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Abstract

This paper considers the problem of enforcing lin-
ear constraints containing marking terms, firing vec-
tor terms, and Parikh vector terms. Such constraints
increase the expressivity power of the linear marking
constraints. We show how this new type of constraints
can be enforced in Petri nets. In the case of fully con-
trollable and observable Petri nets, we give the con-
struction of a supervisor enforcing such constraints. In
the case of Petri nets with uncontrollable and/or unob-
servable transitions, we reduce the supervisor synthesis
problem to enforcing linear marking constraints on a
transformed Petri net.

1 Introduction

In this paper we consider a supervisory control prob-
lem for discrete event systems modeled as Petri nets,
in which we desire to enforce a certain type of specifi-
cations. Thus we have a plant which is abstracted as
a Petri net (PN), and a specification on the behavior
of the PN plant. We desire to find a supervisor such
that the closed-loop of the plant and the supervisor
satisfies the specification. We restrict our attention to
supervisors which can be represented as PNs, and to
specifications in the form of conjunctions of linear in-
equalities involving the marking, the firing vector and
the Parikh vector of the plant PN. We describe such
specifications next.

Efficient methods have been proposed in [1, 5, 4, 7] for
the synthesis of supervisors enforcing that the marking
µ of a PN satisfies constraints of the form

Lµ ≤ b (1)

The methods address both the fully controllable and
observable PNs and the PNs which may have uncon-
trollable and unobservable transitions. The constraints
(1) have been extended in [4, 7] to the form

Lµ+Hq ≤ b (2)
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which adds a firing vector term. In such constraints an
element qi of the firing vector q is set to 1 if the tran-
sition ti is to be fired next; else qi = 0. Without loss
of generality, H has been assumed to have nonnegative
elements. In this paper we consider constraints which
add to (2) a Parikh vector term:

Lµ+Hq + Cv ≤ b (3)

In (3) v is the Parikh vector, that is vi counts how often
the transition ti has fired since the initial marking µ0.
As an example, Parikh vector constraints can be used
to describe fairness requirements, such as the constraint
that the difference between the number of firings of
two transitions is limited by one. Adding the Parikh
vector term in (3) increases the expressivity power of
linear constraints. In fact, any supervisor implemented
as additional places connected to the transitions of a
plant PN can be represented by constraints of the form

Hq + Cv ≤ b (4)

The contribution of this paper is as follows. In sec-
tions 2 and 3 we show that any place of a PN can
be seen as a supervisor place enforcing a constraint
of the form (4). Previously this property was known
for constraints of the form Cv ≤ b and PNs without
self-loops [3]. Then we show how to obtain supervi-
sors enforcing constraints (3) in PNs. We first give the
solution for the case of fully controllable and observ-
able PNs in section 4. Then, in section 5 we turn our
attention to PNs which may have uncontrollable and
unobservable transitions. There we first define admissi-
ble constraints as the constraints for which the method
for fully controllable and observable PNs can still be
used. Then, by using net transformations, we reduce
our problem to the supervisory synthesis problem for
constraints of the form (1), for which effective methods
exist. Our approach also extends the indirect method
of [4] on enforcing constraints (2), as both coupled and
uncoupled constraints can be considered. Finally, an
example is given in section 6.

In the literature, Parikh vector constraints and mark-
ing constraints have been separately considered for vec-
tor DES (VDES) in [3]. The VDES considered in
[3] correspond to PNs without self-loops. It has been
shown there how to construct the optimal controller via
integer programming. A less computationally burden-
some approach, however not always optimal, has been
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Figure 1: Petri nets for Example 2.1

given in [5, 4], which considers marking constraints and
firing vector constraints. This paper extends some of
the approaches of [5, 4] by including the Parikh vector
constraints of [3].

2 Algebraic Representations of PNs

We denote a PN structure by N = (P, T, F,W ), where
P is the set of places, T the set of transitions, F the set
of transition arcs, and W the weight function. We also
denote by D the incidence matrix, and by D+ and D−

its components corresponding to weights of arcs from
transitions to places, and weights of arcs from places
to transitions, respectively. The common algebraic PN
representation is via the following state equation:

µ = µ0 +Dv (5)

where µ0 is the initial marking. The operation of a PN
can also be described through inequalities of the form
(4). Indeed, from (5) we derive:

(−D)v ≤ µ0 (6)

Let C = −D. The inequality Cv ≤ µ0 determines the
operation of a PN only if the net has no self-loops. To
deal with self-loops, an additional term is introduced:

Hq + Cv ≤ µ0 (7)

where

Hi,j =

{
D+i,j if D−i,j 6= 0
0 otherwise

(8)

Note that Hi,j ≥ 0 for all i and j. The vector q has the
following meaning. After we fire from µ0 a sequence
σ of Parikh vector v, the transition ti is enabled iff
Hq(i) + C(v + q(i)) ≤ µ0, where q(i) is a vector q with
zero elements except for the i’th one, which is one.

Example 2.1 Consider the PNs of Figure 1. The PN
(a) is not restricted: the firings of t1, t2 and t3 are free.
Therefore H and C are empty matrices. However, by
adding the places p1, p2 and p3 as in the PN (b), the
following inequalities appear in (7):

v1 ≤ 3 (9)

v2 − v3 ≤ 0 (10)

−v2 + v3 ≤ 1 (11)
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Figure 2: Illustrative example.

where the inequalities are generated by p1, p2, and p3,
respectively. The inequalities of the PN (c) are:

q1 + v2 ≤ 3 (12)

v2 − v3 ≤ 0 (13)

−2v1 − v2 + v3 ≤ 1 (14)

Note that both µ and v can describe the state of a
PN. We choose to denote by R(N , µ0) all pairs (µ, v)
such that µ0

σ−→ µ, and the Parikh vector of the firing
sequence σ is v.

3 Enforcing Generalized Linear Constraints

In this paper, a supervisor of a PN N = (P, T, F,W )
is the PN implementation of a map Ξ : M → 2T for
some1 M ⊆ N|P | × N|T |. For simplicity, the super-
visor is also denoted by Ξ. A supervisor Ξ restricts
the operation of a Petri net N by forbidding all tran-
sitions t /∈ Ξ(µ, v) to fire, where (µ, v) is the PN state.
A PN (N , µ0) and a supervisor Ξ are in closed-loop
if Ξ supervises (N , µ0); the closed-loop is denoted by
(N , µ0,Ξ). Given (N , µ0,Ξ), we denote the set of all
reachable states (µ, v) by R(N , µ0,Ξ).
We desire to enforce constraints of the general form
(3). Form (3) is more expressive than form (2). In-
deed, consider the closed-loop PN of Figure 2. There
is no place invariant involving the control place C, so C
cannot be obtained by enforcing (2) [4]. However the
following constraint of the form (3) describes C:

−v1 + v2 + v3 ≤ 1

In fact, as shown in the previous section, every place
of a PN can be seen as a control place restricting the
firings of the net transitions.

We say that a supervisor Ξ enforces (3) on a PN
(N , µ0) if ∀(µ, v) ∈ R(N , µ0,Ξ): (3) is satisfied.
We say that Ξ optimally enforces (3) if ∀(µ, v) ∈
R(N , µ0,Ξ): (a) Ξ is defined at (µ, v), and (b) a tran-
sition ti enabled in the plant (N , µ) is disabled by Ξ
at (µ, v) (i.e. ti /∈ Ξ(µ, v)) iff firing ti leads to a state
(µ′, v′) such that Lµ′+Cv′ 6≤ b or Lµ+Hq(i)+Cv 6≤ b,
where q(i) is the vector q corresponding to firing ti.

1|X| denotes the number of elements of X.



4 Supervisor synthesis in the fully controllable
and observable case

This section describes the synthesis of the optimal su-
pervisor enforcing constraints (3) in PNs in which all
transitions are controllable and observable. The opti-
mal supervisor is obtained by extending the formulas
given in [6] for constraints of the form (2). Let

D+lc = max(0,−LD− C) (15)

D−lc = max(0, LD + C) (16)

The supervisor is given by the incidence matrices:

D+c = D+lc +max(0, H −D−lc) (17)

D−c = max(D−lc , H) (18)

The initial marking of the supervisor is:

µc0 = b − Lµ0 (19)

where µ0 is the initial marking of the plant. Note that
in equations (15−18) the operator max is defined as
follows. If A is a matrix, B = max(0, A) is the matrix
of elements Bij = 0 for Aij < 0, and Bij = Aij for
Aij ≥ 0. Furthermore, for two matrices A and B of
the same size, C = max(A,B) is the matrix of elements
Cij = max(Aij , Bij).

Note that equations (17), (18) and (19) define a super-
visor which can be represented as a PN of incidence
matrices D+c and D

−
c , and with initial marking µc0.

We call the places of the supervisor control places.

Theorem 4.1 The supervisor defined by the incidence
matrices D+c and D

−
c of (17) and (18) and of initial

marking given by (19), optimally enforces (3).

The theorem can be proved by verifying that in the
closed-loop net (which has the incidence matrices

[D+
T
, D+c

T
]T , [D−T , D−c

T
]T and the initial marking

[µT0 , µ
T
c0]
T ), a control place prevents a transition t to

fire iff firing t violates (3). To this end it can be proven
by induction that

µc = b− Cv − Lµ (20)

Note that the supervisors we build for (3) may not
create a place invariant in the closed-loop net.

5 Supervisor synthesis in the case of PNs with
uncontrollable and/or unobservable transitions

5.1 Admissibility
A transition is uncontrollable if the supervisors are not
given the ability to directly inhibit it. A transition is
unobservable if the supervisors are not given the ability

(a) (b)
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Figure 3: Uncontrollability/unobservability illustration.

to directly detect its firing. In our paradigm the su-
pervisors observe transition firings, not markings. For
instance, consider the PN of Figure 3. Assume first
that t1 is controllable and t2 is uncontrollable. Then,
in case (a) t2 cannot be directly inhibited; it will even-
tually fire. However, in case (b) t2 can be indirectly
prevented to fire by inhibiting t1. Now assume that
t2 is unobservable and t3 is observable. This means
that we cannot detect when t2 fires. In other words,
the state of a supervisor is not changed by firing t2.
However, we can indirectly detect that t2 has fired by
detecting the firing of t3.

We are interested in admissible constraints, that is con-
straints which can be optimally enforced as in section 4,
in spite of our inability to detect or control certain tran-
sitions. We formally define admissibility as follows.

Definition 5.1 Let (N , µ0) be a PN. Assume that we
desire to enforce a set of constraints (3). Consider the
supervisor defined by (17), (18), and (19). We say that
the constraints (3) are admissible if for all reachable
states (µ, v) of the closed-loop net it is true that:

1. If t is uncontrollable and t is enabled by2 µ|N in N ,
then t is enabled by µ in the closed-loop net.

2. If t is unobservable and t is enabled by µ, firing t
does not change the marking of the control places.

Note that condition 2 in the definition corresponds
to the requirement that the unobservable transitions
which are not dead at the initial marking of the closed-
loop net, have null columns in Dc = D

+
c −D−c (where

D+c and D
−
c are defined in (17) and (18)). For general

PNs it may not be easy to check whether a constraint
is admissible. A computationally simple test is given
in the following sufficient condition. Let D−c,uc be the
restriction of D−c to the columns of the uncontrollable
transitions. Let Dc,uo be the restriction of Dc to the
columns of the unobservable transitions.

Proposition 5.1 The constraints (3) are admissible at
all initial markings if Dc,uo and D

−
c,uc are null matrices.

The conditionDc,uo = 0 ensures that for any uncontrol-
lable transition, a control place is either not connected
to it, or is connected to it with input and output arcs
of equal weight. The condition D−c,uc = 0 ensures that
no control place is in the preset of an uncontrollable
transition.

2We denote by µ|N the restriction of µ to the places of N .
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Figure 4: Illustration of the C-transformation.

5.2 Transformations to admissible constraints
When a constraint is admissible, it can be enforced as in
section 4. However, when a constraint is not admissible
or we cannot discern whether it is admissible, we are
interested to transform it to a form which we know is
admissible. Thus we have the following problem. Given
a set of constraints (3) on a PN (N , µ0), find a set of
admissible constraints

Laµ+Haq + Cav ≤ ba (21)

so that if Ξ is a supervisor optimally enforcing (21) on
(N , µ0), then ∀(µ, v) ∈ R(N , µ0,Ξ): (3) is satisfied.
In section 5.5 we consider a transformation approach in
which we transform the PN such that the constraints
(3) are mapped into marking constraints. Then the
marking constraints can be transformed to admissible
constraints by using any of the approaches in [5]. First
we define the PN transformations we use.

5.3 The C-Transformation
We illustrate the idea of the transformation on an ex-
ample. Assume that we desire to enforce the constraint
below on the PN of Figure 4(a)

µ1 + q1 + v2 − v3 ≤ 3 (22)

By transforming the net as in Figure 4(b), (22) can be
written without referring to v:

µ1 + q1 + µ4 − µ5 ≤ 3 (23)

We say that the PN of Figure 4(b) and the constraint
(23) are the C-transformation of the PN of Figure 4(a)
and of (22).

The inverse C-transformation is also possible. Given
the constraint

µ1 − 3µ4 + 2µ5 + q1 ≤ 5 (24)

on the PN of Figure 4(b), we can map it to

µ1 + q1 − 3v2 + 2v3 ≤ 5 (25)

in the original PN. We proceed next to formally define
the direct and inverse transformations.

The C-Transformation

Input: The PN N = (P, T, F,W ), the constraints
Lµ + Hq + Cv ≤ b, and optionally the initial mark-
ing µ0.
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Figure 5: Example for the H-transformation.

Output: The C-transformed PN NC = (PC , T, FC ,
WC), the C-transformed constraint LCµC + Hq ≤ b,
and the initial marking µ0C of NC .
1. Initialize NC to equal N , LC to L, and let k = |P |.
2. For i = 1 to |T |
2.a. If Ci, the i’th column of C, is not zero

2.a.i. Set k = k + 1

2.a.ii. Add a new place pk to NC such that pk• = ∅
and •pk = {ti}.
2.a.iii. Set LC = [LC , Ci] and µ0C = [µ

T
0C , 0]

T .

The C−1-Transformation

Input: The PN N = (P, T, F,W ), the C-transformed
net NC = (PC , T, FC ,WC), and a set of constraints
LCµC +Hq ≤ b on NC .
Output: The constraints Lµ+Hq + Cv ≤ b.
1. Set L to LC restricted to the first |P | columns and
C to be a null matrix.

2. For i = |P |+ 1 to |PC |
2.a. Let j be the transition index such that •pi = {tj}.
2.b. Set Cj = LC,i.

3

5.4 The H-transformation
This transformation is a modification of the indirect
method for enforcing firing vector constraints in [5].
We illustrate it on an example. Consider the PN of
Figure 5(a). Assume that we desire to enforce

µ1 + µ2 + 2µ3 + q3 ≤ 5 (26)

Then we transform the PN as shown in Figure 5(b).
The transformation adds a place and a transition which
correspond to the factor q3. The transformed con-
straint is

µ1 + µ2 + 2µ3 + 4µ5 ≤ 5 (27)

where the term 4µ5 is obtained as follows. Consider

firing t3 in the transformed net. If µ
t3−→ µ′ and a is

the coefficient of µ5, we desire

a+ µ′1 + µ
′
2 + 2µ

′
3 = 1 + µ1 + µ2 + 2µ3

where the factor 1 is the coefficient of q3 in (26). Thus
we obtain a = 4.

Next we formally define the H-transformation.

3Cj/LC,i is the column j/i of C/LC .
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The H-Transformation

Input: The PN N = (P, T, F,W ), the constraints
Lµ+Hq ≤ b, and optionally the initial marking µ0.
Output: The H-transformed PN NH = (PH , TH , FH ,
WH), the H-transformed constraint LHµH ≤ b, and
the initial marking µ0H of NH .
1. Initialize NH to equal N , LH to L, and let j = |T |
and k = |P |.
2. For i = 1 to |T |
2.a. If Hi, the i’th column of H , is not zero

2.a.i. Set j = j + 1 and k = k + 1.

2.a.ii. Add a new place pk and a new transition tj to
NH as in Figure 6, where tj has the same controllability
and observability attributes as ti.

2.a.iii. Set LH = [LH , Hi+LD
−
i ] and µ0H = [µ

T
0H , 0]

T ,
where D−i is the i’th column of D

−, and D− corre-
sponds to N .
The H−1-Transformation

Input: The PN N = (P, T, F,W ), the H-transformed
net NH = (PH , TH , FH ,WH), and a set of constraints
LHµH ≤ b on NH .
Output: The constraints Lµ+Hq ≤ b.
1. Set L to LH restricted to the first |P | columns and
H to be a null matrix.

2. For k = |P |+ 1 to |PH |
2.a. Let i be the transition index such that •pk = {ti}.
2.b. Set Hi = LH,k − LHD−H,i. 4

5.5 Algorithm for the transformation to admis-
sible constraints
We can use the C- and H-transformations to obtain
admissible constraints as follows.

Input: A PN N , constraints Lµ+Hq + Cv ≤ b, and
optionally5 an initial marking µ0.

Output: Admissible constraints Laµ+Haq+Cav ≤ ba
1. Initialize La to L, Ha to H , and Ca to C.

2. Apply the C-transformation. Let NC , LCµC+Hq ≤
b, and µ0C be the C-transformed net, the constraints,

4Hi/LH,k/D
−
H,i is the column i/k/i of H/LH/D

−
H , and D

−
H

corresponds to NH .
5It is possible to carry out the algorithm independently of the

initial marking.
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Figure 7: Plant Petri net in the example.

and the initial marking, respectively.

3. Apply the H-transformation to NC , LCµC +Hq ≤
b, and µ0C . Let NHC , LHCµHC ≤ b, and µHC0 be
the H-transformed net, the constraints, and the initial
marking, respectively.

4. Test whether LHCµHC ≤ b is admissible. If so, exit,
and declare Lµ+Hq + Cv ≤ b admissible.
5. Transform LHCµHC ≤ b to admissible constraints
LHCaµHC ≤ ba, such that a supervisor optimally en-
forcing LHCaµHC ≤ ba also enforces LHCµHC ≤ b.6
In case of failure, exit and declare failure to find ad-
missible constraints.

6. Apply the H−1-transformation to LHCaµHC ≤ ba.
Let LCaµC +Haq ≤ ba be the transformed constraint.
7. Apply the C−1-transformation to LCaµC + Haq ≤
ba. Set Laµ+Haq+Cav ≤ ba to the C−1-transformed
constraints.

We prove the following result in [2].

Theorem 5.1 Assume that the algorithm does not fail
at step 5. Then Laµ +Haq + Cav ≤ ba is admissible,
and a supervisor optimally enforcing it enforces also
Lµ+Hq + Cv ≤ b.

6 Example

Consider the plant PN of Figure 7. It corresponds to
a region of a factory cell in which autonomous vehicles
(AV) access a restricted area (RA). The number of AVs
which may be at the same time in the RA is limited.
The AVs enter the RA from two directions: left and
right; AVs coming on the left side enter via t4 or t13,
and AVs coming on the right side via t5 or t14. The
AVs exit the restricted area via t9 or t10. The total
marking of p1, p2 and p7 corresponds to the number of
left AVs waiting in line to enter the RA; only one AV
should be in the states p2 and p7, that is µ2 + µ7 ≤ 1.
6Any of the approaches in [5, 4] can be used. Approaches

generating disjunctive constraints can also be used by applying
the steps 6 and 7 to each component of the disjunction.
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The marking of p3, p4, and p8 has a similar meaning.

Let m be the maximum number of AVs which can be
at the same time in the RA; note that the number of
AVs in the RA is v13 + v14 + v4 + v5 − v9 − v10. When
the number of vehicles in the restricted area is m − 1
and both a left and a right AV attempt to enter the
restricted area (i.e. both µ2+µ7 = 1 and µ3+µ8 = 1),
arbitration is required. When an AV is in p2 and no
arbitration is required, it can enter the RA without
stopping. When arbitration is required, it stops (enters
the state p7) and waits the arbitration result. The same
apply to p3 and p8. We desire the following. When an
AV enters the RA, if an arbitration was required to
decide that it may enter, the AV should enter via t13
or t14; if no arbitration was required, it should enter via
t4 or t5. These constraints can be written as follows:

2q5 + µ2 + µ7 ≤ m− (v13 + v14 + v4 + v5 − v9 − v10) + 1 (28)
2q4 + µ3 + µ8 ≤ m− (v13 + v14 + v4 + v5 − v9 − v10) + 1 (29)

mq3 ≤ µ3 + µ8 + v13 + v14 + v4 + v5 − v9 − v10 (30)
mq6 ≤ µ2 + µ7 + v13 + v14 + v4 + v5 − v9 − v10 (31)

In addition we have the requirements that

µ2 + µ7 ≤ 1 (32)

µ3 + µ8 ≤ 1 (33)

The requirement on the maximum number of AVs in
the RA is

v13 + v14 + v4 + v5 − v9 − v10 ≤ m (34)

We add the fairness constraints

v3 − v6 ≤ n (35)

−v3 + v6 ≤ n (36)

As t1, t8, t9, t10 are uncontrollable and t9, t10 unobserv-
able, the constraints (28−31) and (34) are inadmissible.
They are transformed to7

7The constraints (30) and (31) cannot be transformed to
(more restrictive) admissible constraints; (39) and (40) represent
relaxed (and admissible) forms of (30) and (31).

2q5 + µ2 + µ5 + µ6 + µ7 + v13

+v14 + v4 + v5 − v9 − v10 ≤ m+ 1 (37)

2q4 + µ3 + µ5 + µ6 + µ8 + v13

+v14 + v4 + v5 − v9 − v10 ≤ m+ 1 (38)

mq3 − µ3 − µ8 − µ5 − µ6 − (v13
+v14 + v4 + v5 − v9 − v10) ≤ 0 (39)

mq6 − µ2 − µ7 − µ5 − µ6 − (v13
+v14 + v4 + v5 − v9 − v10) ≤ 0 (40)

v13 + v14 + v4 + v5 − v9 − v10
+µ5 + µ6 ≤ m (41)

The closed-loop PN is shown next to the plant in Fig-
ure 8, where the control places C1 . . . C9 correspond to
the constraints (37), (38), (39), (40), (32), (33), (41),
(35), and (36), in this order.

7 Conclusion

Enforcing linear marking and firing vector constraints
can be done effectively in Petri nets. This paper has
extended this class of constraints to include Parikh
vector constraints. Then, we have shown how these
more expressive constraints can be enforced as effec-
tively as linear marking constraints. We have also en-
hanced the previous technique for enforcing firing vec-
tor constraints in the presence of uncontrollable and
unobservable transitions. Our algorithms are software
implemented.
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