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Abstract

In this paper the control of a continuous linear plant where
the senser is connected to a linear controller/actuator via a
network is addressed. Both state and output feedback are
considered. The work focuses on reducing the network
usage using knowledge of the plant dynamics. Necessary
and sufficient conditions for stability are derived in terms
of the update time /, the network delay, and the parameters
of the plant and of its model. The deterioration of behavior
when either A, the delay 7 or the modeling error increase is
explicitly shown and examples are used to illustrate the
results.

1 Introduction

The use of networks as a media to interconnect the
different components in an industrial control system is
rapidly increasing. A network introduces bandwidth
restrictions. To overcome these bandwidth constraints
several approaches have been proposed. in [1] Brockett
introduces the notion of minimum attention control that
attempts to reduce the time and state feedback dependence
of the control law. This can be viewed as a tradeoff
between open loop and closed loop control.

In [8, 7}, Walsh et al introduce the notion of maximai
allowable transfer interval, MATI, to place an upper bound
on the time between transfers of information from the
sensor to the controller. In this case the controller is
designed without taking the network into account, a
desirable feature. However, serious behavior degradation
can result if the MATTI is too large and the network is slow.

Other approaches include the study of quantization effects
and algorithms over networked control systems [2, 3], and
scheduling algorithms [4].

It is clear that the reduction of bandwidth necessitated by
the communication network in a networked control system
is a major concern. This can perhaps be addressed by two
methods: the first is to reduce the number of data packet
exchanges between the sensor and the controller/actuator.
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The second method is to compress or reduce the size of the
data transferred at each transaction.

Actually deployed and popular networks in the industry
include CAN bus, PROFIBUS, DeviceNet, ControlNet,
Fieldbus Foundation, and Ethernet among others. Among
the shared characteristics are the small transport time and
big overhead (network control information included in the
packet). For example, an Ethernet frame with i byte of data
will have the same length as one with 46 bytes of data. This
means that data compression by reducing the size of the
data transmitted has negligible effects over the overall
system performance. So reducing the number of packets
transmitted brings better benefits than data compression.
This brings us again to the idea of reducing the data
transfer rate as much as possible. In this manner more
bandwidth will be available to allocate more resources
without sacrificing stability and ultimately performance of
the overall system.

We will consider the case where the controller and the
actuator are combined together into a single node. That is,
the network is between the sensor and the
controller/actuator nodes. Assuming that the coniroller and
the actuator physically coexist is reasonable since
embedded microprocessors are usually incorporated into
the actuator to process the data received by the network
and execute the commands received,
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Figure 1: Proposed configuration of a state feedback
networked control system.
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In this paper we will concentrate on characterizing the time
between information exchanges from the sensor to the
controller/actuator. In order to increase the transfer time we
will use the knowledge we have of the plant dynamics. The
plant model is used at the controller/actuator side to
recreate the plant behavior so that the sensor can delay
sending data since the model can provide an approximation
of the plant dynamics. The main idea is to perform the
feedback by updating the model’s state using the actual
state of the plant that is provided by the sensor. The rest of
the time the control action is based qn a plant model that
is incorporated in the controller/actuator and is running
open loop for a period of h seconds. The setup is shown in
Figurel. Output feedback is used in Figure 2, and state
feedback with network delays is used in Figure 3.

When all the states are available, the sensors can send this
information through the network to update the model’s
vector state, For our analysis we will assume that the
compensated model is stable and that the transportation
delay is negligible. We will assume that the frequency at
which the network updates the state in the controller is
constant.

This paper is organized as follows; in Section 2 necessary
and sufficient conditions are developed for the setup shown
in Figure 1. This is the case where the state vector is
directly measurable and sent through the network to the
controller/actuator. It is shown that the networked control
system depicted in Figure 1 is globally exponentially stable
if and only if the eigenvalues of a test matrix M are inside
the unit circle. This matrix Af depends on the plant
dynamics, the model uncertainties and the model update
time. The case of output feedback control is analyzed in
Section 3. An extension of the state feedback system in the
presence on network delays is presented in Section 4. A
numeric example is given in Section 5. Conclusions are
presented in Section 6. Note that the state feedback case
has been studied in [6}.

2 A State Feedback Networked Control System

Consider the control system of Figure 1 where plant is
given by x= A4x+Bu, the plant model by i=Av+Bu,
and the controller by « = KX,

The sensor has the full state wvector available and its

function will be to send the state information through the
network at times f,. The state emor is defined as
et} = x(ty— x(¢) , and represents the difference between the
plant state and the model state. The modeling ermor
matrices A=A-A and B=B-B represent the
difference between the plant and the model. Finally, the
update times are f , where #; —#;_, = h for all &, Since the

model state is updated at times £, e(f,)=0 for
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k=0,1,2,.... The resetting of the state error every update
time is a key element of our control system.

Now for 1e[t,t,,), we have that w=Ki so

X A BK
);c = P f with initial conditions
x 0 A+BK|x

x(t;)=x(t,). It is easy to see that the dynamics of the
overall system for t€[1,,1,,,) can be described by

{ ;c(;)] A+BK [ x(;)]
éy] | 4+BK et) |

-BK
A-BK

[x(n )] _ [x(t; )} W
e(t,) 0
Veelt, ), with t,,~t, =h
() A+BK  -BK ‘
Define z(r}= 0’ and A= T+8K A-Br so that

Equation (1) can be rewritten as Z =Azfor te [t ,¢,1).

We will now express z(f) in terms of the initial condition
x(1p). Then we will show under what conditions the system
will be stable. :

Proposition #1

The system described by Equation (1) with inifial
conditions  z(t,) =[x(1,) O]T =z,, has the following

response:
k
au-i)[ |1 0 oM 10 2
: 00 ooj] °

1€ty b)) with £ —t, =h

z(H)=e

The system response can be obtained by noting that on the
interval 1€ [f,,1;,,), the system response is

z{t) = |:x(f):| = e“""t)[‘x(”‘ )] = eA('_'k)Z(tk)

(1) 0 @

and that at times ¢, z(1,)=[x(,) OIT , that is, the error

e(t) is reset to zero. So this can be represented by
10 _ .

z(tﬂ:lio O:Iz(l,() . A complete proof can be found in

[5,6]+

A necessary and sufficient condition for stability of the

networked system will now be presented.

Theorem #1

The system described by Equation (1) is globally
exponentially stable around the solution
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z=[.t e]T =[0 O]Jr if and only if the eigenvalues of

10 10
M= M| | are strictly inside the unit circle.
00 00

Sufficiency can be shown by bounding the expression in
Propesition 1 by any consistent norm and noting that

"e}\(r—r,‘ )‘ (1 _;k )2

S1+(t-1, )E(A)-i——,E(A)Z..,

265({\)(’—’&) SeE(A)h zKl

Necessity is shown by sampling the response in Proposition
1 and obtaining a discrete representation of the sampled
response. A complete proof can be found in [5].

It can be shown (as in {[5]) that the eigeﬁvalues of -

lro 10
M= Mt are inside the unit circle if and only if
00 00

the  eigenvalues of N=e™¥ LA with

A=et -E’e_’”(2+§1{)e(‘i+éx)rd1, are inside the umit

circle. One can gain a better insight to the system by
observing the structure of N. To start with, we observe that
the eigenvalues of the compensated model appear in the
first term of V. In that sense we can see the term A as a
perturbation over the desired eigenvalues. Even if the
eigenvalues of the original plant were unstable the
perturbation A can be made small enough by having » and
A+ BK small and thus minimizing their impact over the
stable eigenvalues of the compensated plant.

3 An Output Feedback Networked Control
System

We have been considering only plants where the full state
vector is available at the output. We now extend our
approach to inciude plants where the state is not directly
measurable, In this case, in order to obtain an estimate of
the plant state vector, a state observer is used. It is assumed
that the state observer is collocated with the sensor. See

Figure 2. Again, we use the plant model, %= A%+ Bu , to
design the state observer. The observer uses the plant
output and generates a copy of the plant input applied by
the controller. This can be achieved by having a version of
the model and controlier at the observer side.

The observer has the form of a standard state observer with
gain L. In summary, the system dynamic equations are:

Plant: x = Ax + Bu, y=Cx+Du
Model: i= A%+ Bu, y=Ck+Du
Controller: u=Kx 3}
Observer: x=(A -Lé)f+[1§—l.f) L]B}

forte [tk stk+1)

We now proceed in a similar way as in the previous case of
full feedback. Namely, there will be an update interval 7,
after which the observer updates the controller’s model
state x with its estimate X . We will also define an error e
that will be the differénce between the controller’s model
state and the observer’s estimate: e =x —x . It is clear that
at times 7, , the error e will be equal to zero. Also we will
define the modeling error matrices in the same way as
before:j=A—;I, B=B-B, (:‘:C-é, D=D-D.

Then the dynamics of the overall system for re[1,,4.,)

can be described by:
x A BK -BK x
¥|=|LC A-LC+BK+LDK -BK-LDK ||x
el |LC LDK -LC A-LDK e
1€ty tpn ), With 4, —2, =h @
x| | x()
and| X7, ) |=| X(¢5) |
e(ty) 0
Define z =[x x e]r . and
A BK —-BK
A=|LC A-LC+BK+1DK -BK-LDK |so that (4)
LC LBK-~1C A-LDK

can be writtenas Z = Az for re {1,.1,,,) .

Proposition #2

The system with dynamics described by (4) with initial
conditions z{t) =[x(t,,) x(t,) 0]]r =z,, t,=0, has the

Jollowing response:
roo] 1o o}
=Moo 1 ole™|0 1 0ff 2,
0o 0 o0f (000

1€ [t tpn), with tyy —ty =h

We will present now the necessary and sufficient
corditions for this system to be exponentially stable at
large (or globally).
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Figure 2: Proposed configuration of an output feedback
networked control system.
Theorem #2

The system described by (4) is globally exponentially
stable around the solution z=[x x e]T=[0 0 O]T if

oo I 00
and only if the eigenvalues of |0 I 0 M0 I 0lare
000 000

inside the unit circle.

A detailed proof can be found in [5].

4 A State Feedback Networked Control System in
a Network with Communication Delays '

Previously we assumed that the network delays were
negligible. This is usually true for plants with slow
dynamics relative to the network bandwidth, When this is
not the case the network delay cannot be neglected. There
are three important delay sources: processing time, media
access contention, propagation and transmission time. Most
of these delays can be at least bounded if the network
conditions are appropriate.

Next we extend our results to include the case where
transmission delay is present. We will assume that the
update time A is larger than the delay time . That is, the
update of the model will happen before the next update
from the plant sensor is sent. As before we will assume that
the update time % is constant. We will also assume at this
time that the delay 7 is constant, We will present here the
case of full state feedback systems.

At times kh-7the sensor transmits the state data to the
controller/actuator. This data will arrive 7 seconds latter.
At times & the controller/actuator receives the state vector
value x(%h-7). The main idea is to use the plant model in
the controller/actuator to calculate the present value of the
state. After this, the state approximate obtained can be used

to update the controiler’s model as in previous setups. The
system is depicted in Figure 3.

The Propagation Unit uses the plant model and the past
values of the control input u(1) to calculate an estimate of
actual state x(kh) from the received data x(kh-7). This
estimate is then used to update the medel that with the
controller will generate the control signal for the plant.

The system is then described by the following equations:

Plant: x=Ax+Bu

Model: %= A%+ Bu

Controller: u = I‘(i, ‘ tele, b, )
Propagation Unit: X = Ax+ Bu,  telt,,, —7.1,,1]
Update law: Xex att=t,-T

Iex ater=y,

Planit
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—1 X=AX+BU all
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Skn) L
X X=AZ+BU
K - Memory

Conirolier

Figure 3: Proposed configuration of a state feedback
networked control system in the presence of network
delays. )

To simplify the analysis, we initialize the propagation unit
at time f#.;-7 with the state vector that the senser obtains.
We then run the plant, model, and propagation unit
together until 4., At this time, the model is updated with
the propagation unit state vector, as described in the update
law of (5). This is equivalent to having the propagation unit
receive the state vector x{#;.;-7) at f;+, and propagating it
instantanecusly to ;. ;.

A

We define the errors é=x—-% and é=x-%. We also
define;

A+BK -BK -BK
A=|A+BK A4-BK -BK
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With these definitions we proceed to present the system
described by (5) in a compact form. The dynamics of the
overall system for rel[t,,f,,;) can be described by

z(t) = Az(r), with state reset equations:

[ x(5)
2 1) =| ()
1)

| (=7
2t~ = 0 (6)
_é (@ — ) E({(,, — 7))

t,-t=h 0<t<h

Proposition #3
The system with dynamics described by (6) with initial
conditions  z(t,) =[x,, 2, éo]r =2,,f,=0, bhas the
Jollowing response:
2(0) =M (1M L0 o,
forrels, b, ~0)
2(1) = ™"t ze"“'"-’ (Ile“lzé“"‘” )'i z,
forte[t,, —1.4,)
with ¢, —f, =h, T<h.
We will present now the necessary and sufficient

conditions for this system to be exponentially stable at
farge (or globally).

Theorem #3

The system described by (6} is globally exponentially
stable around the solution z=[x & & =[0 0 o] i

ACh-1)

and only if the eigenvalues of M = 1.¢*"Le are inside

the unit circle.

- 1t 1s interesting to note that the results on Theorem #3 can
be seen as a generalization of Theorem #1. This can be
shown by driving 7to zero. The details for the proof of
Proposition #3 and Theorem #3 can be found in [5].

5 Networked Control System Example

Consider the following unstable plant (dcuble integrator):

A={° 1];3:[?};(::[1 OID-=0

00

We will use the state feedback controller given by #=Kx
with K=[-1 -2]. Usually it is assumed that the
actuator/controller will hold the last value received from
the sensor until the next time the sensor transmits and a
packet is received. We will analyze this situation. To do so,
we will transform the plant model so that it holds the last
state update presented to it by the metwork. The model
designed 1o behave as a zero order hold when updated is

-~ [0 0 . [0
i by: 4= , B=| |. From a plot of the

maximum eigenvalue magnitude of

M= {I 0] e [I 0] versus the update time, we see that
00 00

the condition for stability is to have & < 1 second. If we use
the results by [8] we would have obtained that, in order to
stabilize the system, we would need to have h<2.1304E-4,
which is very conservative. Simulations of the system with
update times of 2.1304E-4, 0.5, and 1 seconds are in
Figure 4. Note that the plant was initialized with an initial
condition of {1 1]7.

Figure 4: System response with h=2.1304E-4, 0.5, and 1s.

It can be seen that for A=1 second the system is marginally
stable. It is also clear that the performance obtained with
F=0.5 seconds 1s not too different to the one obtained with
h=2.1304E-4 seconds, but the difference in the amount of
bandwidth used is large. If we were to use Ethernet (72byte
frames) the data rate would be 2.7Mbits/sec for the case of
h=2.1304E-4 seconds, and only 1.2Kbits/sec for the case of
A=0.5 seconds.

We will now present an example for the output feedback
case. We will use the same state gain K =[-1 -2}, and
state estimator with gain L = [20 100]7 ( eigenvalues at —

10). The model used 1s a perturbed version of the original
plant:
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L _[009s8 106047 . [-0.0518]
~0.0066 -0.01340 ° | 1.0269 |’

C=[09734 -0.0137); D=-0.039

On a plot of the magnitude of the largest eigenvalue for the
test matrix versus the update time, not shown here stability
is observed for h<12 seconds.

Figure 6: System response for #=0.5 and 7= 0.25 sec,

A simulation of the system with an update time of 1
second, an initial state of the plant at [1 117, and zero initial
cenditions for the estimator and controller’s state is shown
in Figure 5.

Finally an example of a networked control system with
.network delays is presented. We will use the same plant
and controller we have been using before with randomly

-~ |—0.3444 09225
generated  plant model A= s
—0.3089 0.3560

- | —0.0098
= 0.009 . The maximum value 4 can have to
1.3159

preserve stability is reduced when 7is increased: 1.5s for

7=0.00s, 1.35s for 7=0.25s, and 1.05s for v=0.50s. Figure
6 shows the response of the system for A=0.5s and
7=0.25s, a stable configuration.

6 Conclusions

The presented control architecture represents a natural way
of placing critical information about the plant on the
network so as to reduce the data traffic load. By making the
sensor and actuator more “intelligent” the networked
control system is able to predict the future behavior of the
plant, and send the precise information at critical times so
to ensure the plant stability. The presence of computational
load at any end of the feedback path is not considered a
limitation of the applicability of the presented setups given
the advances in microcomputing.
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