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Synthesis of Supervisors Enforcing General Linear
Constraints in Petri Nets

Marian V. Iordache and Panos J. Antsaklis

Abstract—Efficient techniques exist for the design of supervisors
enforcing constraints consisting of linear marking inequalities. This note
shows that without losing the benefits of the prior techniques, the class of
constraints can be generalized to linear constraints containing marking
terms, firing vector terms, and Parikh vector terms. We show that this
extended class of constraints is more expressive. Furthermore, we show
that the extended constraints can describe any supervisor consisting of
control places arbitrarily connected to the transitions of a plant Petri net
(PN). The supervisor design procedure we propose is as follows. For PNs
without uncontrollable and unobservable transitions, a direct method for
the design of a PN supervisor that is least restrictive is given. For PNs with
uncontrollable and/or unobservable transitions, we reduce the problem to
the design of supervisors enforcing linear marking inequalities.

Index Terms—Linear constraints, Petri nets (PNs), supervisory control.

I. INTRODUCTION

Efficient methods have been proposed in [1]–[4] for the design of
supervisors enforcing that the marking� of a Petri net (PN) satisfies
constraints of the form

L� � b (1)

whereL 2 n �m, b 2 n , is the set of integers,m is the number
of places, andnc the number of constraints. The methods address both
the fully controllable and observable PNs and the PNs which may have
uncontrollable and unobservable transitions. Constraints of the form
(1) can describe (generalized) mutual exclusion, deadlock prevention
constraints, and others [3]. The constraints (1) have been extended in
[3] and [4] to the form

L�+Hq � b (2)

which adds a firing vector term, whereH 2 n �n andn is the
number of transitions. (Without loss of generality,H has been assumed
to have nonnegative elements.) In such constraints, an elementqi of the
firing vectorq is set to 1 if the transitionti is to be fired next from�; else
qi = 0. The constraint is interpreted as follows. A supervisor enforcing
(2) ensures that: 1) all markings� must satisfy (1) and 2) if�

t
�!�0,

ti is allowed to fire only ifL�+Hq � b andL�0 � b. The form (2)
describes constraints on the enabling of transitions [as opposed to the
constraints on the state, naturally described by (1)] [3], [5]. In this note,
we consider constraints which add to (2) a Parikh vector term

L�+Hq + Cv � b (3)

whereC 2 n �n. In (3), v is the Parikh vector, that isvi, the ith
element ofv, counts how often the transitionti has fired since system
initialization. The constraint is interpreted as follows. A supervisor en-
forcing (3) ensures that: 1) all states(�; v) satisfyL� + Cv � b and
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2) if q is the firing vector of a transitionti, �
t
�!�0, andv0 = v + q,

thenL� + Hq + Cv � b andL�0 + Cv0 � b. Note that the Parikh
vector term may also be viewed as a marking term in a PN extended
with sink places on transitions. Regardless of the viewpoint, whether
we look at the constraints (3) as involving the Parikh vector or the mark-
ings of additional sink places, it is apparent that such constraints need
to be considered, as they effectively increase the expressivity power of
the constraints (2). In fact, we will show that (3) can represent any su-
pervisor implemented by additional places (control places) connected
to the transitions of a plant PN. This means that the operation of any
Petri net can be entirely described by constraints (3), with a one-to-one
correspondence between each place and each inequality of (3). We also
show that (3) are as expressive as the constraints of the form

Hq + Cv � b: (4)

While the marking term in (3) does not make (3) more expressive, in
practice it may be more intuitive to write constraints that involve also
the marking. This is one reason we consider constraints of the form (3)
instead of just (4). Note that Parikh vector terms can be used to describe
fairness requirements, such as the constraint that the difference between
the number of firings of two transitions is limited by one.

The contribution of this note is as follows. Section II-A makes the
observation that any place of a PN can be seen as a supervisor place en-
forcing a constraint of the form (4). This has been known for constraints
of the formCv � b and PNs without self-loops [6]. A manufacturing
illustration involving constraints of the form (3) is presented in Sec-
tion II-B. The supervisor design for specifications (3) is presented in
Section III-A for fully controllable and observable PNs, and in Sec-
tion III-B for the PNs that may have uncontrollable and unobservable
transitions. In the latter case, we reduce our problem to the design of
supervisors enforcing constraints of the form (1), for which effective
methods exist. Note that our supervisor design approach extends also
the indirect method of [3] on enforcing constraints (2), as both cou-
pled and uncoupled constraints can be considered. Note also that our
approach can be naturally extended for the enforcement of constraints
involving both conjunctions and disjunctions of linear inequalities.

Due to space limitations, we refer the reader to [7] for the proofs of
the results.

II. ON THE SIGNIFICANCE OF THEGENERAL LINEAR CONSTRAINTS

A. Representing the Operation of PNs Via Generalized Linear
Constraints (GLCs)

This section shows that the operation of any PN can be described
by constraints of the form (4). Given a PN, letD+ andD� denote the
input and output matrices, andD = D+ �D� the incidence matrix.
We denote byti the transition corresponding to the columni of D.

The common algebraic PN representation is via the state equation

� = �0 +Dv (5)

where�0 is the initial marking. From (5), we derive(�D)v � �0.
LetC = �D. For any PN without self-loops, the inequalityCv � �0
determines the operation of the PN. Indeed, after firing from�0 a firing
sequence� of Parikh vectorv, we have that 1)Cv � �0 and 2) a
transitionti is enabled iffC(v + q(i)) � �0, whereq(i) is the firing
vectorq such thatqi = 1 andqj = 0 for all j 6= i. As the incidence
matrixD is insufficient to determine whether a transition is enabled in
a PN with self loops, the additional termHq is introduced

Hq + Cv � �0 (6)
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whereH = D�. Note thatHi;j � 0 for all indexesi and j. The
constraints (6) completely describe the operation of a PN, regardless of
whether it has self loops or not. Indeed, after we fire from�0 a sequence
� of Parikh vectorv, the transitionti is enabled iffHq(i) + Cv � �0
andC(v+ q(i)) � �0. (Note that asH = D� andC = �D, we have
thatHq(i) + Cv � �0 ) C(v + q(i)) � �0.)

As an example, consider the PNs of Fig. 1(a)–(c). The PN in Fig. 1(a)
is not restricted: the firings oft1, t2 andt3 are free. ThusH andC are
empty matrices. By adding the placesp1, p2 andp3 as in the PN (b),
we obtain the following inequalities for (6):v1 � 3, v2 � v3 � 0, and
�v2 + v3 � 1, where the inequalities are generated, in this order, by
p1, p2, andp3. The inequalities of the PN in Fig. 1(c) are:q1+v2 � 3,
v2 � v3 � 0, and�2v1 � v2 + v3 � 1.

Given a PNN = (P; T;D�; D+), letP ,T ,Tuc andTuo denote the
sets of places, transitions, uncontrollable transitions, and unobservable
transitions, respectively. LetPo : jT j ! jTnT j be the projec-
tion excluding fromv the entries corresponding to unobservable tran-
sitions. In this note, asupervisor is a map1 � : M � jTnT j !

2TnT , whereM is a set of initial markings. When� supervises
(N ; �0), a controllable transitiont is enabled at the state(�; v) (where
� = �0 + Dv) if t 2 �(�0; Po(v)) and�0 2 M. For simplicity,
we also callsupervisorthe PN implementation of a supervisor�. N
is in closed-loopwith � when� supervises the operation ofN . We
denote by(N ; �0;�) the PN(N ; �0) in closed-loop with�, and by
R(N ; �0;�) the set of all reachable states(�; v) of (N ; �0;�).

A place of the PN implementation of a supervisor is said to be a
control place. For instance, in Fig. 1(d) the placeC is a control place
implementing a supervisor. The PN of Fig. 1(d) illustrates also the fact
that the extended linear constraints (3) are more expressive than the
marking constraints. Indeed, the closed-loop of Fig. 1(d) has no place
invariants, and so the supervisor cannot be described by (2). However,
it can be described as the supervisor enforcing�v1+v2+v3 � 1. Note
also that every place of a PN can be seen as a control place restricting
the firings of the net transitions according to a constraint (3). Indeed,
in view of (6), the constraint of each placepi is hq+ cv � �0i, where
h andc are thei0th rows ofH andC. This proves the following.

Proposition 1: Every place of a PN can be seen as a control place
enforcing a single inequality of the form (3).

B. Manufacturing Illustration

This section illustrates the use of the constraints (3). The application
of the constraints (1) is illustrated in [2], [3], and applications of the
constraints (2) can be found in [2], [3], and [5]. The PN of Fig. 2 models
a manufacturing cell in which autonomous vehicles (AVs) can enter a
restricted area (RA) from the left and from the right. The left AVs enter
the RA viat2 and exit viat13; the right AVs enter viat5 and exit via
t14. The number of AVs in the RA is limited tom. Moroever, left and
right AVs should not be at the same time in the RA. These constraints
can be written as

mq2 �m� v5 + v14 (7)

mq5 �m� v2 + v13: (8)

The marking ofp1 (p2) represents the number of left (right) AVs that
wait to enter the RA. Such an AV may be rerouted to another RA via
t3 (t6). The constraint that a left AV should stay in the line if there is
no right AV in p2 or in the RA can be written as

q3 � �2 + v5 � v14: (9)

1jXj denotes the number of elements ofX .

(a) (b)

(c) (d)

Fig. 1. PNs used in the examples of Section II-A. The markings displayed are
initial markings.

Assuming we desiret11 andt12 to fire approximately the same number
of times, we have the following fairness constraints (similar to those of
the example of [6]):

v11 � v12 �n (10)

v12 � v11 �n: (11)

To restrict the firing oft2 whenv11 � v12 � k (for k < n), we can
write

(n� k)q2 � n� (v11 � v12): (12)

Note that the placesp7 andp8 can be introduced in the PN model to
represent the fact thatv13 � v2 andv14 � v5.

III. ENFORCINGGENERAL LINEAR CONSTRAINTS

A. Supervisor Design for Fully Controllable and Observable PNs

A least restrictive supervisor can be constructed as follows. Let
D+

lc = max(0;�LD � C) andD�lc = max(0; LD + C), where the
max operator is defined as follows. IfX is a matrix,Y = max(0;X)
is the matrix of elementsYij = 0 for Xij < 0, andYij = Xij for
Yij � 0. For two matricesX andY of the same size,Z = max(X;Y )
is the matrix of elementsZij = max(Xij ; Yij). Then, define

D
+

c =D+

lc +max(0;H �D
�

lc) (13)

D
�

c =max(D�lc; H): (14)

The matricesD+
c andD�c describe a PN structure with the same transi-

tions as the plant. This PN structure represents the PN implementation
of the supervisor. This means that the closed-loop is the PN of input
and output matrices

D
+

o =
D+

D+
c

and D�o =
D�

D�c
:

Let �c0 and�0 be the initial markings of the supervisor and of the
plant;�c0 is set to

�c0 = b� L�0: (15)

Except forD+

lc andD�lc , which add theC term, this construction is
identical to that of [8] for constraints of the form (2).

Theorem 1: The supervisor defined by the incidence matricesD+
c ,

D�c , and the initial marking�c0 enforces (3) and is least restrictive.
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B. Supervisor Design for Partially Controllable and Observable PNs

The approach we propose can be divided into the following steps.
Given (3) andN , a supervisor design problem for a specification (1)
and a transformed netNHC is solved first. Then, the solution to this
problem is used to derive a solution to (3) andN . The details follow
next.

1) Admissibility and Transformations to Admissible Con-
straints: A set of constraints isadmissibleif the constraints can
be enforced as in Section III-A, in spite of the inability to detect or
control certain transitions. Formally, the following holds.

Definition 1: Given a set of constraints (3) on a PN(N ; �0), con-
sider the construction of Section III-A. The set of constraints (3) is
admissibleif for all reachable states(�; v) of the closed-loop net, the
following are true.

1) If t is uncontrollable and�jN enables2 t in N , then� enablest
in the closed-loop net.

2) If t is unobservable and� enablest, thenD+
c (�; t) = D�

c (�; t).
Note that the condition 2) of the definition corresponds to the require-
ment that the firing of unobservable transitions should not change the
marking of the control places. Obviously, a sufficient condition for ad-
missibility that is easy to test is

D
�
c (�; t) = 0 8 t 2 Tuc and D

�
c (�; t) = D

+

c (�; t) 8 t 2 Tuo: (16)

We propose to use (16) to test whether the constraints can be enforced
as in Section III-A. On the other hand, when (16) is not satisfied, we
propose to transform (3) to

La�+Haq + Cav � ba (17)

such thatLa� + Haq + Cav � ba ) L� + Hq + Cv � b and
(17) is admissible. Then, we can enforce (17) as in Section III-A,
while the supervisor enforcing (17) is guaranteed to enforce (3) also.
In the remaining part of this note, we propose an approach that
reduces the transformation of (3) to (17) to the transformation to
admissible constraints of constraints (1), for which several methods
are already available in the literature. The reduction technique uses
the PN transformations defined next.

2) C-Transformation and H-Transformation:It is desired to trans-
form PNs such that the constraints (3) map into constraints (1).
Parikh vector terms can be easily transformed to marking terms
by adding sink places to transitions. For instance, in Fig. 3, the
constraint�1+q1+v2�v3 � 3 on the PN in Fig.1(a) is equivalent
to �1+q1+�4��5 � 3 on the PN (b). The inverse transformation
is also possible:�1 � 3�4 + 2�5 + q1 � 5 on the PN in Fig.1(b)
can be mapped into�1+ q1�3v2+2v3 � 5 in the PN in Fig.1(a).
The direct transformation is called theC-transformation , and the
inverse theC�1-transformation . Note that the input of the C-trans-
formation is a set of constraints (3) and a PN(N ; �0; Tuc; Tuo),
while the output is a set of constraintsLC�C +Hq � b and a PN
(NC ; �0; Tuc; Tuo). On the other hand, the input of theC�1-trans-
formation is (N ; �0; Tuc; Tuo), NC , and LC�C +Hq � b, while
the output is a set of constraints (3).

The H-transformation removes the firing vector terms. It improves
the indirect method for enforcing firing vector constraints in [2]. As an
illustration, consider the constraint�1+�2+2�3+q3 � 5 on the PN
of Fig. 3(c). The H-transformation is the PN (d). The transformation
adds a place and a transition which correspond to the factorq3. The
transformed constraint is�1 + �2 + 2 �3 + 4 �5 � 5, where the term
4�5 is obtained as follows. Consider firingt3 in the transformed net. If
�

t
��!�0 anda is the coefficient of�5, we desirea+�01+�02+2 �03 =

1 + �1 + �2 + 2 �3, where the factor 1 is the coefficient ofq3. Thus,
we obtaina = 4. The H- and H�1-transformations are defined next:

H-Transformation

2We denote by�j the restriction of� to the places ofN .

Fig. 2. PN model of a manufacturing cell.

(a) (b)

(c) (d)

Fig. 3. Illustration of the C-transformation and of the H-transformation.

(a) (b)

(c) (d)

Fig. 4. Illustration of the transition split operation.

Input: The PN(N ; Tuc; Tuo) withN = (P; T;D�;D+), the con-
straintsL�+Hq � b, and optionally the initial marking�0.

Output: The H-transformed PN(NH ; TH;uc; TH;uo) with NH =
(PH ; TH ; D

�

H ; D
+

H), the H-transformed constraintLH�H � b, and
the initial marking�0H of NH .

1) Initialize (NH ; TH;uc; TH;uo) to (N ; Tuc; Tuo), LH toL, �0H
to �0.

2) For all ti 2 T such thatH(�; ti) is not zero, perform the
following.

a) Add a new placepk and a new transitiontj to NH as in
Fig. 4(a)-(b), and includetj in TH;uc (TH;uo) if ti is in
Tuc (Tuo).

b) SetLH(�; pk) = H(�; ti)+LD�(�; ti) and�0H(pk) = 0.
The H�1-Transformation
Input: The PNN = (P; T;D�;D+), the H-transformed net

NH = (PH ; TH ; D
�

H ; D
+

H), and a set of constraintsLH�H � b on
NH .

Output: TheH�1-transformed constraintL�+Hq � b.

1) SetL(�; p) = LH(�; p) 8p 2 P andH to the null matrix.
2) For allpk 2 PH n P

a) Letti = �pk; setH(�; ti) = LH(�; pk)� LHD
�

H(�; ti).
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Note that the H-transformation preserves the controllability/observ-
ability attributes of the transitions ofN . Thus,TH;uc \ T = Tuc and
TH;uo\T = Tuo. Further, a new transition that results from a split has
the same controllability/observability attributes as the transition that is
split. For instance, in Fig. 4(a)-(b)tj is controllable/observable iffti is
controllable/observable.

3) Transformation to Admissible Constraints:Given a PN
(N ; Tuc; Tuo), the constraintsL� + Hq + Cv � b, and optionally3

the initial marking�0, the following algorithm can be used for the
supervisor design.

1) Apply the C-transformation and then the H- transformation. Let
(NHC ; THC;uc; THC;uo), LHC�HC � b, and�HC0 be the
transformed net, constraints, and initial marking.

2) Find admissible constraintsLHCa�HC � ba such that8�HC :
LHCa�HC � ba ) LHC�HC � b. If such admissible con-
straints could not be found, declare failure and exit.

3) Apply toLHCa�HC � ba theH�1-transformation and then the
C�1-transformation. LetLa�+Haq+Cav � ba be the result.

Theorem 2: The set of constraintsLa� + Haq + Cav � ba is
admissible, and any supervisor enforcing it enforces alsoL�+Hq +
Cv � b.

In view of Theorem 2, a supervisor enforcingL�+Hq + Cv � b

is the supervisor ofLa� + Haq + Cav � ba constructed as in
Section III-A. Note that at the step 2) approaches generating dis-
junctive constraints can also be used, by applying the step 3) to each
component of the disjunction. In fact, any method of transformation
to admissible constraints can be used. However, it is most natural
to use at the step 2) the methods that test the admissibility of a set
of constraintsL� � b with the sufficient conditionLDuc � 0
andLDuo = 0, such as some of the methods of [2], [3], and [9].
(Duc and Duo are the restrictions of the incidence matrix to the
uncontrollable and unobservable transitions, respectively.) Note also
that this condition can be customized toNHC as follows. To allow the
situation of Fig. 4(c)-(d), in which a control place can be connected
through a self-loop to an unobservable but controllable transitionti,
we can replaceLDHC(�; ti) = 0 andLDHC(�; tj) = 0 with the less
restrictiveLDHC(�; ti) + LDHC(�; tj) = 0 for all ti 2 Tuo n Tuc
with H(�; ti) 6= 0. Let LA � 0 andLB = 0 be the constraints
LDuc � 0 andLDuo = 0 after performing this substitution. Then it
can be seen that (3) satisfies the admissibility condition (16) iff the H-
and C-transformed constraintLHC� � b satisfiesLHCA � 0 and
LHCB = 0.

Note the tradeoff of our approach. The benefits are that the super-
visor design can be done in a computationally efficient manner and in-
dependently of the initial marking. (Of course, the designed supervisors
still depend on the initial marking.) The drawback is that the solution
may be suboptimal, in the sense that less restrictive solutions may be
possible. Suboptimality may arise from three sources. First, from the
method applied at the step 2), especially if the step 2) is restricted to
generate conjunctions rather than disjunctions of inequalities. Second,
from the fact that the conditionLDuc � 0 andLDuo = 0 is only suf-
ficient for admissibility. Third, from the H-transformation. However,
note that the third possibility can be excluded with some enhancements
detailed in [10].

As an example, this approach can be applied to the constraints
(7)–(12). Assuming the uncontrollable transitions to bet1, t4, t11, t12,
t13, andt14, and the unobservable transitionst13 andt14, the following
admissible constraints can be obtained: a)mq2+�6 � m� v5+ v14;
b)mq5 + �5 � m � v2 + v13; c) q3 � �2; d) �3 + v11 � v12 � n;
e) �4 � v11 + v12 � n; and f)�3 + (n � k)q2 � n � v11 + v12.
The control places corresponding to these constraints can be found out

3It is possible to carry out the algorithm independently of the initial marking.

Fig. 5. Plant PN with three control places.

using the construction of Section III-A. Fig. 5 represents the control
placesC1,C2, andC3 corresponding to the constraints b), c), and e).

IV. CONCLUSION

Enforcing linear marking and firing vector constraints can be done
effectively in Petri nets. This note has extended this class of constraints
to include Parikh vector constraints. Then, we have shown how these
more expressive constraints can be enforced as effectively as linear
marking constraints. Our approach has also enhanced a previous tech-
nique for enforcing firing vector constraints in the presence of uncon-
trollable and unobservable transitions.
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