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1. ABSTRACT

In this report the control of continuous linear plants where the state sensor is connected to
a linear controller/actuator via a network is addressed. The work focuses on reducing the
network usage using knowledge of the plant dynamics. Specificaly, the controller uses
an explicit model of the plant that approximates the plant dynamics and makes possible
stabilization of the plant even under slow network conditions. Necessary and sufficient
conditions for stability are derived for the presented setup in terms of the update time h
and the parameters of the plant and of its model. The deterioration of behavior when
either h or the modeling error increase is explicitly shown.

2. INTRODUCTION

2.1 BACKGROUND

The use of networks as a media to interconnect the different components in an industrial
control system is rapidly increasing. For example in large scale plants and in
geographically distributed systems, where the number and/or location of different
subsystems to control make the use of single wires to interconnect the control system
prohibitively expensive. In addition, the flexibility and ease of maintenance of a system
using a network to transfer information is a very appealing goa. Systems designed in this
manner alow for easy modification of the control strategy by rerouting signals, having
redundant systems that can be activated automatically when component failure occurs,
and in general they allow having a high level supervisor control over the entire plant.

There are many examples in which placing a network to interconnect control applications
is convenient. A typical example is the case of aircraft control. In this case, different
sensors and control surfaces among other control components are distributed over the
aircraft. Another example is the case of manufacturing factories where it is a common
practice to implement data acquisition systems along the process path. Dozens of sensors
are deployed over critical points to make important information about the process
available to quality control engineers. Most of the times, these sensors will transmit the
collected information to a central computer using an industrial network. More than often
the need to create new control loops appears as quality or industrial engineers analyze the
data retrieved by the acquisition network. In this case, it seems natura to attach the
controllers and actuators to the already existent network and share the data already
provided by the deployed sensors. In general, the use of a network on a control system is
desirable when there is alarge number of distributed sensors and actuators.
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One of the main problems to be addressed when considering a networked control system
is the large amount of bandwidth required by each subsystem. In traditiona control the
feedback path makes the sensor information available to the controller continuously.
Industrial controllers usually connect the sensor to the controller using a wire. Bandwidth
and dynamic response of a plant are closely related. The faster the dynamics of the plant,
the larger is its bandwidth. This usually trandates to large frequency content on the
controlling signal and a continuous exchange of information between the plant and the
controller.

In this report, we consider the problem of having a sensor that is connected to the
actuator/controller by a network; that is, the feedback path is a network. However, data
networks typically have limited bandwidth and transfer information in a discrete time
framework, and this makes the task of designing a control system rather challenging.

To overcome the bandwidth constraint severa approaches have been proposed. In [1]
Brockett introduces the notion of minimum attention control that attempts to reduce the
time and state feedback dependence of the control law. This can be viewed as a tradeoff
between open loop and closed loop control. Since the network is placed on the feedback
path, open loop control uses no feedback bandwidth but has poor performance in
reducing steady state error, rejecting noise and disturbances, and reducing the sensitivity
of the system to parameter variations. The shortcomings of open loop control under
uncertainties are well known. On the other hand closed loop control has an excellent
performance but typicaly requires significant bandwidth. In [1] the problem is posed as
an optimization problem. An attention functional to be minimized is defined penalizing

|ou/ot| and |ou/ox| to obtain the control law u that has the least dependence on time't

and the plant state x. It is claimed that the derived control law requires less frequent
updating and is more robust to small changes in the data. Intuitively, one can think “large

values of |du/dx| indicate closed loop control while large values of |du/dt| indicate

open loop control.” So by varying the ratio of the penalties in the attention functional
over the two terms one can arrive to a tradeoff between the computational-intensive,
frequently updated, and bandwidth hungry closed loop control and the easy-to-implement
open loop control strategies.

In [7] Nair et al. study the case of an infinite dimensional time varying discrete plant with
unknown initial condition. The plant is being controlled using a network on the feedback
path. The only constraint on the network is that a finite set of symbols can be used to
send the information from the sensor to the controller/actuator. The sensor then
implements a coder that transmits the information to the controller/actuator at each
sampling time. The information takes negligible time to get to its destination and the data
corruption probability is assumed to be zero. The result is that, under certain technical
conditions on the probability density function of the initial condition, the plant is
stabilizable asymptotically in the m-th output moment and in the infinite horizon if and
only if the coder and controller comply with certain characteristics that depend on the
alphabet size and some dynamical constants. The specia case in which the plant is

unstable and LTI the condition is reduced to haveR > log,|4| where R is the transmission
rate in bits per second and A is the unstable open loop pole with largest magnitude.
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Elia et a. [2] propose the design of a quantized controller and state estimator for a LTI
discrete system. The result is an optimized controller and state estimator that operates in
discrete periodic times and quantized values for the state. It is obvious that the coarser the
discretization, the less the bandwidth required for the system to work. This work follows
the same line as the one by Nair et al. It is shown that the coarsest or least dense quantizer
that quadratically stabilizes the plant is logarithmic and can be computed by solving a
special LQR problem. The theory is then extended to continuous LTI plants using
constant sampling time intervals. It is shown that the optimal sampling interval time
(using the proposed quantizers) is only a function of the sum of the unstable eigenvalues
of the system. Francis et a further explores the idea to prevent chattering in the systemin
[11].

Together with the optimization of the sampling period and quantizer some effort has been
done in optimizing the sampling times and control law. This can be view as type of
scheduling. Several approaches have been proposed. Rehbinder et a [10] proves the
intuitive idea that the plant with fastest dynamics should be given more network
bandwidth resources. In the same spirit, Xiao et a study the optimization of the word
length, the output scaling, and the controller or estimator gan in [22]. Various
communication schemes are presented and analyzed.

The optimization of switching times and state estimation through a network is covered by
A.S. Matveev et a in [20]. In this paper it is studied a linear discrete-time partialy
observed system perturbed by a white noise. The observations are transmitted to the
controller via communication channels with irregular transmission times. Various
measurements signals may incur independent delays or arrive at the estimator out of
order. The estimator can dynamically control which sensors will it connect to. The
minimum variance state estimate and the optimal sensor switching strategy are obtained.
Basically a Kaman-like state estimator that is able to connect to its inputs a limited array
of the plant output sensors and deal with a variable delay to optimally estimate the plant
state.

Bauer et a. analyze the problem on a network with random delays in [3]. The paper
proposes the use of a Smith predictor in a discrete framework to eiminate the delay
induced by the network. The Smith predictor is placed in front of the controller and uses
knowledge about the plant to propagate forward the delayed information from the sensor
and make it accessible to the controller. We will use the intuitive idea that knowledge
about the plant dynamics can help to relax the network quality of service requirements
without sacrificing the performance of the networked control system.

In [4], Walsh presents a protocol that uses dynamic scheduling and a zero order hold at
the controller input. The notion of maxima allowable transfer interval, MATI, is
introduced to place an upper bound on the time between transfers of information from the
sensor to the controller. In this case the controller is designed without taking the network
into account, a desirable feature. However, serious behavior degradation can result if the
MATI is too large and the network dow. Also a dynamic scheduling is introduced: Try-
Once-Discard or TOD protocol. In TOD each sensor has a transmission priority that is
proportional to the error between the last data sent and the actual measured value. The
sensor with biggest error is given maximum priority to transmit. Additionaly, if a sensor
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is denied access to the network by contention, it will discard the packet and construct a
new one with fresh data before trying again to transmit. These results are extended to
non-linear plants in [16]. Tolerance of this systems under different types of noise is
studied on [17].

The effects of different scheduling schemes for the TOD protocol are studied in [18]. It is
implied that the plant performance is improved if an appropriate scheduling scheme is
used. Scheduling is of utmost importance when there is a number of sensors, actuators
and controllers competing for network resources. It determines the nature of the delays,
transmission rates, etc. A deterministic scheduling scheme is presented by Hristu-
Varsakelis in [24]. Deterministic communication sequences are easier to analyze and
sometimes can have a superior performance than non-deterministic scheduling schemes
but can also be difficult to enforce.

In [14] Beldiman, Walsh and Bushnell extend the results in [4] to include a state
predictor, for LTI systems, to estimate the state in between updates. Two types of state
predictors are defined. The first one is the so-called open loop predictor. Which is
basically a plant model that is updated with an invertible transformation of the state
vector available at the plant output. The model assumes complete knowledge of the plant.
In other words, there is no uncertainty in the model dynamics and they match perfectly
with the plant dynamics. Once the model’s state has been updated, it can provide the
controller with an estimate of the plant state vector. The second predictor, called closed
loop predictor, has the same structure as a Lurenberg observer. It receives the output of
the plant and tries to recreate the plant output in between transmissions. This predicted
output is then fed to the controller. This closed observer needs the network to be very fast
in order for the observer to converge. Sufficient conditions are given for the stability of
this NCS setup. Our work further extends the idea to use an approximate model of the
plant. The main difference between the results of [14] and the ones presented here are
that we don’'t assume to have complete knowledge of the plant. Thus, some amount of
uncertainty is allowed in the plant model. The specia structure of this NCS allows the
characterization of necessary and sufficient conditions that turn to be less conservative
and easier to check than those from [14].

In [15] Ishii and Francis, extend their Dwell Time Controller [11] for systems with output
feedback. In the dwell time controller setup the plant’s output is fed to a state observer.
The estimated state is then quantized using a logarithmic partition of the state space. The
guantized value is sent through the network to the controller/actuator. After decoding the
message the controller will apply a constant input to the plant that corresponds to the
received value of the quantized state. The logarithmic partition is coarser as the state's
distance to the origin is bigger, and it is finer when the state is closer to the origin. This
seems to be reasonable since fine steering of the state is more useful when the state is
close to the origin. The logarithmic partitions are made overlapping so that the system
can tolerate some noise generated by the sensors. Also a dwell time is specified to reduce
fast chattering produced by the controller when switching control inputs. To do so, the
time interval between switchings is enforced to be bigger or equa than the dwell time.
This can be done by timing the messages sent to the controller. In our approach we will
use the natural choice of having a state observer at the sensor side of the network.
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In [19] synthesis and existence of a networked optimal controller for nonstationary linear
parameter-varying (LPV) systems are shown. The plant has a spatialy distributed
structure and thus is natural to think in a networked controller structure. The paper
presents sufficient convex conditions for the existence and construction of an
“admissible” controller. This controller is based on the plant structure, that is, the
controller has the same distributed LPV structure as the plant. This allows for a number
of efficient computational schemes for controller implementation, as well as a direct
method of truncating the controller to obtain a decentralized distributed controller. We
recognize the importance of including the plant structure in the controller to facilitate the
construction of an efficient controller.

In [20] it is presented an algorithm for the stabilization of a multi-input/ multi-output
discrete time linear system via a limited capacity channel. The approach taken is a
deterministic multi-rate state space approach that leads to a nonlinear dynamic feedback
controller. The network channel is assumed to be noiseless and with time delays
associated with transmissions. An important feature of the approach is that it is a multi-
rate approach in which symbols are transmitted across the channel at a sower rate that
the control inputs are applied to the discrete time plant. It is also shown how the results
can be extended to the general output feedback case by using a form of deadbeat
observer. Both coder and decoder are dynamic systems that are “synchronized” by an
evolving state that is known at both sides. The state-space is partitioned dynamically as
the system approaches its steady state, in this way asymptotic behavior is proved
achievable. The actuator (or sensor) can use the state synchronization proposed here to
predict the behavior of the sensor (or actuator) in the intervals where there is no
communication. This idea is exploited here by having an evolving state that is
“synchronized” on both sides of the communication channel.

In [23] A.S. Matveev presents a NCS with an estimator/central controller, and several
semi-independent subsystems. The central controller receives information from the
different subsystems about the uncontrollable dynamics. It compresses and processes the
data and sends it to the different subsystems. The data arrives to the local controllers at
each subsystem. The local controller selects the right information from the central
controller message. This message contains propagated versions of the estimated state and
a time stamp so that the local controller can choose the right propagated version. This is
done since the central controller does not know the value of the transmission delay. The
local controller estimates the control-induced part of the controllable states of the sub
system and computes the state of the controllable state by adding the term corresponding
to the uncontrollable dynamics that was received from the central controller. The problem
is solved in a quadratic optimization framework.

2.2. PROBLEM SETUP AND RATIONALE

It is clear that the reduction of bandwidth necessitated by the communication network in
a networked control system is a major concern. This can perhaps be addressed by two
methods: the first being minimizing the transfer of information between the sensor and
the controller/actuator. The second method is to compress or reduce the size of the data
transferred at each transaction.
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Actually deployed and popular networks in the industry include CAN bus, PROFIBUS,
Fieldbus Foundation, and Ethernet among others. Each of these protocols and standards
has very different characteristics such as network contention resolution or scheduling
schemes, transmission media, etc. Among the shared characteristics are the small
transport time and big overhead (network control information included in the packet).
This means that data compression by reducing the size of the data transmitted has
negligible effects over the overall system performance. So reducing the number of
packets transmitted brings better benefits than data compression. The reduction of the
number of packets transmitted through the network can trandate into larger minimal
transfer times between the components. It is also to be noted that any delay in an
information transaction is usualy due to network access contention. This trandates into
what has been aready noted by Walsh in [8]: that the sensor with afast sampling rate can
send through the network the latest data available resulting in a negligible information
transfer delay. But there will still be contention in the network so that, even though the
delay is small, the sensor data would not be available at all times to the
controller/actuator. This brings us again to the idea of reducing the data transfer rate as
much as possible. In this manner more bandwidth will be available to allocate more
resources without sacrificing stability and ultimately performance of the overall system.

We will consider the case where the controller and the actuator are combined together
into a single node. That is, the network is between the sensor and the controller/actuator
node. Assuming that the controller and the actuator physically coexist is reasonable since
embedded microprocessors are usually incorporated into the actuator to process the data
received by the network and execute the commands received.

In this report we will concentrate on characterizing the transfer time between the sensor
and the actuator. The transfer time is the time between information exchanges from the
sensor to the controller/actuator. Thus, the inverse of this transfer time would be the
frequency at which the sensor will send information to the actuator. Our goal will be to
identify the maximum transfer time between the sensor and the actuator while keeping
the system stable. This will reduce the bandwidth required from the network and will free
it for other tasks such as other control loops using the network and/or non-control
information exchange. In order to increase the transfer time we will use the knowledge
we have of the plant dynamics. The plant model is used at the controller/actuator side to
recreate the plant behavior so that the sensor can delay sending data since the model can
provide an approximation of the plant dynamics. The main idea is to perform the
feedback by updating the model’ s state using the actual state of the plant that is provided
by the sensor. The rest of the time the control action is based on a plant model that is
incorporated in the controller/actuator and is running open loop for a period of h
seconds. The setup is pictured below.
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Figure 1.

This idea of a tradeoff between open loop and closed loop control is related to the
minimal attention control proposed by Brockett in [1]. One of the main differences
resides in that minimal attention control makes this tradeoff in a continuous way. The
resulting controller works in a similarly to a sampled data system. The lack of awareness
of the controller of the intersampling plant behavior usually results in performance
degradation. In our setup the tradeoff between open loop and closed loop control is done
in a “discrete” manner. Having knowledge of the plant at the actuator side enables us to
run the plant in open loop, while the update of the model state provides the close loop
information needed to overcome model uncertainties and plant disturbances.

Walsh uses a similar setup to that in Figure 1 in [4] except that the controller is a dynamic
system that receives the output of the plant as a direct input to it. The controller can be
implemented such that it includes knowledge of the plant by the setup but it doesn't
implement a state update in the same manner as the setup presented here. The input to the
controller is maintained the same way as a zero order hold does. If the controller were
designed without taking into account the network it would not achieve the same
performance which it was designed for. More over, the results presented in [4] are only
sufficient and conservative as it is shown latter on this report.

Our approach is novel in that it incorporates a model of the plant the state of which is
updated with the plant’s state. We also present a necessary and sufficient condition for its
stability that results in a maximum transfer time that depends solely on the model
inaccuracies. In the absence of plant disturbances arbitrarily long transfer times can be
achieved depending on modeling errors.

This report is organized as follows: in section 3 necessary and sufficient conditions are
developed for the setup showed in Figure 1. This is the case where the state vector is
directly measurable and sent through the network to the controller/actuator. It is shown
that the networked control system depicted in Figure 1 is globally exponentialy stable if
and only if the eigenvalues of a test matrix M are inside the unit circle. This matrix M
depends on the plant dynamics, the model uncertainties and the model update time. A
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numeric example with simulations is given in section 4. Section 5 further analyzes the
structure of this matrix. The specia case of afirst order plant is given in section 5.1 with
an example and simulations in section 5.2. The case where the plant state vector is not
directly measurable is considered in section 6. Here a state estimator is used at the output
of the plant to estimate the plant state vector so that it can be used at the other end of the
network to update the model at the controller/actuator. Necessary and sufficient
conditions are given for this extended setup. The condition is given over a new matrix
with a similar structure to the one used for the state feedback case. Section 6.1 illustrates
the previous results with an example and simulations. In section 6.2 the structure of the
test matrix is analyzed for the case of output feedback. All the results are then extended
to the case of discrete plants in section 7, with the case of state feedback in section 7.1
and output feedback in section 7.2. An example for the case of state feedback with
discrete plants is given in section 7.3. Section 8 considers the case of a full state feedback
networked system with constant delays. It is shown that a necessary and sufficient
condition to obtain stahility is that the eigenvalues of a test matrix, similar to the previous
ones, must be inside the unit circle. Conclusions are presented in section 9. Appendix A
describes the procedure to obtain the Maximum Allowable Transfer Interval according to
[4] that is used to compare results in section 4. Appendices B through H present the
proofs for theorems 3 through 9.

3. FULL STATE FEEDBACK CONTROL

If al the states are available, then the sensors can send this information through the
network to update the model vector state. For our analysis we will assume that the
compensated model is stable and that the transportation delay is negligible, which is,
completely justifiable in most of the popular network standards like CAN bus or
Ethernet. We will assume that the frequency at which the network updates the state in the
controller is constant. This last assumption can be relaxed for certain cases. The ideais
to find the smallest frequency at which the network must update the state in the
controller, that is, an upper bound for h, the update time. Note that, in our approach, we
don't make any assumptions on the plant dynamics. Usual assumptions include requiring
a stable plant or a smaler update than the sampling time in the case of a discrete
controller. Here we assume that the plant may be unstable.

We will now characterize the control system depicted in Figure 1. Were the system
dynamics are given by:

Plant :
X= Ax+ Bu

Modd :
%= A%+ Bu

Controller :
u=KxX
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Since the sensor has the full state vector available, its function will be to send the state
information through the network every h seconds. Now we will introduce some
definitions. The state error is defined as e= x— X, and represents the difference between
the plant state and the model statee The modeling error matrices
A=A-A,B=B-B, represent the difference between the plant and the model. Finally,
the update times are t,, where t, —t, , =h for al k. Since the model state is updated
every t, seconds, e(t,) =0 for k=0,12,.... This resetting of the state error every update
time is a key factor in our control system.

Now for te [t,,t,.,), we have that:

SO

with initial conditions X(t,) = x(t, )

Introducing the error e(t) = x(t) — X(t), it is very easy to see that the dynamics of the
overal systemfor te(t,,t,.,) can bedescribed by

I?ﬁqz{A+BK —BK ﬂﬂo}wm{““q:{ﬂwq Vte [t t), With t,, —t, =h

&t) | | A+BK A-BK | &) ety ) 0
D
: {ﬂo} {A+BK —BK} _
Define z(t) = ,and A=| - -~ . - |so tha (1) can be rewritten as
e(t) A+BK A-BK

z=Azfor te[t, t,,,).

We will now derive the response of the networked system. Then we will show under
what conditions the system will be stable.

THEOREM #1
t
The system described by (1) with initial conditions z(t,) = {X(OO)} =z, has the following

_ At 1 0 Ah 1 0 k
ool

te [t t,,), with t,,, -t =h

response:
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Proof.

Ontheinterval te[t,,t,.,), the systemresponseis

z(t) = {:((tt)) : ='W B(tk)} =e " 7(t,)

] 2)
. X(t . .
Now, note that at times t,, z(t,)= O( ")} , that is, the error e(t) is reset to zero. We can

represent this by

N0
Z(tk) = {0 O}eAh Z(tk—l)

Inview of (2) we have that if at timet=t,, z(t,)=2z,= BO} isthe initial condition then

z(t) = e W z(t, )
0

A(t—t)

—e eMz(t, )

R
0
_ Mt

Il O
eAh|:o O:|eAhZ(tk_2)

| ) | 0
— h(tk) ehh ehh e 7(t
0 00 00 2tes)

k
| O
_ M) ehh
o0f”)
| O M N
Now we know that e is of the form and so
00 0o

@)ﬂ K op}

(3
1 0

k
e | has the form
00
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Additionally we note the special form of the initial condition z(t,) = z, = BO} S0 that

[ao T3 Se ol ol s

(4)
Inview (4) it is clear that we can represent the system response as.
k
1 0 | O
2(t) = eA(t—tk) eAh
0=/ 0"
te [t b)), with t,,, -t =h
©)
.

A necessary and sufficient condition for stability of the networked system will now be
derived. For this the following definition for global exponential stability [5] is needed.

DEFINITION #1

The equilibrium z=0 of a system described by z= f(t,z) with initial condition
z(t,) = z, is exponentially stable at large (or globally) if there exists & >0 and for any
B >0, there exists k() >0 such that the solution

ottty )| k(B zfe ), vizt,
whenever |z, < S.

With this definition of stability we state the following theorem characterizing the
necessary and sufficient conditions for the system described by (1) to have global
exponential stability around the solution z=0. The norm used here is the 2-norm but any
other consistent norm can also be used.

THEOREM #2

The system described by (1) is globally exponentially stable around the solution
0 1 0 1 0 .
zZ= X< if and only if the eigenvalues of e are strictly inside the unit
el |0 00 00
circle.

11
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Proof.
Sufficiency.

Taking the norm of the solution described as in Theorem #1..

eollo oo o A=t[o oflo o

2] = <le ] |z
(7)
Now lets analyze the first term on the right hand side of (7):
A (t-t,) — (t _tk)z — 2 7 (A)(t-t) 5 (A)h
e SL+(-t)T(A) +—— =0 (A) . =e <e”Mh =K,
(8)

where o(A) is the largest singular value of A. In genera this term can always be
bounded since the time difference t—t,is aways smaller than h. In other words even
when A has eigenvalues with positive red part, ”e"“‘tk)

This growth is completely independent of k.

[ooflod))

can only grow a certain amount.

We now study the term . It is clear that this term will be bounded if

| 0 | 0]
and only if the eigenvalues of e lie inside the unit circle:
00 00|
1 0] .10\
e/\h S Kze—a’lk
00 00
(9)
with K,,o; >0.
Since k is a function of time we can bound the right term of (9) interms of t:
gt @
K,e™ <K,e " =K,ehe" =K,e*
(10)
with K;,ar>0.
So from (7) using (8) and (10) we can conclude:
e | EJ = ) P PO
0 0 |00 v
(11)

12
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Necessity.

We will now prove the necessity part of the theorem by contradiction. Assume the system

00 00

unit circle. Since the system is stable, a periodic sample of the response should be stable
as well. In other words the sequence product of a periodic sample of the response should

converge to zero with time. We will take the sample at times t, ,, that is, just before the

| O 1 0
described by (1) is stable and that { }e“‘{ }has a least one eigenvalue outside the

update. We will concentrate on a specific term: the state of the plant x(t,,,) , which isthe
first element of z(t,,,) . Wewill call x(t,,,), &(K).

Now assume e** has the following form:

L W@ x@)
* Tlvo zw

then we can express the solution z(t) as:

eA(t—tk) 0 eAhI 0 k

00 |ooll”®
C[wie-t)  XE-t) ] w(h)* o
CLY(t-t)  Z(t-t) o ol®

[wit-t)w(hy)* 0}0
Y-t W(h)* 0

(12)
Now the values of the solution at times t, ., , that is just before the update, are
C o _[W(hW(h)* o | W)t 0
Z(tk+1) - Kk ZO - k ZO
Y(mW(h)® 0 Y(hW(h)" 0
(13)
10| /10 . . L
We aso know that 00 e 00 has at least one eigenvalue outside the unit circle,

which means that those unstable eigenvalues must be in W(h). This means that the first
element of z(t,,), which we call &(k), will in general grow with k. In other words we
can't ensure &(k) will converge to zero for general initial condition X, .

Xt = = [Wih) x| >0 as ke

13
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this clearly means the system cannot be stable, and thus we have a contradiction.

4. EXAMPLE OF FULL STATE FEEDBACK

Consider the following unstable plant:

<o oheefy

We will use the state feedback controller given by u = Kxwith K =[-1  -2].

Usually it is assumed that the actuator/controller will hold the last value received from
the sensor until the next time the sensor transmits. Under this assumption the
controller/actuator node acts as if having a zero order hold at its input. We will first
analyze this situation. To do so, we will transform the plant model so that it holds the last
state update presented to it by the network. In this manner the controller will behave in
the exact same manner as if having a zero order hold at its input of the state vector
update. The model this way modified would be:

et

| O Il O
So now we need to search for the biggest h such that {0 O}e“{o O} has its

eigenvalues inside the unit circle. Inthiscase A isgiven by:

0O 1 00

A{/jﬂéK A-Bf} -1 -2 1 2
A+BK A-BK 0 1 00
-1 -2 1 2

To do so we plotted the maximum eigenvalue magnitude versus the update time:

25

max eigenvalue magnitude

05 Il I i Il 1 Il I 1 Il
0.5 06 0.7 0.8 09 1 1.1 1.2 1.3 1.4 1.5

update times h

14
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From the picture we see that the condition for stability is to have h < 1 second. In fact the
test matrix M will have one eigenvalue with magnitude of 1 for h=1 second. If we use the
results by [4] we would have obtained that in order to stabilize the system we would need
to have h<2.1304E-4, which is very conservative. A derivation for the bounds of h using

[4] is given in Appendix A.

Simulations of the system with update times of 2.1304E-4, 0.5, 1 and 1.5 seconds are

shown below. Note that the plant was initialized with an initial condition of [1 1.

o o o o
0 = > >
= —
o

plant state (h=2.1304E-4 sec)

=3

1)
o

&
=

-06
(]

1 | bofd ] | |
TERRRRIRREREAR
et I L LR LR
; ° \\ \V’” \\ /(”\\//\\ // //To\‘ | #//\‘\\ U\\ /‘ f/‘\l | /\\'\ | /“\\ / "/\\\ | 'ﬁ\\\‘ »‘ /M\ \“ /\\\ ,/‘ﬂ‘\\ »{
il \7L/ Rl \\\/ | \\‘J W v “‘\U )\(U \‘U W )Vf “‘\M \\1/] ‘\ \‘Y/
IR IR |
.r\\;’ i \f/ | }/ | \H( | ‘\;‘ \H”\ ‘\/ \/ \U \’/,
‘ | | . (. “‘ |
15 \( \j [ bbb
L ‘

It can be seen that for h=1 second the system is marginally stable, and for h=1.5 seconds
is completely unstable. It is aso clear that the performance obtained with h=0.5 seconds
is not too different to the one obtained with h=2.1304E-4 seconds, but the difference in
the amount of bandwidth used is large. If we were to use Ethernet that has a minimum
message size of 72bytes (including preamble bits and start of delimiter fields) the data
rate would be 2.7Mbits/sec for the case of h=2.1304E-4 seconds, and 1.2Kbits/sec for the

case of h=0.5 seconds.

Now using our setup, we will use a plant model that has a similar structure to the actual
plant. We will use the randomly perturbed plant model:

—-0.7126

~ | =05395 1.7990
—0.4972

15

plant state (h=0.5 se

ec)

plant state (h=1.5 s

A
]

0.3030
0.0096

i i H
15 20 25 30
time



Luis A. Montestruque and Panos J. Antsaklis, "Model-Based Networked Control Systems - Stability," ISIS
Technical Report I1SIS-2002-001, January 2002.

This plant model gives a test matrix M maximum eigenvalue magnitude of 0.7986 for an
update time of h=1 which was our actual boundary for our previous example. The system
response is pictured below.

15 ! !

1 sec)

plant state (h

i i
0 5 10 15 20 25 30
time

Comparing this response with the one obtained with an update time of 0.5 seconds, we
only see a dlight degradation of performance: the settling time has been increased from 7
seconds to approximately 16 seconds. This has been obtained even though the plant
model barely resembles the original plant and that the update time has been increased in
50%.

5. CHARACTERIZATION OF THE EIGENVALUES IN THE TEST MATRIX M

It is of interest to study the eigenvalues of the networked control system matrix

| O | O
M {O O}e“‘ {O O} and express them, if possible, in terms of h and the error in the

plant model AandB. To do so, we first apply a transformation to the matrix A to obtain
adiagonal matrix that will facilitate the computation of the exponential part.

) |l O
We choose the transformation P = L } with inverse P = L | } Applying this

transformation over A we obtain:
_ o | 0 | A+BK - BK | 0 A BK
A=PAP ™ = ~ ~ A~ = n A
I -1 | A+BK A-BK ||l -—=I 0 A+BK

16
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Using this transformation we obtain:
le OeAhI 0=| Op—lethl O=I Oexﬂ 0
00 0 0| |[0OO 0 0| |[0OO Il O

The matrix exponential e may be found directly or by considering a Laplace transform
based approach. For the latter approach we will change the variable h to t.

o=y o) oo okl o

| O} (s -A)" (s -A'BK(sl —(A+BK))? {I o}

00 0 (sl —(A+BK))™* | 0
= (s - A"+ (sl - AT BK (sl - (A+ BK))™ o}
0 0

Note that only the upper left block contains the critical eigenvalues. Using inverse
Laplace transform:

L (sl — A +(sl — A)'BK (sl — (A+ BK))
=LY (sl - A +BK (sl — A-BK) ™)}
=L (sl - Al — A— BK + BK)(sl - A—BK)™}
=LH(s = A (s - A+ A+ BK)(sl — A- BK)™}
=LY (1 +(s — A A+ BK))(sl - A—BK)™}
=LY(s - A-BK) " +(sl - A} (A+BK)(sl - A-BK) Y}
_ e(ABK)L eAtJ‘;e—Ar (A_'_ é‘K)e(AH%K)rdT
That is the eigenvalues in question are exactly the eigenvalues of:
e(A+éK)h e J‘Oh e—Ar("&_i_ é‘K)e(A+éK)rdz_

In view of Theorem #2 the following lemma has been proved:

LEMMA #1
The system described by (1) is globally exponentially stable around the solution

x] [0] . . - ~ o
Z{J{J iff the eigenvalues of I=e‘A*BK)"+eA"I0he‘A’(A+BK)e‘A*BK)Tdrare

strictly inside the unit circle.

One can gain a better insight of the system by observing the structure of 1. To start with,
we observe that the eigenvalues of the compensated model appear in the first term of 1. In

" AR B (A+BK)z .
that sense we can see theterm D=¢ Ioe (A+BK)e dr as a perturbation over
the desired eigenvalues. Even if the eigenvalues of the origina plant were unstable the
17
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perturbation D can be made small enough by having h and A+ BK small and thus
minimize their impact over the eigenvalues of the compensated plant. We also observe
that if the update time h is driven to zero, then D=0. Also it is possible to make D=0 by
having a model that is exact. This agrees with the intuition that if the model has exactly
the same dynamics as the plant then the system will have the desired behavior regardless
of how long is the update time h.

5.1 FIRST-ORDER PLANTS

If the plant is of first order then the integral expression in | can be evauated.
Furthermore, 1 will have the value of the eigenvalue to be checked. Evauating | we
obtain:

| = g(ABON | gn Ioh e " (A+BK)eA gz

— g(ABON eAh(ZH_ 'B‘K)J‘Ohe—Are(A+éK)rdz_

= AN 1 M (A4 BK)(e Mg EON _1) /(A+ BK — A)

= e MBI 4 (A+ BK)(e BN ™) /(A+ BK - A)

=M (1 (A+BK)/(A+ BK — A))—e™(A+ BK)/(A+ BK — A)
= eABON (11 (A+ BK)/(A+ BK — A))— e (A+BK)/(A+BK — A)
= ™ (1+ BK /(A + BK — BK))—e*B9" (BK /(A+ BK — BK))
=e™F(BK, A+ BK)—e*B"G(BK, A+ BK)

We can think of the functions F and G as weighting functions. Note that they depend on
the variable A+ BK . We observe that if A+BK =0 then F(BK,0)=0 and G(BK,0)=-1.
This will result in | =" which reflect the eigenvalues of the model. We also note
that in general if A+ BK << BK then F(BK,A+ BK)=0 and G(BK, A+ BK) = -1.

The last thing to ensure for the eigenvalues of the origina uncompensated plant to vanish
isthat the update time h is small enough so that it doesn’t surpass the attenuation

provided by F. In general, h should be chosen to be such that e*" is smalll.

Thefact that F and G depend on A+ BK smplifies the analysis of I. Given ah, | can be
plotted as a function of only A+ BK . Surfaces can be generated if h is also considered.

5.2 EXAMPLE OF A FIRST ORDER PLANT

We will now present an example for the behavior of the magnitude of the largest
eigenvalue of the test matrix. Consider the first order plant: x=x+u. Thus the state
space description is A=1, B=1. This a clearly unstable plant that we will stabilize using

astate gain K=-2.

18
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We now plot the magnituge of the largest eigenvalue using an update time h=1 as a
function of the difference A+ BK between the compensated plant and the compensated
model.

First Order Plant with h=1
3 T T T T

max(abs{eig(M)))

| | I |
1 2 3 4 5
Abar+Bbar*k

N
' : +
a -

We see that the system will be stable if A+BK is approximately between —1.25 and 1.
We also see that zero magnitude eigenvalues are achievable.

We now plot the surface corresponding to the magnitude of the eigenvalues of the test
matrix as a function of A+ BK and the update time h.

First Order Plant eigenvalues

Eigenvalues

Abar+Bbar*K
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6. OUTPUT FEEDBACK PLANTS

We have been considering only plants where the full state vector is available at the
output. We now extend our approach to include plants where the state is not directly
measurable. In this case, in order to obtain an estimate of the plant state vector, a state
observer is used. It is assumed that the state observer is collocated with the sensor. Again,

we use the plant model, x= Ax+Bu, to design the state observer. See Figure 2.

Plart State Obzerver

el QOGP Y
Y=CxepU [ SALCIXHE-LD L]M

X

update

Contraller

Figure 2.

Having the sensor carry the computational load of an observer is justified by the fact that
typically sensors that can be connected to a network have an embedded processor inside.
This processor is usudly in charge of performing the sampling, filtering and
implementing the network layer services required to connect to the network. Ishii and
Francis give a similar justification in [15]. In their approach an observer is placed at the
output of the plant to reconstruct the state vector. The result is then quantized and sent
over the network to the controller.

The observer has as inputs the output and input of the plant. To acquire the input of the
plant, which is a the other side of the communication link, the observer can have a
version of the model and controller. In this way, the output of the controller, that is the
input of the plant, can be simultaneously and continuously generated at both ends of the
feedback path with the only requirement that the observer makes sure that model has
been updated. This last requirement ensures that both the controller and the observer are
synchronized. Handshaking provided by most network protocols can be used.
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The observer has the form of a Lurenberg observer with gain L. It makes use of the plant
model:

X = A%+ Bu
y=C%+Du
In summary, the system dynamic equations are:

Plant :
X = Ax+ Bu
y=Cx+Du

Controller :
u=KX

Observer :
. - - A oA u
x:(A—LCﬁu{B—LD L{ }
y
fortelt,,t..,)

(14)

We now proceed in a similar way as in the previous case of full feedback. Namely, there
will be an update interval h, after which the observer updates the controller’s model state

X with its estimate X . We will also define an error e that will be the difference between
the controller’s model state and the observer’s estimate; e= X — X.

It isclear that at times t, , where t, —t,_, =h, the error e will be equal to zero.

oft) = {m)_m) te (t ,tm)}

0 t=t,
(15)
Also we will define the modeling error matrices in the same way as before:
A=A-A
B=B-B
C=c-C
D=D-D
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Now for te [t,,t,.,), we have that:

u=KX
So we have:
X = Ax+ BKX
%= (A+ BK)X
A A s KX
x=(A—LC)x+[B—LD L .
Cx+ DKX
X
—[Llc Bk+LDK A-LE|x
X

with initial conditions X(t, ) = X(t, ) . Using the same approach as before, we express the
system dynamics in terms of the states that will not change on the update times.

Then the dynamics of the overall systemfor te[t,,t,.,) can bedescribed by

X A BK - BK X
X|=|LC A-LC+BK+LDK —-BK-LDK |X
el |LC LDK - LC A-LDK |e
te[t,t.,), witht,, —t, =h
x(t) || x(t)
and| X(t,) |=| X(t) |
e(ty) 0
(16)
X A BK -BK
Define z=| x|, and A=|LC A-LC+BK+LDK —BK—LDK [so that (16) can be
e LC LDK —LC A-LDK
represented by z= Azfor te[t,,t,.,).
THEOREM #3
The system with dynamics described by (16) with initial conditions
X(t,)
z(t,) =| X(t,) | = z,, t, =0,, hasthe following response:
0
1 0 0] [I 0 0])
z(t)=e*"| |0 | 00 I 0]||z
0 0O 0 0O

te [t tg), with t,, -, =h
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The proof for this theorem is analogous to that of Theorem #1. See Appendix B. We will
present now the necessary and sufficient conditions for this system to be exponentially
stable at large (or globally).

THEOREM #4

The system described by (16) is globally exponentially stable around the solution

X 0 |l 0 O Il 0 O

z=|X|=|0] if and only if the eigenvaluesof [0 | 0|0 | O |areinsidethe unit
e 0 0 0O 00O

circle.

Again the proof for this theorem is almost identical to the one for theorem #2. Even

easier to visualize the similarity isto group the plant state and the state estimator state

. . X .

into one single state X = {_} and use the same techniques used for theorems #1 and #2.
X

The complete proof is presented in Appendix C.

6.1 EXAMPLE OF OUTPUT FEEDBACK SY STEM

We now present an example using a double integrator as the plant. Thisis the same plant
used in the full state feedback example. The plant dynamics are given by:

A{O 1};B={O}C=[l 0}D=0

00 1
We will use the state feedback controller K =[-1 —2]. This controller if used with the
. o : : _ 20 | .
plant will place its eigenvalues at —1. Now a state estimator with gain L = LOO} is used

to place the state observer eigenvalues at —10. The model used is a perturbation of the
original plant:

~ [ 00958 1.0604 ] ~ [-0.0518] - ~
B= :C=[0.9734 -0.0137} D =-0.0396
—0.0066 —0.0134 1.0269
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We now plot the magnitude of the largest eigenvalue for the test matrix versus the update
time:

1.6 T

1.4+ : o

max eigenvalue magnitude

0.2 : L
0

update times h

Figure 3.
Stahility is observed for an update time up to 12 seconds.

A simulation of the system with an update time of 1 second, aninitia state of the plant at
[1 1], and zero initial conditions for the estimator and controller’s state is shown below.
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The updates are noticeable in the plant model state at times 1, 2, and 3 seconds.

=1 sec)
N

plant state (h

estimator state

plant-model state

w

10

Figure 4.

6.2. CHARACTERIZATION OF THE EIGENVALUES OF THE TEST MATRIX M

Here we characterize the nature of the test matrix for the case of output feedback
networked control. We will do this is a similar fashion as for the full state feedback
networked control. The system dynamics are given by:

X = AX+ BKX
%= (A+BK)%
X
x=|Lc BK+LDK A-LG|%
X

A common assumption is that the D matrix is zero, we will further assume that D=0.
We can now arrange the states in a vector to get a compact representation:

X A 0 BK X X
X|=|LC A-LC BK |x|=A|lx
X 0 0 A+BK|x X
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This representation has the advantage to have a block triangular structure. Additionally,
we note that

The test matrix M can now be represented in terms of A :

1 o Ot o o] [ 0o oI 0O
M=01 001 0l™O 1 0|01 O
00 00 I I 01 —-1|{000O0
1 o 0] [I1 00O
=0 1 ole™o I o
000 |01 0

We will now replace the h by t and use the Laplace transform to facilitate the
manipulation of the test matrix.

L{eXt} —

(sl - A" 0 (sl — A)*BK(s - A-BK ]

_| (g -A+LE) Le - A (8- AsLd)? (s - A+LE) " LC(sl — A BK(s —A—_léK)

+(9 —A+LC) BK (g - A-BK]
0 0 (¢ -A-Bk]"

Now we can compute the Laplace transform of the test matrix:

L{M} =

_ (s-A)" (sl - A)*BK(s - A-BK]" 0|

(3 - A+ L) Lo - A (s - A+ LE)" +(sl - A+ LE)"Le(sl - A *BK (sl - A—BK ] .
+ (sl - A+ LCA:)fl éK(sI - A- IEA%K)*l

We can now extract the part of the test matrix M that could have eigenvalues inside the
unit circle. We will call this new test matrix N.

N =
(sl — A)? (sl — A)*BK (s — A- BK )"
(8~ A+LE) + (9 —A+LE) LC(s - A)'BK (o —A-BK |

-1

+(s - A+LE)"BK (sl - A—BK)

=L" ~ ~A\-1
(8 - A+LE) Le(s - A)?
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We will apply a linear transformation to the matrix N that will let us examine its structure

te vl T

Doing this and some further manipulation we obtain
- Ll{[(sl ~A-BK)'+e (3 -A)BK(g - A-BK )l]}
£, (Sl - A+ LCAI)_l +&,
with
g = (s — AH(A+BK)(sl - A-BK)™
£,=(sl - A+ LC)*(BK - (A- LC)sl - A)"BK (sl - A BK)™
£,=(s — A+ LC) (A-LC+BK —(A—LC)sl - A)*(A+BK |8l - A— BK)™*

It is clear that if A—0, B—0,andC —0 then & —0 6 —>0andeg; —0. These

matrices &, &,, and &, can be considered as disturbances over the standard controller-
-1

8 -A-Bk)" (s-A)tBK(9 -A-BK]"|

observer characteristic matrix N 1
0 (s - A+LE)

7. THE DISCRETE TIME DOMAIN

So far we have applied our results to continuous plants. We will extend our results to
discrete time plants of the form:

x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

There are some few assumptions we need to make before we carry our results over to the
discrete time domain. In order to have appropriate updates from the sensor side to the
actuator side we must ensure that both are synchronized in the sense that both will carry
out their respective tasks at the same time tic. Moreover updates will be carried over at
some of those time instants. In this case that the update interval h will be an integer
number, representing after how many clock tics will the actuator’s model be updated.
This means that the sensor only will need to send the state or output information once
every h samples.

We will now present the corresponding theorems for the discrete systems with state
observer and without state observer.
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Lets consider the following equations:

Plant :
x(n+1) = Ax(n)+ Bu(n)
y(n) = Cx(n) + Du(n)
Model :
%(n+1) = AX(n) + Bu(n)
y(n) = CX(n) + Du(n)
Controller :
u(n) = KX(n)
Observer :

x(n+1) = (A-LE)X(N) + [B- LD L{“(n)}

y(n)
forne[n,,n.,), with n,—n, =h
(17)

The procedure is quite similar to the one used for the continuous case. We must only note
that the update interval h is an integer. We now present the results for the full state
feedback case.

7.1 FULL STATE FEEDBACK

The approach is exactly the same that the one used for continuous plants. The results
carry over with a dight difference in the test matrix. Is in this difference where the
discrete nature of the plant is made evident. The dynamics of the overall system for
ne[n,,n,,,) canbe described by

{x(n+1)}_ A+BK —-BK {x(n)}
e(n+1) | | A+BK A-BK | &n)
nen.n.), n-ng=h
ande(n) =0.
(18)
. X A+BK -BK
Define z=| |, and A=| - - . - |so tha (18) can be represented by
e A+BK A-BK

z(n+1) = Az(n) for ne[n,,n..,).
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THEOREM #5

The system described by (18) with initial conditions z(no){x(g")}:zo, has the

L [[10]10 ‘
2= {oo} {oo} %

ne [N, Ney), N =Ny =h

following response:

We note that the only difference between this theorem and the continuous version is in
the transition matrix used for the dynamics of the system in between updates. For the
proof see Appendix D.

We now introduce an exponential global stability definition for the case of discrete
plants. This definition is very similar to the one for the continuous case.

DEFINITION #2

The equilibrium z=0 of a system described by z= f(t,z) with initial condition
z(n,) = z, is exponentially stable at large (or globally) if there exists & >0 and for any
B >0, there exists k() >0 such that the solution

lo(nune. 2| k(B ze "™, ¥nzn,
whenever |z, < S.

With this definition of stability we scan now state the corresponding necessary and
sufficient conditions for the exponential global stability of the system described by (18).
Again the norm used here is the 2-norm but any other consistent norm can aso be used.

THEOREM #6

The system described by (18) is globally exponentially stable around the solution

0 1 0 1 0 .
zZ= X< if and only if the eigenvalues of A" areinside the unit circle.
e| |0 00 00

The proof for this theorem is shown in Appendix E. We now present the equivalent
theorems for the case with a state observer at the sensor side.

7.2 OUTPUT FEEDBACK

It not aways possible to measure directly the plant state vector. So, as with the
continuous plant case, we extend the previous result to include a Lurenberg state observer
at the output of the plant. This observer will sample, estimate and send the state estimate
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every h samples. The dynamics of the overal system for ne[n,,n,,;) can be described
by

x(n+1) A BK -BK x(n)
X(n+1) |=| LC A-LC+BK+LDK -BK —LDK | X(n)
e(n+1) | |LC LDK — LC A-LDK | e(n)
ne[n,,n,;), withn,,—n,=h
ande(n,) =0.
(19)
X A BK ~BK
Define z=|X|,and A=|LC A-LC+BK+LDK -BK -LDK | so that (19) can be
e LC LDK — LC A-LDK

represented by z(n+1) = Az(n) for ne [n,,n,,,) .

THEOREM #7

The system with dynamics described by (19) with initial conditions

x(ny)
z(n,) =| X(n,) | = z,, has the following response:
0
I 0 0] [1 o o]
zZn)=A"™[|0 | OA"0 I 0]| gz
0 0O 0 0O

ne[n,neq), with n; —n =h

Proof provided in Appendix F.

THEOREM #8

The system described by (19) is globally exponentially stable around the solution

X 0 |l 0 O |l 0 O

z=|X|=|0] if and only if the eigenvaluesof |0 | O[A"|0 | O areinside the unit
e 0 00O 0 0O

circle.

The proof for Theorem #8 is provided in Appendix G.
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7.3 EXAMPLE OF FULL STATE FEEDBACK ON A DISCRETE PLANT

We will now present an example of the full state feedback setup using a double integrator
plant of the form:

11 0
x(n+1) = {0 1}x(n) + L}u(n)

With state feedback law u(n)=[-1 —2]x(n). In this case the feedback correspondsto a

deadbeat controller, in other words the non-networked plant will have its eigenvalues at
{0.0}.

We generated a plant model using a random perturbation of the original plant matrices.

. 1.3626 1.6636| .. 0.4189
X(n+1) = x(n) +

u(n)
-0.2410 1.0056 0.8578

Below is the plot the magnitude of the largest eigenvalue of the test matrix

| O | O
{0 O}A“ {O 0} . We must note that the minimum value h can take is one. This would

correspond to the case where the network delivers instantly the state of the plant at each
clock tic. With h=1 the networked control system will behave exactly as the non-
networked control system since every the model will follow the plant dynamics. This is
because the sensor will update the model at every sampling time. It would be the
equivalent of having h=0 for the continuous plant case.

45 T T T T

4L : *
35 : 5 * B

3k : % : 4

max eigenvalue magnitude

0 1 1 1 I 1 1 1 1
2 3 4 5 6 7 8 9 10
update times h

Figure 5.
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From the graph it can be seen that the maximum value for h is 4. For h>5 the NCS has
eigenvalues with magnitude larger than one and therefore will be unstable.

Now we show a plot of the response of the system with different values of update times
h. We selected the values of h=3 samples and 5 samples to show the case of a stable and
an unstable NCS.

3 samples)

plant state (h

06 T T

04r .

021 B

(=]
I

plant-mocdel state error

0.4 I | | 1 | | | |
0 5 10 15 20 25 30 35 40 45

samples

o
<

=5 samples)
[

T

Il

plant state (h

.50 I 1 I I 1 I I
0

plant-model state error

I
5 10 15 20 25 30 35 40
samples

Figure 6.
32



Luis A. Montestruque and Panos J. Antsaklis, "Model-Based Networked Control Systems - Stability," ISIS
Technical Report I1SIS-2002-001, January 2002.

8. NETWORK DELAYS

Previously we assumed that the network delays were negligible. This is usually true for
plants with slow dynamics and networks with relatively big bandwidth. When this is not
the case the network delay cannot be neglected. Network delays can occur for many
reasons. There are three important delay sources:

e Processing time.

e Mediaaccess contention.

e Propagation and transmission time.

The first one, processing time, occurs on both ends of the communication channel. On the
transmitter, the processing time is the time elapsed between the transmitting process
makes the request to the operating system to transmit a message, and when the message is
ready to be sent. And in the receiver this is the time interval that occurs between the last
bit of the message is received by the receiver, and when the message is delivered by the
operative system to the receiver process.

The media access contention time is the time the transmitter has to wait until the
communication channel is not busy. This usualy the case when several transmitters have
to share the same media

The propagation and transmission time is the time the message takes to be placed on the
network media and to travel through the network to reach the receiver. In local area
networks the time the message takes to travel or propagate through the media is small in
comparison to wide area networks or internetworks like the Internet. The time the
message takes to be placed on the network depends on the size of the message and the
baud rate.

If the control network is a local area network, as is common practice in industry, the
propagation and transmission time can be established forehand with good accuracy. A
similar thing occurs with the processing time. If real time operating systems are used the
processing time can be accurately calculated. Finally media access contention delay can
be fixed with the use of a communication protocol with scheduling. Fast data
communication networks like Token Ring, Token Bus, and ArcNet fall into this category.
Industry oriented control networks like Foundation Fieldbus also implements a scheduler
through its LAS or Link Active Scheduler. Even the inherently non-deterministic
Ethernet has addressed the problem of not having a specified contention time with the so-
called Switched Ethernet.

In conclusion most of these delays can be at least bounded if the network conditions are
appropriate.

Next we extend our results to include the case were transmission delay is present. We
will assume that the update time h is larger than the delay time 7. As before we will
assume that the update time h is constant. We will also assume at this time that the delay
ris constant. We will present here the case of full state feedback systems.
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S0, at times kh-7the sensor transmits the state data to the controller/actuator. This data
will arrive 7 seconds latter. So, at times kh the controller/actuator receives the state vector
value x(kh-7). The main idea is to use the plant model in the controller/actuator to
calculate the present value of the state. After this, the state approximate obtained can be
used to update the controller’s model as in previous setups. The system is depicted below.

Flatt
. Xt
N X=Ax+BU L WEE
hietwork, ,&<h
U(t) |
Madel K(kh—'ﬁ"']“
; E=H{+§U 5 fdate PerSEi?tmn
X(kh) |
L X X=AX+BU
K. bemony
Contraller *
Figure 7.

The Propagation Unit uses the plant model and the past values of the control input u(t) to
calculate an estimate of actual state X(kh) from the received data x(kh-17). This estimate is
then used to update the model that with the controller will generate the control signal for
the plant.
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The system is then described by the following equations:

Plant :
X= AX+ Bu
Modd :
%= AX+Bu
Controller:
u=Kx
te [tk’tk+1)
Propagation Unit :
X = AX+ Bu
te [tk+l _T’tk+l]
Updatelaw :
at=t,,, —7: XX
at=t,, XX

(20)

To ease the analysis, we initialize the propagation unit at time t.,- 7 with the state vector
that the sensor obtains. We then run the plant, model, and propagation unit together until
t.1. At this time, the model is updated with the propagation unit state vector, as described
in the update law of (20). This is equivalent to have the propagation unit receive the state
vector X(t.1-7) at t..; and propagate it instantaneously to ty..

We define the errors €= X— X and € = x— X. We also make the following definitions:
A+BK -BK -BK

A=|A+BK A-BK -BK

0 0 A

M X
>

[l

d
>
(99 R]

Il

09)

|

o>

D>
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With these definitions we proceed to present the system described by (20) in a compact
form. The dynamics of the overall systemfor te[t,,t,.,) can bedescribed by

X(t)
2(t) = Az(t), z(t)=| e(t) | teltot,,—7),
0

X((tk+1 _T)_)
2(t) = Az(t), z(t,,,—7)= 0 , o telt—7ta),

&t —7) )+ &(ta - 7))
witht,, —t, =h, O<z<h,

(21)
THEOREM #9

The system described by (21) is globally exponentially stable around the solution

X 0 Il 0 O I 0 O
z=|¢&|=|0] if and only if the eigenvaluesof |0 | 0le*|0 0 0" areinside
e 0 0 0O o I 1

the unit circle.

The proof for Theorem #9 is provided in Appendix H.

9. CONCLUSIONS

The presented setup represents a natural way of placing critical information about the
plant on the network so to reduce the data traffic load. By making the sensor and actuator
more “intelligent” the NCS is able to predict the future behavior of the plant, and send the
precise information at critical times so to ensure the plant stability. The presence of
computational load at any end of the feedback path is not considered a limitation of the
applicability of the presented setups given the advances in microcomputing. Most of the
sensors and actuators available in the market have a microcontroller embedded that is in
charge of a number of tasks. For our case it is clear that at least they should implement
network services. So it seams reasonable to have them perform these computationally
inexpensive operations like a state observer or a state feedback simulation.

Easy to verify and/or enforce conditions are derived here as a result of the simplicity of
the setup. The systems placed at the sensor and actuator/controller can be seen as having
the effect of reducing the sampling rate for maintaining the system stable. This is very
clear in the case of the discrete plant where the controller only needs to receive 1 sample
every h samples the sensor has available to transmit.
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Another extension would be the one in which the update time can vary with time. Time
varying matrix stability tests can be performed over the test matrix. But, given the specia
structure of these matrices, simple and direct conditions should be obtained.

Performance is of main concern also. The techniques used in this report are very similar
to the ones known as lifting operators [9, 12, 13]. It can be shown that plant induced
norms are invariant under these lifting operators. The resulting system is very similar to a
digital plant and therefore allows the use of well known techniques to ensure system
performance. H_ and H, control optimization can be used to obtain optimal controllers
and observer gains.
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APPENDIX A

The plant is given by:

01 0
A= B=
0 0 1
The state feedback controller givenby u=Kxwith K =[-1  -2].

We will obtain now the MATI (Maximum Allowable Transfer Interval) according to the
result in [4] by Walsh et al. To do so we will make the state of the plant available to be
transmitted over the network and the dynamic controller to behave as a state feedback
controller with gain K. The plant will then be given by:

sofo ol s ]

X, =AX,+Bu, y=C x,
The controller is described by:
-1 0
Ay )
with dynamics described by:
X, =AX+BY, u =C X, - Dpy
where y isthe latest information of the plant acquired by controller through the network.

with dynamics given by:

Bc{g g]cf[o 0D, =1 2]

For the case where there is a single sensor node operating, the result in [4] claims that if
the MATI h satisfies:

< minl N2 1 1
! { 1A "8 Al 4 +1) 16| 22y 2 e 2 +1)}

where

A{Au Au}
An Ay

a [ BDC, BC.

T -BC, |
_|B,D,

Au—_ B, |

A.=lc,A -c BDC, C,B.C.]

A, =C,B,D,,

ﬂl = /,i’min(P)’/’i’Z = ;i’ma((P)! A&T1P+ PAil =—I
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then the networked control system is globally asymptotically stable.
For the plant previously presented this results in:

h < 2.1304E-4 seconds.

APPENDIX B
Proof of Theorem #3.

Ontheinterval te[t,,t,.,), the systemresponseis

X(t) | X(t,)
2(t) = | X(t) | =" x(t,) | =" z(t,)
e(t) | 0
(B2)
x(t)
Now, note that at times t,, z(t,)=| X(t,) |, thet is, the error e(t) is reset to zero. We can
0
represent this by
| 00
z(t)=|0 | 0O|zt,)
0 00O

Using (B2) to calculate z(t, ) we obtain
| 0O

z(t)=|0 1 0le™z({t,,)
0 0O
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Xo
In view of (B2) we havethat if at time t=t,, z(t,) =2z, =| X, | iStheinitial condition then
0
z(t) =e* W z(t,)
1 0 0]
=e*%0 1 oleMz(t,)
00 0
1 0 0] [I 0 O]
=e*%0 1 ole™o I ole™zt,,)
000 |00 O]
1 0 0] [I 0 O] I 0 O
=e*%0 1 ole™o I oMo I 0zt
000 (000 |[000O
I 0o 0] )
_eMl g | oleth Z,
00O
(B3)
Il 00 M, M, N,
Now we know that [0 | Ole" is of the foom [M;, M, N,|and so
00O 0 0O O

k

! O O M 1 M 2 ‘ Pl
0 | 0/e"| hastheform || v P, | | - Additionally we note the
000

3 M 4
[0 0] 0
Xo
special form of theinitial condition z(t,) = z, =| X, | S0 that
0
k
1 00 Xo M, M, [x] [0
01 0 ™||X|= M, M,||X%, 0
000 0 [0 0 0
M, M,T [o][%] ([* 0 0] [1 0 o\Tx
=L\/|3 Mj {0} X =10 | oMo I o X,
[0 0] 0|0 0 00 |00 O0]jJ|O

(B4)
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Inview (B4) it is clear that we can represent the system response as.
| 0 O |l 0 O
z(t)=e*"% 10 | oleMo I 0ff z
0O 0 O 0O 0 O
te [t t,) with t ., -t =h

APPENDIX C

Proof of Theorem #4.
Sufficiency.

Taking the norm of the solution described as in Theorem #3:

1 0 0] [1 oo 1 0 0] [1 oo
Jz0)|=[e* |0 1 00 1 0] z[<|e*¥[{[[o 1 0™ o0 I Of|]||z]
000 (000 000 (000
(C7)
Now lets analyze the first term on the right hand side of (C7):
— 2 — —
e* <1+ (t—t)a(A)+ L2 ;k) F(A)2...= W) <P —
(C8)

where o(A) is the largest singular value of A. In genera this term can always be
bounded since the time difference t—t,is aways smaller than h. In other words even

when A has eigenvalues with positive real part, ”e"“‘tk)

can only grow a certain amount.
This growth is completely independent of k.

| 00 | 00
We now study theterm || |O | 0™ 0 | 0Of]||. It is clear that this term will be
0 0O 00O
| 00 | 00
bounded if and only if the eigenvalues of |0 | 0e*| 0 | 0] lie inside the unit
00O 0 0O

circle;
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I 00 | 0 O
0O 1 0/e™0 I 0] [<Ke™
0 0O 00O
(C9)
with K,, o, >0.
Since k is afunction of time we can bound the right term of (C9) in terms of t:
Pt @ o
K,e™ <K,e " =K,ehe" =K,e*
(C10)
with K;,ar>0.
So from (C7) using (C8) and (C10) we can conclude:
I 0 0] [I 0 0]
|z =[e*“*| |0 1 0l 0 I 0f|z|<K, K™ |z
00O 00O
(C11)

Necessity.

We will now proof the necessity part of the theorem by contradiction. Assume the system
| 0 O | 0 O

described by (16) is stable and that |0 | 0[e™|0 | 0|has at least one eigenvalue
00O 0 0O

outside the unit circle. Since the system is stable, a periodic sample of the response
should be stable as well. In other words the sequence product of a periodic sample of the

response should converge to zero with time. We will take the sample at times t,,, in
other words, just before the update. Even further we will concentrate on the combined
state of the plant x(t,,,) and observer X(t,.,), which are the first two elements of z(t, ,) .

We will call {)_((tk_ﬂ)] E(K) .
k+1
Now assume e** has the following form:

Wi(7) Wy(7) X(7)
e’ = W;(7) W,(7) X,(7)
Yi(@) Yo(r)  Z(7)
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For simplicity, lets make the following definitions:
Wi (7) Wz(T):|, X(7) {Xl(f)

W(7) = { X, (7)

W;(7) W, (7) } Y(@)=Y.(2) Y,(2)]

Then we can express the solution z(t) as:

k

| 0 0] [I 00O
et lo | oMo I 0] z
000 |000O
o 0
_[wi(t-t) X(t—tk)} (W(h))" {o .

0
Y-t W) 0

Wt -t )W (h))" ﬂ ,

(C12)
Now lets check the values of the solution at times t, ,, . That isjust before the update.

0 0
W(h)W(h)" LJZO: W(h)** {o}

2(t,,,) = Z,
Y(hWw(h)* o Y(hWw(h)* 0
(C13)
|l 0 O |l 0 O
Wealsoknowthat |O | 0O |e*"|0 | 0| hasatleast one eigenvalue outside
0O 0 O 0O 0 O

the unit circle, which means that those unstable eigenvalues must be in W(h). This
means that the first two elements of z(t.,,), which we call &(k), will in general grow
with k. In other words we can’'t ensure £(k) will converge to zero for genera initial
conditions X,, X, .

X(t I:+l)
X(t I:+l)

this clearly means the system cannot be stable, and thus we have a contradiction.

:||f<k>||=Ho~<h»k+{;j“% o ke
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APPENDIX D

Proof of Theorem #5.

Ontheinterval ne[n,,n,,,), the systemresponseis

_ X(n) n—ny X(nk) AN
z(n)_L(nJ A {O }_A z(n,)

(D2)
x(n
Now, note that at times n,, z(n,) = {O( ")} , that is, the error e(n) isreset to zero. We can
represent this by
1 0|
z(n,) = {0 0:|Z(nk)

Here z(n,) is the value assumed by z(n) when n=n, using (D2) for the interval
ne[n,,n,) . Using thisvalue of z(n,)we obtain:

| 0
Z(nk) = {0 O}Ah Z(nk—l)
In view of (D2) we have that if a time n=n,, z(n,) =z, {30} is the initial condition
then
z(n) = A" ™ z(n, )
n-n, _I O_
=A k_o O_Ahz(nk_l)
10 | 0
= A" A" A'z(n
0 0] {o o} (M)
1 o] [I O | 0
= A" A" A" A"z(n, )
0 0] |0 O/ [0O
_An—nk I O Ah ‘
B 00 %

(D3)
1 0

| 0 M N
Now we know that A" is of the form and so
00 0o 00

k
}A“j has the form

K
L’;ﬂ OP} Additionaly we note the special form of the initid

conditionz(ny) = z, = BO} o that
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[aoe 6oL el faa) 2]

(D4)
Inview (D4) it is clear that we can represent the system response as.
k
| O I 0

z(n) = A"™ A" z

o= [oofool) =

ne [ng,n,,), with n., —n =h
(D5)
.

APPENDIX E

Proof of Theorem #6.
Sufficiency.

Taking the norm of the solution described as in Theorem #5:
n-ny

HZ(n)H=A””ﬂg 8}& ngzo <[a @) 8}& SD []

Now lets analyze the first term on the right hand side of (E7):

A< (@)™ <(@(A)" =K,

(E8)
where &(A) is the largest singular value of A. In genera this term can always be
bounded since the time difference n—n, is always smaller than h. In other words even

when A has eigenvalues with positive rea part, |A™™

can only grow a certain amount.
This growth is completely independent of k.

k
| O | O
We now study the term @ }A{ D . It is clear that this term will be bounded if

00 00

1 0] .[10]
and only if the eigenvalues of {0 O}A“ {O 0 lieinside the unit circle:
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1 o] [1o])f o
A <K, e*®
00| |00
(E9)
with K,, o, >0.
Since k is a function of time we can bound the right term of (E9) in terms of n:
gL @ o
K,e™ <K,e " =K,ehe" =K,e™
(E10)
with K;,ar>0.
So from (E7) using (E8) and (E10) we can conclude:
=[O} <k, ke 12
0 0] |0 O
(E11)

Necessity.
We will now proof the necessity part of the theorem by contradiction. Assume the system

| O 1 0
described by (18) is stable and that {0 O}Ah {0 0} has at least one eigenvalue outside the

unit circle. Since the system is stable, a periodic sample of the response should be stable
as well. In other words the sequence product of a periodic sample of the response should
converge to zero with time. We will take the sample at times n, ., in other words, just at

the update. Even further we will concentrate on a specific term: the state of the
plant x(n,,,) , which isthe first element of z(n,,,). Wewill call x(n, ), (k+1).

Now assume A’ has the following form:

Al {W(_j) X(_j)}
Y(i)  Z(j)

Then we can express the solution z(n,,,) as.

]! O]t O ‘
AE
_[wn-n) X(n-n)T w(hy* o
“LY(n-n) Z(n-n)| o0 0|”

_[W(n-n)w(h)" o),
L Y(n-n)W(h)* 0]

vne[n,n,).

(E12)
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Now lets check the values of the solution at times n, , , that is the update time. We know
that at thistime the error is canceled by the update, and therefore:
I 0__W(h)(\N(h))k ol O W(h)“* o
Z(nk+l) = K = Z,
0 0] Y(hW(h)“ 0]0 O 0 0
(E13)

1 0] .[10 L
We aso know that {0 O}Ah 00} has at least one eigenvalue outside the unit circle,

which means that those unstable eigenvalues must be in W(h) . This means that the first
element of z(n,,,), which we call &(k+1), will in genera grow with k. In other words
we can't ensure £(k+1) will converge to zero for general initial condition X, .

x| =€+ D] = [V 50 as ke

this clearly means the system cannot be stable, and thus we have a contradiction.

.
APPENDIX F
Proof of Theorem #7.
Ontheinterva ne[n,,n,,,), the systemresponseis
x(n) x(n,)
z(n)=| X(n) |[=A""™| X(n,) [=A""™z(n,)
e(n) 0
(F2)
x(n,)
Now, note that at times n,, z(n,) =| X(n,) |, that is, the error e(n) isreset to zero. We can
0
represent this by
| 0O
z(n)=|0 1 0(z(n)
0 0O

Here z(n,) is the value assumed by z(n) when n=n, using (F2) for the interval
ne[n,,n.).Using thisvalue of z(n,)we obtain:
| 0 O
zin)=(0 | O|A"z(n_,)
00O
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Xo
In view of (F2) we have that if at time n=n,, z(n,)=2z,=|X, | is the initial condition
0
then
z(n)=A""z(n,)
1 0 O]
=A"™0 | 0|A"z(n)
0 0 0]
1 0 0] [I 0 O]
=A"™0 | OA"|0 I O0|A"z(n_,)
0 0 0] [0 0 O]
1 0 0] [I 0O | 0 O
=A"™0 | O[A"|0 I O|A"0 I 0|A"Z(n_,)
0 00 OO0OO |[0OO00O
1 0 0] )
=A"™ 0 | 0|A"| z,
0 00O
(F3)
| 00 M, M, N,
Now we know that |0 | O|A" is of the form |M, M, N,|and so
0 00O 0O 0 O
I O O k M 1 M 2 ‘ Pl
0O I o0A" has the form {Ms Mj {pj . Additionally we
0O 0 O [0 0] 0
Xo
note the special form of theinitial conditionz(n,) = z, =| X, | so that
0
k
5 el e
OIOAh{OzMB‘M“l)_(OO
000 - [0 O 0
M, M,T [o][%] ([* 0 o] [t o o]}
ZHMS Mj {o_ X |=//0 I 0A"O I O {ﬂ
[0 0] 0|0 0 00| |00O
(F4)
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Inview (F4) it is clear that we can represent the system response as.
1 0 0] 1 o o]
zZ(n)=A""™ [0 1 OJ|A"|0O | O0Of] z
0 0O 0 00O

nen:.ne.,), with n, —n, =h

(F5)
.
APPENDIX G
Proof of Theorem #8.
Sufficiency.

Taking the norm of the solution described as in Theorem #7:

1 0 0] [I 0 0]) 1 o0l [1 oo
|z()|=|A"™ [0 1 OJA" O I O] z|<|A™™|-[I|0 I O]A" 0 I O]z
0 00 |000O 000 |00O
(G7)
Now lets analyze the first term on the right hand side of (G7):
A <(F)™™ <(F(A)" =K,
(G8)

where & (In(A)) isthe largest singular value of In(A) . In general this term can always be
bounded since the time difference n—n, is always smaller than h. In other words even

when A has eigenvalues with positive real part, |[A" ™| can only grow a certain amount.
This growth is completely independent of k.
1 0 0] [1 o o]
We now study the term || |O | O[A" O | O] . It is clear that this term will be
0 0O 0 0O

o O O

Il 0 | 0 O
bounded if and only if the eigenvalues of |0 | A"0 | 0] lie inside the unit
00 0 0O

circle;
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| 0 O | 0 O
0O 1 OA"0 | Off[<K,e™
00O 00O
(G9)
with K,, o, >0.
Since k is a function of time we can bound the right term of (G9) in terms of n:
L @ o
K,e™<K,e " =K,ehe" =K,e™
(G10)
with K,,a>0.
So from (G7) using (G8) and (G10) we can conclude:
I 0 0] [1 0 0]
|z(n)| =A™ |0 1 OA" 0 I O} z|<K;-Ke™ |z
00O 00O
(G11)

Necessity.

We will now proof the necessity part of the theorem by contradiction. Assume the system
| 0 O | 0 O

described by (19) is stable and that {0 | O|A"(0 | O |has at least one eigenvalue
0 00 |[OO0O

outside the unit circle. Since the system is stable, a periodic sample of the response
should be stable as well. In other words the sequence product of a periodic sample of the
response should converge to zero with time. We will take the sample at times n,,,, in

other words, just at the update. Even further we will concentrate on the combined state of
the plant x(n,,,) and observer X(n,,,), which are the first two elements of z(n,,).

We will call {)_((”kﬂ)] E(k+1).
X

k+1

Now assume A’ has the following form:

W) Wo(1)  X,(1)
N =W, (5) W,(J) X,())
Yi())  Yo())  Z())
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For smplicity, lets make the following definitions:

L (Wi(h) Wi () R )
W(j)= , X(])= :
W {Ws(j) wmj W {xz(n

Then we can express the solution z(n,.,) as.

}Y(j)=[Y1(J') Y, (J)]

k

1 0 0] [I 00O
A"™ 0 1 O0J|A"0 | 0]z
000 |000O

_[Wn=n) X(-n) | w(n) | .
_Y(n_nk) Z(n_nk)_ [0 0] 0

. o
W(n-n)W(h)" {0 7

L Y(n-n)W(h)* 0

vne[n,n,).

(G12)

Now lets check the values of the solution at times n, , , that isthe update time. We know
that at thistime the error is canceled by the update, and therefore:
0 olwewy H o {(\N(h))k“ m
z(n.,)=/0 1 O o0 I Ojz,= 0l|%
0 0 O Y(hW(h) ©0 |0 0 O [0 o o
(G13)
| 00 | 00
We also know that [0 | O|A"|O | O} has at least one eigenvalue outside the unit
0 00O 0 0O
circle, which means that those unstable eigenvalues must be in W(h). This means that
the first two element of z(n,,,), which we cal &(k+1), will in general grow with k. In
other words we can't ensure £(k+1) will converge to zero for general initial condition

Xo-
X(nk+l)
)_((nk+l)

this clearly means the system cannot be stable, and thus we have a contradiction.

= e+ D) =W ix oo B ke
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APPENDIX H

Proof of Theorem #9.
X

Assume the system starts at time t, with initial conditions z(t,) =| & |. On the interval
&

te[t,.t,—7), the system responseis:

X(t) X
z(t) =| &(t) [= e & |.
&t) &
Att=(t,—7)":
X((t,—7)7) X
2tL-77)=|&(t,-7)) |=e"""| & |.
&(t,—-7)7) &

According to the update law, at t=t,—7, €« O0and &« x—X=€+¢, s0:

X(t, —7) | 0O X,
2(t, -7)=|et,—-7) |=|0 0 0/e"" 7| g |.
et-7)| |0 I | &,
Continuing with the interval te [t, —7,t,)
X(t) | 0O X,
z(t)=| &(t) [= |0 0 0P| g,
&(t) oI | &,
At t=t :
X(t, ) | 0 0 Xo
z(t,)=|et, ) [=e*|0 0 0" ¢&
et,) o I | &
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Now, according to the update law, at t =t,, €« 0, so:

xt)] [t 0 0] [1 0O X,
z(t)=|&@,)|=|0 1 0le*|o 0 ole*™?| g |.
&t)| [0 o 0| [0 I | 8,

It is easy to seethat the response isin general:

x(t)] I 0 0] [I 00O “I'x,
z(t)=|&(t) [=e*"%| |0 | 00 0 07| ¢
&) | 000/ [01 1 &,
forte[t,,t..,—17)
TX(t)] | 00 1 00l I 00 “Ix,
z(t)=| &(t) |=e***l0 0 0*™?[|0 I 00 0 07| g
&) | 01 | 000 |01 1 &,
forte[t,, — 7.t )
(HI)
Il 0 O |l 0 O
It becomes evident here that if the matrix M ={0 | 0le*|0 0 0e*™? has its
0 0O o I |

eigenvalues inside the unit circle the system will be globally asymptotically stable.

Sufficiency.

Taking the norm of the solutions described in (H1):
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k

I 0 0] [I 00O
|z®)|=[e""™*|o I ole*|0 0 0" 7
000 (01 I

I 0 0] [I 00O
{0 1 ole*lo 0 0| ||z
000 [0 I

< eA (t-ty)

forte[t,,t ., —7)

Il 0 O
||Z(t)||: eA(t—tk+1+T) 0 0O eA(h—r) 01 0 eAT 000 eA(h—T) ZO
0 0O

10 0] 1 0 0] [1 00 ‘
e/\(t—tk+1+7) O O O eA(h_T) . O I O eAT O O 0 eA(h_T) ||ZO||
000/ |01 I

IA

forte[t,,,—7.t.,,).

(H7)
Now lets analyze the first terms on the right hand side of the inequalitiesin (H7):
2
er ] <1+ (t—t ) (A)+ L2 ;k) F(A)2...= W) < gf M
(H8.2)
| 0 O
ettt g o Qler®?) S”(_:‘A(t—tmw) .HeA(h—r) :He/\(t—tmw) .C
o1 1
t—t, +17)°
S[1+(t—tk +r)5(A)+%E(A)2..}-C
— @@Wtut?)  © < @77 = K,
(H8.2)

where o (A) is the largest singular value of A. We define a new constant
Ki=max(K,,Ky).
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| 0 0 | 00
We now study theterm || |0 | 0[e**|0 0 0}e*™™ | |. It isclear that this term will
0 00O o1 I
| 00 | 00
be bounded if and only if the eigenvalues of M =|0 | 0le*|0 0 0e*"™? lie
0 00O o1 1
inside the unit circle:
k
| 00 | 00
0O | 00 0 0| [<K,g™
0 0O o1 1
(H9)
with K,,o; >0.
Since k is a function of time we can bound the right term of (H9) in terms of t:
gt @ _n
K,e™ <K,e " =K,ehe" =K,e*
(H10)
with K;,or>0.
So from (H7) using (H8.1), (H8.2), and (H10) we can conclude:
20 == Ky-Kee™ [z
(H11)

Necessity.

We will now proof the necessity part of the theorem by contradiction. Assume the system

Il 0 O |l 0 O
described by (20) and (21) is stable and that M =[0 | 0}e**|0 0 0|e*™has at
0 0O o 1 I

least one eigenvalue outside the unit circle. Since the system is stable, a periodic sample
of the response should be stable as well. In other words the sequence product of a
periodic sample of the response should converge to zero with time. We will take the

sample at times t,,, . We can express the solution z(t, ,) as:
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2(t,.,) =¢(K)

=

=eh®

o o —

o o —

o

- O O

Il 0 O I 0 O
eA(h—r) 0 I

0 0O oI |
RNGTY kz0

o0 0 0)e*™? | z

(H12)
We also know that M has at least one eigenvalue outside the unit circle. This means that

z(t,,) will in general grow with k. In other words we can’'t ensure £(k) will converge to
zero for general initial condition z,.

|zttes)] = JECKk)]| =

as koo

this clearly means the system cannot be stable, and thus we have a contradiction.
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