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1 Introduction

Invariant set theory has been widely studied in the lit-
erature, see for example [1, 2] and reference therein.
{1] gives a compressive review of the invariant set the-
ory. [2] brings together some of the main ideas in set
invariance theory and places them in a general, non-
linear setting. A similar concept, maximal safety set,
has been studied in the literature of hybrid systems.
The authors of [7] consider a class of discrete time hy-
brid systems with piecewise linear time-invariant flow
function and polyhedral constraints. The invariant sets
for piecewise affine systems have also been studied in
13] based on convex optimization techniques and linear
matrix inequalities.

However, if the effect of the uncertainty in the model is
not taken into account, then it is possibie that a con-
troller could drive the system into an unsafe region. A
small disturbance or fault could then cause the system
to fail. This paper concentrates on the robust con-
trolled invariant sets for a class of uncertain hybrid
systems. Qur goal is to determine whether a given re-
gion in the state space is robust controlled invariant
and to compute the maximal robust controlled invari-
ant subset under structured dynamic uncertainty and
disturbances.

2 Model

The discussion in this paper assumes the following un-
certain, discrete-time hybrid dynamical systems:

Definition 2.1 Consider the discrete-time Uncertain
Piecewise Linear Hybrid Systems defined by

z(t+1)
olt+1 =

Ayy7(8) + Byyult) + Egd(t) (2.1)
d(g(t), m(2(t)) oc(t), oult)) (2.2)

where ¢ € Q = {q1,92,-+ ,¢s} and Q is the collection of
discrete states (modes); © € X CR™ and X stands for the
confinuous state space, the continuous conirol uw € U C R™,
and the continuous disturbence d € D C R”, where U, D
are bounded conver polyhedral sets; and

o Ay € R™*", B, € R"*™, and E; € R"™? are the
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system matrices for the discrele state gq. Assume poly-
topic uncertainty, that is [Ag, By] = Tn% M| AL, B, where
A,‘ 2 0,2{:‘1 /\,‘ = 1,‘

e 7: X — X/E. partitions the continuous state space R"
into polyhedral equivalence classes.

e g{t + 1) € act{w(z(t))), where act : X/Ex —
the active mode set,

©5:Q %X X/E: X Te X Ny — Q is the discrete state tran-
sition function. Here o, € L., denotes a controllable event
and Iy the collection of unconirollable events.

e The guard G(gq,q¢") of the transition (g.q") is defined
as the set of all states (q,z) such that ¢’ € act(w(z(t)))
and there exist controlluble event o. € T. such that ¢ =
d(g, w{x), oc,0u) for every uncontrollable event o, € L,

29 defines

Assume that exact state measurement (g,z) is avail-
able. An edmissible control inpui (or law) is one which
satisfies the input constraints (Z.,4). The elements
of an allowable disturbance sequence are contained in
(Zu, D).

3 Geometric condition for invariance

Given aset 2 C @ x X and an initial state {gp, z0) € 0,
it is of interest to determine whether there exist admis-
sible control laws such that the evolution of the sys-
tem will remain inside the set for all time, despite the
presence of structured dynamic uncertainty and distur-
bances.

Definition 3.1 The set  C (@ x X is robust controlled
invariant for the uncertain hybrid systems of Definition 2.1
if and only if V(qo,20) € Q, V(oy,d(t)) € Ey x D and
V[*Ahq(t), qu] € C'onv[A;(t), e(t)] there always exist admis-
sible control input (o¢, u(t)) € T, x U, such that the system
evolution satisfies (q(t), z(t)) € Q, ¥t > 0.

A natural question is how to check whether for a given
set 2 C @@ x X is robust controlled invariant or not.
To answer this question, we first study the robust (one-
step) predecessor operator, pre(-), for the uncertain hy-
brid systems. It is defined as the set of states in @ x X
for which an admissible control input exists which will
guarantee that the system will be driven to £ in one
step, for all allowable disturbances and dynamic un-
certainties. The following is an important, well-known
geometric condition[l] for a set to be control invariant.
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Theorexﬁ 3.1 The set 2 C R" is a robust controlled
tnvariant set if and only if Q C pre(Q).

It follows immediately that the set © is robust con-
trol invariant if and only if pre(?) N Q = Q, since
QC pre(f)) & pre() NQ = Q. Testing for invari-
ance need to: compute pre(§2), which can be efficiently
done by the predecessor operator algorithm described
in [5, 6]; test whether 2 C pre{£2), this can be done by a
feasibility of a linear programming problem|4]. So this
condition can be efficiently tested by solving a finite
number of linear programming problems that depends
on the number of regions and discrete states of the sys-
tem. :

4 Maximal Robust Controlled Invariant Set

We have answered how to check the robust controlled
invariance for a given set @ C @ x X. And in general, a
given set {1 is not robust controlled invariant, However,
some subsets of {2 are likely to be robust controlled in-
variant. In addition, it follows immediately from the
definition that the union of two robust controlled in-
variant sets is robust controlled invariant. So we have
the following definition.

Definition 4.1 The set Cou (1) is the mazimal robust pos-
itively invariant set contoined in QO C Q x X for the uncer-
tain hybrid systems of Definition 2.1 if and only if Coo(§2) is
robust controlled invariant and contains all the robust con-
trolled invariant sets contained in Q.

It can be shown that the maximal robust positively in-
variant set is unique. Then the next question is how to
find the maximal robust controlled invariant set Cos {€2).
We have the following algorithm for computing the
maximal robust control invariant set.

INPUT: Q= (g, P), Sl =X, () =0, i=1;
while £i(2) # Ci_1()

i) = pre(G:(ONQ

i G () =0

Terminate and OUTPUT: €. () = 0.

end if

i=i+1
end while
OUTPUT: & (52) = (i(R)

Remark: T~he i-step robust admissible set C?,-(Q) have
properties: Cy(1(S2) C C;(Q), G(R2) = My Ca(€).

5 Maximum Permissive Control Law

Another interesting problem is to construct a (memo-
ryless) control lew, ¢ : Q x X — 2%<¥Y that robustly
drives the system to guarantee that the states remain
within some region {assume proper initial conditions)
despite the uncertainties and disturbances, while sat-
isfying some certain input/output constraints. If such
control law exists and is non-blocking, i.e. clq,T) # 0
for all (q,z) € @ x X, then we say the control law ¢,

3181

solves the robust controlled invariance problem. Many
control laws may be able to solve a particular prob-
lem. It is often preferred to find a control law that
imposes fewer restrictions on the inputs allowed. The
least restrictive (or mazimum permissive) |7] control
law is the maximal element among all the control laws
that solve a given robust controlied invariance prob-
lem in the partial order defined by =<, where ¢; < ¢3 if

Vig,z) € @ x X, c1g, ) € c2{g, ).

For a given region & C @ x X, if there exists an unigue
nonempty maximal robust controlied invariant subset
Coo(§2), then there exists a unique non-blocking least
restrictive control law that solves the robust controlled
invariance problem for C-OQ(Q) with proper initial con-
ditions. The least restrictive controller can be given as

follows:
SN (oo, u)Nou € B0 d €D,

V[ A, égl € Conv[AzLB;],
Agz + Byu + Egd € Coo ()},

(0.%) € CoolO)
c(q= x) =

S, x U, (g.7) ¢ Cool(S)

6 Conclusion

In this paper, we put our group’s recent progress in the
analysis and synthesis of uncertain piecewise linear hy-
brid systems into the framework of invariant set theory.
We develop an implementable procedure to check the
robust controlled invariance and compute the maximal
robust controlled invartant subset under structured dy-
namic uncertainty and disturbances. A formulation of
least resirictive control law thaf solves a given robust
controlled invariance problem is presented. In general,
the maximal robust control invariant set can not be
determined in finite number of steps. So the above
algorithm and the lest restrictive control law synthe-
sis is semi-decidable[7], because the termination of the
algorithm is not guaranteed. In [4] two termination
conditions were proposed to formulate a constructive
algorithm.
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Abstract

The paper deals with the optimal control of switched piece-
wise linear autonomous systems, where the abjective is to
minimize a performance index over an infinite time horizon.
We assume that the switching sequence has a finite length:
the unknown switching times and the switching sequence
are the optimization parameters. We also assume that a cost
may be associated to each switch.

The optimal control for this class of systems takes the form
of a state feedback, i.e., it is possible to identify a set of
regions of the state space such that an optimal switch should
occur if and only if the present state belongs to one of them.
We show how the tables containing these regions can be
computed off-line through a numerical procedure.

1 Introduction

Switched systems are a particular class of hybrid sys-
tems that switch between many operating modes, where
each mode is governed by its own characteristic dynami-
cal law [6]. Typically, mode transitions are triggered by
variables crossing specific thresholds (state events), by the
elapse of certain time periods (time events), or by exter-
nal inputs (input events). The problem of determiring op-
timal control laws for this class of hybrid systems has been
widely investigated in the last years and many results can
be found in the contro? and computer science literature, For
continuous-time hybrid systems, most of the literature is
focused on the study of necessary conditions for a trajec-
tory to be optimal [11, 14], and on the computation of op-
timal/suboptimal solutions by means of dynamic program-
ming or the maximum principle [4, 5, 10, 12, 13, 15]. For
determining the optimal feedback control law some of these
techniques require the discretization of the state space in
order to solve the corresponding Hamilton-Jacobi-Bellman
equations. In [9] the authors use a hierarchical decom-
position approach to break down the overall problem into
smaller ones. In so doing, discretization is not involved and
the main computational complexity arises from a higher-
level nonlinear programming problem.

In the contihuons-time case, and in particnlar for switched

linear systems compaosed by stable autonomous dynamics,
by assuming that the switching sequence is pre-assigned
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(and, therefore, that the only decision variables to be op-
timized are the switching instants), in [7, 8] we proved
an important result, namely that the control law is a state-
feedback and there exists a numerically viable procedure
to compute the switching tables Ci » showing the points
of the state space where the k-th switch of a sequence of
length N should occur. A similar state-feedback result
was also proved in [1] for optimal control problems based
on discrete-time hybrid models and linear cost functions,
which leads to piecewise affine optimal control laws.

In [2, 3] we generalized the optimization problem of [7, 8}
by taking both the switching instants and the switching
sequence as decision variables. The procedure we used
to solve the generalized problemn exploits a synergy of
discrete-time and continuous-time techniques, by alternat-
ing between a “master” procedure that finds an optimal
switching sequence and a “slave” procedure that finds the
optimal switching instants still using the approach described
in [7, 8].

In this paper we present a different solution to the general-
ized optimization problem that is sttil based on the construc-
tion of switching tables. Using a simple procedure inspired
by dynamic programming, we show how it is possibile to
avoid the exponential growth of the computational cost as
the length of the switching sequence is increased.

To motivate the interest for pursuing two different ap-
proaches to solve essentially the same problem, we compare
the procedure presented in this paper with the master-slave
algorithm in [2, 3], More details about the computational
complexity of both procedures will be given in Section 4.
The procedure presented in this paper is based on the gen-
eration of a set of “switching tables” and has the following
properties;

o is puaranteed to find the optimal solution;

¢ has a computational cost of the order O(INs?}, where
N is the length of the switching sequence and g is the
number of possible operating modes (or dynamics);

¢ provides a “global” closed-loop solution, i.e., the ta-
bles may be used to determine the optimal state feed-
back law for all initial states.

On the other hand, the master-slave algorithm presented
in (2, 3]:

e is not guaranteed to converge to a global optimum;
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