm: The following conceptual algo-
rithm provides a framework for the optimization methodologies
in Sections IV–VII.

Algorithm 1—A Conceptual Algorithm for
Stage 1 Optimization

1) Set the iteration index . Choose an
initial .

2) By solving an optimal control problem
(i.e., stage (a)), find .

3) Find (and if
second-order method is to be used).

4) Use some feasible direction method to
update to be (here
is formed by using the gradient infor-
mation of , the stepsize can be
chosen using some stepsize rule, e.g.,
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Armijo’s rule [6]). Set the iteration
index .

5) Repeat Steps (2), (3), (4) and (5),
until a prespecified termination con-
dition is satisfied (e.g., the norm of
the projection of on any fea-
sible direction is smaller than a given
small number ).

It should be pointed out that the key elements of the above
algorithm are

a) an optimal control algorithm for step 2);
b) the derivations of and for step 3);
c) a nonlinear optimization algorithm for step 4).

In these discussions, we have already addressed elements a) and
c). Element b) poses an obstacle for the usage of Algorithm 1
because and are not readily available. It is the
task of Sections IV–VII to address b) and devise a method for
deriving the values of and . Finally, it should
be pointed out that hidden in step 4), when we are searching for

, optimal control algorithm for stage a) will also be used in
order to obtain the value of at the trial ’s.

IV. APPROACH BASED ON PARAMETERIZATION OF THE

SWITCHING INSTANTS

In this section, an approach to Problem 1 based on parame-
terization of the switching instants is presented. The first step
is to transcribe an optimal control problem into an equivalent
conventional optimal control problem parameterized by the
switching instants. Based on the equivalent problem formula-
tion, a method based on the solution of a two point boundary
value DAE is then developed for deriving accurate values of

and .

A. Equivalent Problem Formulation

Now, we describe the transcription of Problem 1 into an
equivalent problem parameterized by the unknown switching
instants. The equivalent problem has the property that the
switching instants are fixed with respect to the new independent
time variable.

For simplicity of notation, we concentrate on the case of two
subsystems where subsystem 1 is active in the interval

and subsystem 2 is active in the interval (
is the switching instant to be determined). We also assume that

(for general , we can introduce Lagrange multi-
pliers and develop a similar method). It is straightforward to
apply the methods developed in this section to problems with
several subsystems and more than one switchings; we will re-
mark on this at the end of Section V-A.I. We consider the fol-
lowing problem.

Problem 2: For a switched system

(10)

(11)

find a switching instant and a continuous input ,
such that the cost functional

(12)

is minimized. Here , and are given.
Problem 2 can be transcribed into an equivalent problem as

follows. We introduce a state variable corresponding to
the switching instant . Let satisfy

(13)

(14)

Next, a new independent time variable is introduced. A piece-
wise linear relationship between and is established as

.
(15)

Clearly, corresponds to , to , and
to . By introducing and , Problem 2 is

transcribed into the following equivalent problem.
Problem 3—(An Equivalent Problem): For a system with dy-

namics

(16)

(17)

in the interval and

(18)

(19)

in the interval , find an and a ,
such that the cost functional

(20)

is minimized. Here, , and are given.
Remark 2: Problem 3 and Problem 2 are equivalent in the

sense that an optimal solution for Problem 3 is an optimal solu-
tion for Problem 2 by a proper change of independent variable
as in (15) and by regarding , and vice versa.

Remark 3: The equivalent Problem 3 provides us with some
advantage, namely that it no longer has a varying switching in-
stant and therefore is conventional. Because is actually an
unknown constant throughout , in the subsequent dis-
cussion, we regard as an unknown parameter for optimal
control problem with cost (20) and subsystems (16) and (18),
i.e., we can regard Problem 3 as an optimal control problem
parameterized by the switching instant . It is also worth
noting that by regarding as a parameter, the dimension-
ality of Problem 3 is the same as that of Problem 2. This is be-
cause, given the value of , we only need to consider (16)
and (18) to solve for the state trajectory. In fact, in the case of
more than one switchings, if we apply similar transcriptions, the
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dimensionality of the equivalent problem is still the same as the
original problem.

Remark 4: Problem 2 and 3 allows for the special cases
and . In fact, (respectively, ) corre-

sponds to the case when only subsystem 2 (respectively, 1) is
active for . Algorithm 1 and the method we will de-
velop also allow for such special solutions.

B. Method Based on Solving a Boundary Value Differential
Algebraic Equation

Based on the equivalent Problem 3, we now develop a method
for deriving accurate numerical value of . The method is
based on the solution of a two point boundary value DAE formed
by the state, costate, stationarity equations, the boundary and
continuity conditions for Problem 3, along with their derivatives
with respect to the parameter . In the following, we denote

, as row vectors and as an matrix
whose -th element is . Similar notations apply
to , , , etc.

Consider the equivalent Problem 3, define

(21)

(22)

(23)

(24)

Regarding as a parameter, it is not difficult to see
that the optimal state trajectory for stage (a) is actually a
function parameterized by . Consequently, we denote it as

. We define the parameterized Hamiltonian as

(25)

Assume that a parameter is given, then we can apply The-
orem 1 to Problem 3. The necessary conditions a) and b) provide
us with the following state, costate, and stationarity equations:

(26)

(27)

(28)

In (26)–(28), the subscript for and for
. Note that the and corresponding to the optimal

solution are also functions of and , i.e.,
and .

From the necessary condition c) of Theorem 1, we obtain the
boundary conditions

(29)

(30)

The necessary condition d) tells us that is contin-
uous at for fixed , i.e.,

(31)

Equation (26)–(28) along with boundary conditions
(29)–(30) and the continuity condition (31) form a two point
boundary value DAE parameterized by . For each given

, the DAE can be solved using numerical methods. Now,
assume that we have solved the above DAE and obtained the
optimal , and , we then have
the optimal value of which is a function of the parameter

(32)

Differentiating with respect to provides us with

(33)
So, we need to obtain the function and

(here we assume that is fixed) in
order to obtain the value . By differentiating the
above state, costate and stationarity (26)–(28) with respect to

(note that ), we
obtain

(34)

(35)
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(36)

for and

(37)

(38)

(39)

for .
In the previous equations, is an

array whose element is
and the notation denotes
an row vector which has its th element as

where
is the -th element of , is the -th element of and is
the -th element of . Similarly,
denotes an row vector which has its th element as

;
denotes an row vector which has its th ele-

ment as ;
denotes an row

vector which has its th element as
. The expressions of

, ,

and
are understood similarly.

Differentiating the boundary conditions (29) and (30) and the
continuity condition (31) with respect to , we obtain

(40)

(41)

(42)

It can now be observed that (26)–(28), the boundary
conditions (29) and (30) and the continuity condition (31),
along with their differentiations (34)–(39), (40)–(42), form a
two point boundary value DAE for , ,

and , ,
. By solving them and substituting the

result into (33), we can obtain .
Remark 5: If all subsystems are linear in control and the cost

function is quadratic in control, then can be solved from the
stationarity equation as a function of and . By differentia-
tion with respect to , can also be expressed as
a function of , , and . If we substitute
these functions for and into the state, costate equa-
tions and their differentiations, the two point boundary value
DAE can, hence, be reduced to a two point boundary value dif-
ferential equation in , , and , which
can be solved more easily than the DAE (e.g., using shooting
methods for two point boundary value differential equations, or
directly using the function in Matlab).

Remark 6—Several Subsystems and More Than One Switch-
ings: There is no difficulty in applying the previous method to
problems with several subsystems and more than one switch-
ings. Assuming that there are switchings, we can transcribe
the problem into an equivalent problem by introducing new
state variables ’s, which correspond to the
switching instants ’s and satisfy

(43)

(44)

The new independent time variable has a piecewise linear
relationship with where corresponds to ,
corresponds to and corresponds
to . It is then straightforward to apply the necessary
conditions in Theorem 1 to the equivalent problem to come up
with the state, costate, stationarity equations, the boundary, and
continuity conditions. Similar to the case of a single switching,
we can then obtain , , , ’s, ’s and

’s by solving the two point boundary value DAE
formed by the state, costate, stationarity equations, the boundary
and continuity conditions, along with their derivatives with
respect to ’s. By substituting them into the expressions of

’s which can be derived similarly to (33), we can
then find the accurate values of ’s.

Remark 7—Second Order Derivatives: If we take
second-orderpartialderivativeson(32),wecanobtain theexpres-
sionfor whichdependsonthevaluesof ,

, and .
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Similarly to the above procedure, taking first and second order
derivatives of the state, costate, and stationarity (26)–(28), the
boundary conditions (29) and (30) and the continuity condition
(31) with respect to will result in a two pointboundary value
DAE in , , , , , , ,

, . There is no difficulty in obtaining the
values of and by solving the DAE and
substituting the results to the expressions of them. This procedure
can similarly be applied to the case of several subsystems and
more than one switchings.

Remark 8—Comments on Computation: In general, In order
to find , we need to resort to numerical methods to
solve a two point boundary value DAE in , , , ,

and . Such a DAE might seem to be twice
the size of the equivalent optimal control problem where only ,

and need to be found. However, due to the structure of such
a DAE, we can first solve , and from a DAE formed by
(26)–(31) and then solve , and
from another DAE of the same size formed by (34)–(42). Such
a method of repeatedly solving small size DAEs relieves us
from the burden of solving a DAE of large size. Moreover, in
the case of switchings, we do not have to actually solve
a large DAE in

and . Instead, we only
need to first solve a DAE for , and and then solve
DAEs of the same size in , ,
for . This explains why our method can deal with
multiple switchings without enlarging the size of DAEs.

V. GENERAL SWITCHED LINEAR QUADRATIC PROBLEMS

As remarked in Section I, even for conventional optimal con-
trol problems with linear subsystems and quadratic costs, there
is no closed form solution for stage (a). For such problems, we
may only conclude that the optimal costs are quadratic forms in
which the coefficients can be obtained numerically by solving
Riccati equations backward in time. Therefore, to derive accu-
rate numerical value of , one still needs to resort to
numerical methods. In this section, we apply the idea in Sec-
tion IV to general switched linear quadratic (GSLQ) problems
and develop a more efficient method for deriving accurate nu-
merical values of . Due to the problem’s special
structure, the method has the advantage that it only needs to
solve an initial value ODE formed by the parameterized Riccati
equation and its differentiation with respect to the switching in-
stant in order to compute the value of . For simplicity
of notation, we consider the following GSLQ problem with two
subsystems and one switching.

Problem 4—GSLQ Problem: For a switched system

(45)

(46)

find a switching instant and a continuous input such that
the cost functional in general quadratic form

(47)

is minimized. Here, , and are given;
are matrices of appropriate

dimensions with , and .
In view of the method in Section IV, we transcribe Problem 4

into its equivalent problem.
Problem 5—Equivalent GSLQ Problem: For a system with

dynamics

(48)

(49)

in the interval and

(50)

(51)

in the interval , find an and a such that the
cost functional

(52)

where

(53)

is minimized. Here, , and are given.
Similar to Remark 3, Problem 5 can be regarded as a GSLQ

problem parameterized by the switching instant . Assume
that we are given a fixed , we can apply the principle of
optimality to Problem 5 as follows. We assume that the optimal
value function is

(54)

where . The HJB equation is

(55)

in the interval and

(56)

in the interval .
Using a method similar to the method for solving conven-

tional linear quadratic regulator problems (see, e.g., [2]), it can
be obtained that the solution to the above HJB equation is

(57)

where

(58)

(59)

(here, the subscript for and for
) and , and (in the
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following abbreviated as , and ) satisfy the following pa-
rameterized general Riccati equation (parameterized by )

(60)

(61)

(62)

for and

(63)

(64)

(65)

for .
Along with the boundary conditions ,

, and , we can solve
(60)–(65) (for a fixed ) backward in and obtain the
parameterized optimal cost at (i.e., the optimal under
fixed ) as

(66)

From (66), we have

(67)

In order to obtain the value of by using (67),
we need to know , and at

. To obtain these values, we differentiate (60)–(65)

with respect to to obtain the following equations (note
that )

(68)

(69)

(70)

in the interval and

(71)
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(72)

(73)

in the interval .
Equations (60)–(62) (when ) and (68)–(70) for

, and the equations (60)–(62) (when ) and (71)–(73)
for together with the following boundary conditions
at :

(74)

(75)

(76)

(77)

(78)

(79)

form an initial value ODE for , , , ,
and which can be efficiently solved backward in

using the Runge–Kutta method. From the solution of this
ODE, values of ,
and can be obtained and substituted into
(67) to obtain the value of . The conceptual Algorithm
1 can then be applied.

Remark 9—Several Subsystems and More Than One
Switchings: It can be seen that there is no difficulty in
applying the previous method to GSLQ problems with sev-
eral subsystems and more than one switchings. First of all,
we can transcribe the problem to an equivalent problem in

if there are switchings as mentioned in
Remark 6. It is then straightforward to differentiate the Riccati
equation parameterized by (i.e., )
to obtain additional differential equations for ’s,

’s and ’s. Along with the boundary
conditions ,

, ,
,

and
for all , we can solve the resultant

initial value ODE backward in to find the values of , , ,
and their derivatives with respect to at . Once we
have their values at , we can substitute the values into

(80)

to obtain the accurate values of ’s.
Remark 10—Second-Order Derivatives: It is not difficult to

see that if we take second order partial derivatives of (66), we
obtain

(81)

While following similar ideas of differentiation of the parame-
terized Riccati equation, we can take first and second-order dif-
ferentiations of (60)–(62) and (63)–(65) with respect to
and form a set of ordinary differential equations. Along with the
initial conditions (74)–(79) and 0’s at for ,

and , the resultant initial value ODE
for , , , , , , ,

and can be readily solved and hence
the accurate value of can be obtained.

Remark 11: Note that the method for GSLQ problems is
new and it can be easily implemented using any ODE solver
(e.g., in Matlab) to address continuous-time linear
quadratic problems. It is much easier to implement and much
faster than the approximation method (see [30]) for GSLQ
problems. Since we do not resort to the discretizations of
the time and state spaces, accurate values of the switching
instants can be obtained. Moreover, because we focus on
the continuous-time case, our method is quite different than
methods for discrete-time problems which usually resort to
backward searching (e.g., via pruning of search trees as in [15])
or multiparametric programming (e.g.,[4]).

VI. PROBLEMS WITH INTERNALLY FORCED SWITCHING

For all the switched systems we study in Sections II–V, we
have direct control over the switchings (i.e., the switchings are
generated externally). We call such systems switched systems
with externally forced switching (EFS). It is worth noting that
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there is another important class of switched systems in which
the switchings are generated implicitly when the state trajec-
tory intersects some switching sets. Such systems are said to be
switched systems with internally forced switching (IFS). In this
section, we extend the result in Section IV to optimal control
problems for such systems.

A. Optimal Control Problems for Switched Systems With IFS

The specifications of a switched system with IFS include not
only the subsystems

(82)

but also the switching sets

(83)

where . In this paper, we consider
. For such

systems, if the state trajectory intersects at subsystem
, the system will switch from subsystem to . The

only control input for such systems is the continuous input.
Although one can only directly control the system by the
continuous input , a switching sequence

will be generated implicitly
along with the evolution of the system state trajectory.

In this section, we focus on optimal control problems for
switched systems with IFS in which a prespecified sequence
of active subsystems is given. Many practical problems with
IFS are in fact such problems. For example, the speeding-up
of an automatic transmission automobile only requires switch-
ings from gear 1–4 (although the switchings cannot be exter-
nally forced by the driver). Formally, the problem is stated as
follows.

Problem 6 (Problem With IFS): Consider a switched system
with IFS. Given a fixed time interval and a prespecified
sequence of active subsystems , find a contin-
uous input such that the corresponding continuous
state trajectory departs from a given initial state
at initial active subsystem and meets an -dimensional
smooth manifold at ,
and the prespecified switching sequence is generated, and the
cost functional

(84)

is minimized.

B. Method for Problems With IFS

Problems with IFS are more difficult due to the additional
constraint that the state must be in the set when
the system switches from subsystem to . Moreover, the
switching instants can depend on the continuous input in a
complicated way (in contrast, the switching instants and the
continuous input are independent and can be generated sepa-
rately for problems with EFS). To address these difficulties, we
propose the following approach which leads to a method based
on an extension of the method for problems with EFS.

Approach 1—An Approach for Problems With IFS:

1) Denote in a redundant fashion that an optimal solution to
an IFS problem contains both an optimal switching se-
quence (starting at subsystem ) and an optimal contin-
uous input, i.e., regard an IFS problem as an EFS problem
with additional state constraints at the switching instants.
Solve the corresponding EFS problem.

2) Verify the validity of the solution for the IFS problem (i.e.,
if the system under the continuous input can evolve validly
and generate the corresponding switching sequence).

The decomposition of the problem into two stages and the
conceptual Algorithm 1 are still applicable to step 1) in the pre-
vious approach. Step 1) can then be solved using an extension
of the method in Section IV. Such an extension must address the
additional requirement that the system’s state be restricted to a
switching hypersurface at each switching instant.

Now, we look into stage (a) for step (1). It is in essence a con-
ventional optimal control problem which seeks the minimum
value with respect to under a given switching sequence

. The following theorem
provides necessary conditions similar to those in Theorem 1.

Theorem 2: Consider the stage (a) for Problem 6. Assume
that subsystem is active in for and
subsystem in where . Assume that

at the switching
instant . Let be a continuous input such that the
corresponding continuous state trajectory departs from a given
initial state and meets

at . Also assume that for
, and for .

In order that be optimal, it is necessary that there exists a vector
function , , such that the
conditionsa)–c)asinTheorem1hold,andmoreover,thefollowing
condition holds d). At any , , we have

(85)

where is an -dimensional vector.
Proof: See Appendix B.

Equipped with Theorem 2, we can now develop a method for
solving Problem 6 with IFS similarly to the method in Section IV.
Forsimplicityofnotation,weonlyconsiderthecaseoftwosubsys-
tems.Assumethat subsystem1isactivefor and

for , and subsystem 2 is active for
and for . Also assume that

(for general , we can introduce Lagrange multipliers and
develop a similar method). Using similar transcription as in Sec-
tion IV-A, we can obtain the corresponding equivalent problem.
Now similar to the procedure in Section IV-B, we can apply The-
orem 2 to the equivalent problem and obtain the state, costate and
stationarity equations and the boundary conditions which are the
same as (26)–(30). However, instead of (31), the necessary con-
dition d) in Theorem 2 leads to

(86)
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where the multiplier is also an unknown function of .
Moreover, besides the boundary condition and condition d), we
require that

(87)

If we differentiate the cost functional and the aforementioned
equations with respect to , we can obtain equations same
as (33)–(41). Equation (42) will be replaced by

(88)

where denotes an
row vector which has its th element as

. The
differentiation of (87) is

(89)

The aforementioned state, costate and stationarity equations,
boundary conditions and their differentiations, along with
(86)–(89) form a two point boundary value DAE (with jumps
for and at ) for , ,

, , ,
, and .

By solving them and substituting the result into (33), we can
obtain .

Remark 12: The approach developed in this section can be
extended in a straightforward manner to the case of several
subsystems and more than one switchings. The value of

can also be similarly obtained.
Remark 13: Note that in the solution process of the two point

boundary value DAE with jumps, we have not enforced the re-
quirements that and
for , for . However,
after a solution has been found, we need to verify these condi-
tions for the result. This is step (2) of Approach 1 which verifies
the validity of the solution. Note that there is no guarantee that
the verification will always be successful. How to modify the

method so that the requirements in the verification process can
be enforced poses a future research topic.

VII. SOME EXAMPLES

In this section, we illustrate the effectiveness of the methods
developed in Sections IV–VI using several examples.

Example 1: Consider a switched system consisting of non-
linear subsystems

subsystem 1

subsystem 2

subsystem 3

Assume that , and the system switches at
from subsystem 1 to 2 and at from subsystem 2 to 3

. We want to find optimal switching instants
, and an optimal input such that the cost functional

is minimized. Here and
.
For this problem, we use the method in Section IV to obtain

the values of and . Since the problem is
linear in control, we need only to solve a two point boundary
value differential equation. The resultant differential equation
for , , , , , , ,

, , , and
is formed by the following differential equations

and their derivatives with respect to and .
For , the differential equations are

where .
For , the differential equations are shown in the

equation at the bottom of the page, where
.

For , the differential equations are

where .
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The boundary conditions are

In the expressions of the previous boundary conditions, in order
to keep the notation simple, we omit the arguments ,
for the functions. The values of and can be
obtained from the evaluations of and
similar to (33).

Choose initial nominal values and . By ap-
plying Algorithm 1 with the gradient projection method, after
15 iterations we find that the optimal switching instants are

, and the corresponding optimal cost
is 5.4399. The computation takes 258.31 seconds of CPU time
when it is performed using Matlab 6.1 on an AMD Athlon 4
900–MHz PC with 256 MB of RAM, as opposed to the less ac-
curate results and much longer CPU time (more than 1 hour)
when the approach in [30] is applied. The corresponding con-
tinuous control and state trajectory are shown in Fig. 1(a) and
(b). Fig. 2 shows the optimal cost for different ’s. It
can be observed that is nonconvex, and therefore in general
our algorithm ends up with a local minimum (however here we
have actually obtained the global minimum for this problem).

Example 2: Consider a switched system consisting of

Assume that , and the system switches once
at from subsystem 1 to 2. We want
to find an optimal switching instant and an optimal input

such that the cost functional

is mini-
mized. Here, .

We use the method in Section V to obtain the value of
. From an initial nominal , by using Algorithm

1 with the gradient projection method, after 17 iterations we
find that the optimal switching instant is and
the corresponding optimal cost is 9.7667. The computation
takes 30.75 seconds of CPU time when it is performed using
Matlab 6.1 on an AMD Athlon 4900–MHz PC with 256 MB of
RAM, as opposed to 323.18 s of CPU time when the approach
in [30] is applied to achieve the same accuracy of the result.
The corresponding continuous control and state trajectory are
shown in Fig. 3(a) and (b). Fig. 4 shows the optimal cost for
different ’s.

(a)

(b)

Fig. 1. Example 1. (a) Control input. (b) State trajectory.

Fig. 2. Optimal cost for Example 1 for different (t ; t )’s.

Example 3: Consider a switched system with IFS only con-
sisting of

subsystem 1 (90)

subsystem 2 (91)
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(a)

(b)

Fig. 3. Example 2. (a) Control input. (b) State trajectory.

Fig. 4. Optimal cost for Example 2 for different t ’s.

Assume that , and the system state starts at
following subsystem 1 (subsystem 1 is active

for and subsystem 2 is active
for ). Assume that upon intersecting the hyper-
surface , the system switches from subsystem

(a)

(b)

Fig. 5. Example 3. (a) Control input. (b) State trajectory.

1 to 2. Also, assume there is only one switching which takes
place at time . We want to find an optimal
input such that the cost functional

is minimized.
We apply the approach developed in Section IV to this

problem. We choose an initial nominal . After
12 iterations we find that the optimal switching instant is

and the corresponding optimal cost is 0.1130. The
corresponding . The computation takes about
34 minutes of CPU time when it is performed using Matlab
6.1 on an AMD Athlon 4900–MHz PC with 256 MB of RAM
(it takes more time than the previous two examples due to the
unavailability of an efficient Matlab subroutine for DAE with
jumps; we write our own solver which is not efficient enough).
The corresponding continuous control and state trajectory are
shown in Fig. 5(a) and (b). The results are verified to be valid.
Fig. 6 shows the optimal cost for different ’s.

VIII. CONCLUSION

In thispaper,westudiedoptimalcontrolproblemsforswitched
systems in which a prespecified sequence of active subsystems
is given. Based on the two stage optimization idea, we proposed
a method to obtain the accurate values of the derivatives that is
necessary for stage (b). The method first transcribes an optimal
control problem into an equivalent problem parameterized by
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Fig. 6. Optimal cost for Example 3 for different t ’s.

the switching instants and then derives the derivatives based on
the solution of a two point boundary value DAE formed by the
state, costate, stationarity equations, the boundary and continuity
conditions, alongwith theirdifferentiations.Themethodwasalso
applied to GSLQ problems and a method based on the solution of
an initial value ODE was developed. An extension of the method
was applied to problems with IFS. Note that earlier results of
Sections IV and V have appeared in [28] and [29]. Another
earlier result by the authors, which obtains approximations of the
derivatives, is reported in [30]. However,note that the approach in
this paper is more accurate and straightforward than that in [30].
We believe that the method described here has advantages over
existing methods in that it combines good numerical characteris-
tics and it is based on concrete theoretical results. It is particularly
effectivein thecaseofgeneralswitched linearquadraticproblems
and it may be used to address practical problems.

APPENDIX A

Proof of Theorem 1

Proof: We use Lagrange multipliers to adjoin the con-
straints and
to . The augmented performance index is thus

(92)

By defining , for
, and with

if , we have

(93)

From the calculus of variations, we can obtain the first varia-
tion of as

(94)

According to the Lagrange theory, a necessary condition for a
solution to be optimal is . Setting to zero the coefficients
of the independent increments , ’s, , and
yields the necessary conditions a)–d).
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APPENDIX B

Proof of Theorem 2

Proof: The proof is similar to that of Theorem 1, except
that here in we introduce a term and in the ex-

pansion of , we have the coefficients of as

. Setting to zero the coef-

ficients of the independent increments ’s,
and therefore yields the necessary conditions a)–d).
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