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Abstract

In this paper, a class of linear systems affected by both
parameter variations and additive disturbances is con-
sidered. The problem of designing a set-valued state
observer, which estimates a region containing the real
state for each time being, is investigated. The tech-
niques for designing the observer are based on posi-
tive invariant set theory. By constructing a set-induced
Lyapunov function, it is shown that the estimation er-
ror exponentially converges to a given compact set with
an assigned rate of convergence.

1 Introduction

In control theory and engineering, it is often desirable
to obtain full state information for control or diagnos-
tic purpose. Therefore it is not surprising that the
synthesis of a state observer has been of considerable
interest in classical system theory, see for example [11]
and the references therein. The original theory of the
state observer involves the asymptotic reconstruction
of the state by using exact knowledge of inputs and
outputs [9]. However, the real processes are often af-
fected by disturbances and noises. Therefore, the de-
sign procedures of state observers were later extended
to include the cases when disturbances and/or mea-
surement noises were present. These generalizations
may be roughly divided into two main groups. The
first group relies on the stochastic control approaches,
which are based on probabilistic models of the dis-
turbances and noises. The stochastic approach pro-
vides optimal state estimation based on the probabilis-
tic models of the exogenous signals. Unfortunately, in
many cases, no information about the disturbances (in
the deterministic or statistical sense) is available, and
it can only be assumed that they are bounded in a
compact set. Alternatively, disturbances and noise are
dealt with in the framework of robust control. Under
such framework, optimal state estimation that mini-
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mizes the induced-norm from exogenous noises to esti-
mation errors is often considered. For example in [12],
an l1 optimal estimation problem was studied for a class
of time varying discrete-time systems with process dis-
turbance and measurement noise, and a set-valued ob-
server, whose centers provide optimal estimates in the
sense of l∞-induced norm, was designed. The optimal
l∞-induced norm estimation problem was also consid-
ered in [14]. There also exist results for H∞ optimal
estimation problems, see for example [10].
In the previous work on observer design as mentioned
above, deterministic dynamics were assumed, where
there is no parameter variation in the model. How-
ever, it is known that we only have partial knowledge
of almost all practical systems. In addition, the sys-
tem parameters are often subject to unknown, possibly
time-varying, perturbations. Therefore it is of prac-
tical importance to deal with systems with uncertain
parameters. This consideration leads to the robust es-
timation problem, where robustness is with respect to
not only exogenous signals but also model uncertain-
ties. There are some results for the robust estimation
problem from a variety of different approaches, see for
example [2, 1, 7] and references therein. In [2], the
structure features of robust observers in the presence
of arbitrary small parameter perturbations were stud-
ied from a sensitivity standpoint. A similar problem
was considered in [1], where a technique for design-
ing robust observers for perturbed linear systems was
presented. In [7], the robust l1 estimation with plant
uncertainties and external disturbance inputs was stud-
ied, and the estimator was applied to robust l1 fault de-
tection. The techniques in [7] were based on the mixed
structured singular value theory. There were also inves-
tigations into developing robust estimators using para-
metric quadratic Lyapunov theory, see for example [8].
In this paper, we deal with a class of uncertain linear
systems affected by both parameter variations and ex-
terior disturbances. The problem studied is the design
of a set-valued state observer, which constructs a set of
possible state values based on measured outputs and
inputs. The techniques used in this paper are based
on positive invariant set theory and set-induced Lya-
punov functions. By constructing a set-induced Lya-
punov function, we can guarantee the ultimate bound-

0-7803-7896-2/03/$17.00 ©2003 IEEE 1902
Proceedings of the American Control Conference

Denver, Colorado June 4-6, 2003

Hai Lin, Guisheng Zhai, Panos J.Antsaklis, “Set-Valued Observer Design for a Class of Uncertain Linear 
Systems with Persistent Disturbance,” Proceedings of the 2003 American Control Conference, pp. 1902-1907, 
Denver, Colorado, June 4-6, 2003.



edness and convergence rate of the estimation error.
The work is inspired by the success of set-induced Lya-
punov function together with positive invariant set the-
ory in the fields of robust stability analysis, stabiliza-
tion, constrained regulation etc, see [5, 3]. For a general
review of the set invariance theory, see for example [6].
This paper is organized as follows. In Section 2, a
mathematical model for uncertain linear systems is de-
scribed, and the observer design problem is formulated.
Section 3 contains the necessary background from in-
variant set theory, and the definitions of positive D-
invariance and strong positive D-invariance are intro-
duced. The approaches to the observer design and its
implementation are described in Section 4. The con-
vergence and ultimate boundedness of the estimation
error are shown in Section 5. In Section 6, a numeri-
cal example is given. Finally, concluding remarks are
presented.
Following the notation of [5], we use the letters
E ,P ,S · · · to denote sets. ∂P stands for the boundary
of set P , and int{P} its interior. For any real λ ≥ 0,
the set λS is defined as {x = λy, y ∈ S}. The term
C-set stands for a convex and compact set containing
the origin in its interior.

2 Problem Formulation

In this paper, we consider linear discrete-time systems
described by the difference equation

x(t+ 1) = A(w)x(t) +B(w)u(t) + Ed(t), t ∈ Z
+(2.1)

and continuous-time systems represented by the differ-
ential equation

ẋ(t) = A(w)x(t) +B(w)u(t) + Ed(t), t ∈ R
+ (2.2)

with the measured output

y(t) = Cx(t) (2.3)

where x(t) ∈ R
n, u(t) ∈ U ⊂ R

m, d(t) ∈ D ⊂ R
r, and

A(w) ∈ R
n×n, B(w) ∈ R

n×m, E ∈ R
n×r, C ∈ R

p×n.
Assume that U and D are C-sets, and that the entries
of A(w) and B(w) are continuous function of w ∈ W ,
where W ⊂ R

v is an assigned compact set.
For this system, we are interested in determining the
state x(t) based on the measured output y(t) and con-
trol signal u(t). Because of the uncertainty and dis-
turbance, we can not estimate the state x(t) exactly.
Therefore, it is only reasonable to estimate a region in
which the real state is contained. The problem being
addressed can be formulated as follows:
Problem: Given the system with the measured output
y(t) and input u(t), find X (t) such that x(t) + e(t) ∈
X (t), and assure that the estimation error e(t) is uni-
formly ultimately bounded in a given C-set, E, with an
assigned rate of convergence.

Here, uniformly ultimately bounded in E means that
for any initial value of the estimation error e(t0) /∈ E ,
∃T ≥ t0 such that for all t ≥ T , e(t) ∈ E . The meaning
of the convergence rate will be explained later in Sec-
tion 5. Our methodology for computing the observer
that guarantees uniformly ultimate boundedness of the
estimation error is based on positive invariant sets and
set-induced Lyapunov functions, which will be derived
in the following sections. For systems with linearly con-
strained uncertainties, it is shown that such observer
and Lyapunov functions may be derived by numerically
efficient algorithms involving polyhedral sets.

3 Positive Disturbance Invariance

In this section, let us first consider the following
discrete-time system

x(t+ 1) = A(w)x(t) + Ed(t) (3.1)

where d(t) is contained in a C-set D.

Definition 3.1 A set S in the state space is said to be
positive D-invariant (PDI) for this system if for every
initial condition x(0) ∈ S we have that x(t) ∈ S, t ≥ 0,
for every admissible disturbance d(t) ∈ D and every
admissible parameter variation w(t) ∈ W .

In the particular case when D = {0}, the positive
D-invariance is equivalent to the positive invariance
[6]. For the counterpart of continuous-time systems,
we have corresponding definitions for invariant set and
positive D-invariance.
In this paper, it is important to consider an index of
the convergence speed of the state estimation error.
For such purpose, we need to introduce the following
definitions.

Definition 3.2 Let S be a compact set with nonempty
interior in the state space. S is said to be strongly pos-
itive D-invariant(SPDI) for system (3.1), if for every
initial condition x(0) ∈ S and for every disturbance
sequence d(t) ∈ D and every admissible parameter
variation w(t) ∈ W with t = 0, 1, · · · , we have that
x(t) ∈ int{S} for t ≥ 0.

If no disturbances are present, namely D = {0}, we
shall refer to this property as strong positive invari-
ance(SPI). In the discrete-time case, the strong positive
invariance of S is equivalent to the contractivity. Note
that similar definitions are given in [4] for determin-
istic linear systems. Next, we introduce the following
notation for system (3.1):

post(x,W ,D) = {x′ : x′ = A(w)x+Ed; ∀w ∈ W , d ∈ D}
It can be shown that a set S is strongly positive D-
invariant if and only if ∃λ, 0 < λ < 1, such that S is
λ-contractive, i.e. for any x ∈ S, post(x,W ,D) ⊂ λS.
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In the following, we shall assume that D and S are
convex and compact polyhedrons containing the origin,
and in addition, S contains the origin in its interior. A
polyhedral set S in R

n can be represented by a set of
linear inequalities

S = {x ∈ R
n : fT

i x ≤ θi, i = 1, · · · , s} (3.2)

and for brevity, we denote S as {x : Fx ≤ θ}, where ≤
is with respect to componentwise. Let vert{S} stand
for the vertices of a polytope S. Consider the vector δ
whose components are

δi = max
d∈D

fiEd, i = 1, · · · , s (3.3)

The vector δ incorporates the effects of the disturbance
d(t). In the discrete-time case, the following results
hold. Note that similar results were given in [4] for
deterministic linear systems. The extensions to uncer-
tain dynamics are not difficult, so the details of proof
is omitted here for space limit.

Lemma 3.1 The polyhedral region S = {x ∈ R
n :

Fx ≤ θ} is PDI for system (3.1), if and only if for
every vertex of S, vj ∈ vert{S}, j = 1, · · · , r, we have

FA(w)vj ≤ θ − δ, ∀w ∈ W (3.4)

Similarly, we can derive the following result for SPDI.

Corollary 3.1 The polyhedral region S = {x ∈ R
n :

Fx ≤ θ} is SPDI for system (3.1), if and only if ∃0 <
λ < 1, such that ∀vj ∈ vert{S}, j = 1, · · · , r, we have

FA(w)vj ≤ λθ − δ, ∀w ∈ W (3.5)

We consider now a continuous-time system of the form

ẋ(t) = A(w)x(t) + Ed(t) (3.6)

Similarly, we can introduce PDI, SPDI concepts for
system (3.6). The use of invariant sets allows us to
extend results for the discrete-time case to continuous-
time systems by introducing the Euler approximating
system (EAS) [4] as follows:

x(t+ 1) = [I + τA(w)]x(t) + τEd(t) (3.7)

It has been proven in [4] that: S is a SPDI region for a
deterministic continuous-time system if and only if S
is a SPDI region for its corresponding Euler approxi-
mating system for some τ > 0. Similarly, we can derive
the following proposition for uncertain continuous-time
system (3.6) with polytopic constrains.

Proposition 3.1 The polyhedral region S = {x ∈
R

n : fT
i x ≤ θi, i = 1, · · · , s} is SPDI for (3.6), if

and only if ∃0 < λ < 1, for some τ > 0, and for every
vertices of S, vj ∈ vert{S}, j = 1, · · · , r,

Fvj + τFA(w)vj ≤ λθ − τδ, ∀w ∈ W (3.8)

In the next section, we will design an observer based
on the SPDI and its properties discussed above.

4 Observer Design

For simplicity, we only consider the observer design for
discrete-time case in this section, namely for the system
described by (2.1) and (2.3). The extension of these
results to the continuous-time case is immediate, and
it is illustrated through an example in Section 6.
We consider a full state observer of the form

x̄(t+ 1) = (A(w)−LC)x̄(t) +B(w)u(t) +Ly(t) (4.1)

Assume an admissible disturbance sequence ds(t) ∈
D and an admissible parameter variation sequence
ws(t) ∈ W. The corresponding real state trajectory
is denoted as xs(t) for such ws(t) and ds(t). At every
time step t, the state region estimate of the observer,
X (t), contains a state estimation x̄s(t), which corre-
sponds to the specified disturbance sequence ds(t) and
parameter variation sequence ws(t). Then the estima-
tion error for xs(t) is es(t) = x̄s(t)−xs(t) which satisfies
es(t + 1) = (A(ws) − LC)es(t) − Eds(t). Considering
all possible w(t) ∈ W and d(t) ∈ D, we can describe
the behavior of the estimation error e(t) = x̄(t) − x(t)
by the equation

e(t+ 1) = (A(w) − LC)e(t) − Ed(t) (4.2)

Our design objective is to ultimately bound the er-
ror e(t) in a given compact set E for every admissi-
ble disturbance d(t) ∈ D and parameter uncertainty
w(t) ∈ W .
Let E be a given convex and compact polyhedral set
containing the origin in its interior. We assume that
E can be represented as E = {e : Fe ≤ θ}, and also
assume that the vertices of E are known. Otherwise a
procedure is needed to calculate the vertices of E .
In the discrete-time case, let us assume that E is SPDI
for some given 0 < λ < 1 with respect to state esti-
mation error equation (4.2). Therefore the matrix L
fulfills the following constraints

[A(w) − LC]vj − Ed ∈ λE ,

for ∀vj ∈ vert{E} and ∀w ∈ W . It is known that in
practice uncertainties often enter linearly in the system
model and they are linearly constrained. To handle this
particular but interesting case, we consider the class of
polyhedral sets. Such sets have been considered in the
literature concerning the control of systems with input
and state constraints, see for example [5, 6]. Their main
advantage is that they are suitable for computation. If
we assume polytopic uncertainty, i.e. [A(w), B(w)] =∑r

k=1 wk[Ak, Bk], wk ≥ 0,
∑r

k=1 wk = 1, then the
above constraints can be written as

fi[
r∑

k=1

wkAk − LC]vj ≤ λθi − δi,
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∀vj ∈ vert{E}, ∀wk ∈ [0, 1], and
∑r

k=1 wk = 1, where
δi = maxd∈D(−fiEd). Because of linearity and con-
vexity, it is equivalent to only considering the vertices
of A(w), i.e.

fi[Ak − LC]vj ≤ λθi − δi,

∀vj ∈ vert{E}, ∀i = 1, · · · , s, and ∀k = 1, · · · , r. For
brevity, we write

F [Ak − LC]vj ≤ λθ − δ (4.3)

which holds for ∀vj ∈ vert{E}, ∀k = 1, · · · , r. And δ
has components as δi. We see that the observer design
problem is solved if the sets of the linear inequalities
in the unknown L derived above have a feasible solu-
tion. The feasibility of the above linear inequalities is
guaranteed by the assumption that E is SPDI for some
given 0 < λ < 1 with respect to system (4.2), and vise
versa.
In conclusion, the existence of the set-valued state ob-
server (4.1), whose state estimation error ultimately
bounds in a specified region E 1, is equivalent to the
feasibility of the linear inequalities in (4.3), and it is
also equivalent to the condition that E is SPDI for some
given 0 < λ < 1 with respect to system (4.2).
Note that the observer is set-valued, or, in other words,
it estimates the region in which the real state stays.
The observer maps set X (t) to another set X (t+ 1) as
time progresses. Our next question is how to imple-
ment the set-valued observer in practice.
Consider the initial set X (t0) as a polytope, whose
vertices, x̄i(t0), i = 1, · · · , n, are known. For any
x̄(t0) ∈ X (t0), we have x̄(t0) =

∑n
i=1 αix̄

i(t0), where
αi ≥ 0 and

∑n
i=1 αi = 1. The next corresponding esti-

mated state x̄(t1), in fact a set, is given by:

x̄(t1) = (A(w) − LC)x̄(t0) +B(w)u(t0) + Ly(t0)

which is just the linear transformation of x̄(t0). Note
that the linear transformation of a polytope is still a
polytope. In addition

x̄(t1) = (A(w) − LC)x̄(t0) + B(w)u(t0) + Ly(t0)

= (A(w) − LC)

n∑
i=1

αix̄
i(t0) + B(w)u(t0) + Ly(t0)

=

n∑
i=1

αi[(A(w) − LC)x̄i(t0) + B(w)u(t0) + Ly(t0)]

If we assume polytopic uncertainty, i.e.
[A(w), B(w)] =

∑r
k=1 wk[Ak, Bk], wk ≥ 0,

∑r
k=1 wk =

1, then the implementation of the set-valued observer

1The convergence issue of the state estimation error will be
discussed in the next section based on the set-induced Lyapunov
functions.

can be further simplified as:

x̄(t1) =
n∑

i=1

αi[(A(w) − LC)x̄i(t0) + B(w)u(t0) + Ly(t0)]

=

n∑
i=1

αi{
r∑

k=1

wk[Ak − LC, Bk]

[
x̄i(t0)
u(t0)

]
+ Ly(t0)}

=

n∑
i=1

r∑
k=1

αi{wk[Ak − LC, Bk]

[
x̄i(t0)
u(t0)

]
+ Ly(t0)}

=

n,r∑
i,k=1

αiwk{[Ak − LC, Bk]

[
x̄i(t0)
u(t0)

]
+ Ly(t0)}

=
n×r∑
j=1

βj x̄
j(t1)

where j = (i−1)×n+k, x̄j(t1) is the corresponding es-
timated state corresponding to the vertices x̄i(t0) under
the vertices matrix [Ak, Bk]. Also βj = (αi × wk) ≥ 0
and

∑n×r
j=1 βj = 1. Therefore for the case of polytopic

uncertainty, the implementation of the observer only
needs to consider the finite vertices of state matrices ,
i.e. (Ak, Bk) for k = 1, · · · , r, and the finite vertices
of the X (t), i.e. x̄i(t) for i = 1, · · · , n. In summary,
the formulation of the observer can be described as the
following:

x̄(1,1)(t+ 1) = (A1 − LC)x̄1(t) +B1u(t) + Ly(t)
x̄(1,2)(t+ 1) = (A1 − LC)x̄2(t) +B1u(t) + Ly(t)

· · ·
x̄(1,n)(t+ 1) = (A1 − LC)x̄n(t) +B1u(t) + Ly(t)
x̄(2,1)(t+ 1) = (A2 − LC)x̄1(t) +B2u(t) + Ly(t)

· · ·
x̄(2,n)(t+ 1) = (A2 − LC)x̄n(t) +B2u(t) + Ly(t)

· · · · · ·
x̄(r,1)(t+ 1) = (Ar − LC)x̄1(t) +Bru(t) + Ly(t)

· · ·
x̄(r,n)(t+ 1) = (Ar − LC)x̄n(t) +Bru(t) + Ly(t)

And X (t + 1) = conv{x̄(1,1)(t + 1), · · · , x̄(r,n)(t + 1)},
where conv{·} stands for the convex hull.

5 Convergence of the Estimation Error

In this section, we will study the uniformly ultimate
boundedness of the estimation error e(t) = x̄(t)− x(t),
which satisfies

e(t+ 1) = (A(w) − LC)e(t) − Ed(t) (5.1)

Our objective is to show that the error e(t) is uniformly
ultimately bounded in some C-set E for every admis-
sible disturbance d(t) ∈ D and parameter uncertainty
w(t) ∈ W . For this purpose, we introduce the follow-
ing concepts. Note that these concepts have previously
appeared in [5, 4] and also in the references therein.
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A function Ψ : R
n → R is said to be a gauge function

if

1. Ψ(x) ≥ 0, Ψ(x) = 0 ⇔ x = 0;

2. for µ > 0, Ψ(µx) = µΨ(x);

3. Ψ(x+ y) ≤ Ψ(x) + Ψ(y), ∀x, y ∈ R
n.

A gauge function is convex and it defines a distance of x
from the origin which is linear in any direction. A gauge
function Ψ is 0-symmetric, that is Ψ(−x) = Ψ(x), if
and only if Ψ is a norm.
If Ψ is a gauge function, we define the closed set
(possibly empty) N̄ [Ψ, ξ] = {x ∈ R

n : Ψ(x) ≤ ξ}.
On the other hand, the set N̄ [Ψ, ξ] is a C-set for all
ξ > 0. Any C-set S induces a gauge function ΨS(x)
(Known as Minkowski function of S), which is defined
as Ψ(x)=̇ inf{µ > 0 : x ∈ µS}. Therefore a C-set
S can be regarded as the unit ball S = N̄ [Ψ, 1] of a
gauge function Ψ and x ∈ S ⇔ Ψ(x) ≤ 1.

Lemma 5.1 [5] If E is SPDI (or PDI if λ = 1) set for
system (5.1) with convergence index λ ≤ 1, then µE is
so for all µ ≥ 1.

Lemma 5.2 A C-set E is SPDI set for system (5.1)
with convergence index λ < 1 if and only if there exists
a gauge function Ψ(e) such that the unit ball N̄ [Ψ, 1] ⊂
E and, if e /∈ int{N̄ [Ψ, 1]}, then Ψ(post(e, w, d)) ≤
λΨ(e) for all w ∈ W and d ∈ D (or. equivalently,
N̄ [Ψ, µ] is λ-contractive for all µ ≥ 1).

According to the above two lemmas, we can derive the
following theorem about the uniformly ultimate bound-
edness of the estimation error e(t).

Theorem 5.1 The observation error e(t) for the ob-
server designed in the previous section is uniformly ul-
timate bounded with convergence rate 0 < λ < 1 (or.
β = 1−λ

τ ) in the given C-set E , if and only if the in-
equalities (4.3) are feasible. In addition,

x(t) ∈ X (t) ⊕ E (5.2)

for t large enough, where ⊕ stands for the Minkowski
sum.

Proof : E is a C-set, and let ψ(e) = ΨE(e) be its
Minkowski functional. For any e ∈ R

n, we have
ψ(e(t + 1)) ≤ λψ(e(t)) for all e(t) /∈ int{E}, because
of linear inequalities (4.3) and according to Lemma
5.1. Then ψ(e) is a Lyapunov function for system
(5.1), which is uniquely generated from the target set
E for any fixed λ. Such a function has been named
Set-induced Lyapunov Function (SILF). Then the ex-
istence of the Lyapunov function implies the exponen-
tial convergence of the estimation error to E accord-
ing to Lemma 5.2. The exponential convergence is in

the sense that ψ(e(t + 1)) ≤ λψ(e(t)) in discrete-time
case or ψ(e(t + δ)) ≤ e−βδψ(e(t)) in continuous-time
case (where β = 1−λ

τ ). Also for any initial value of
the estimation error e(t0), ∃T ≥ t0 such that for all
t ≥ T , e(t) ∈ E and x(t) + e(t) ∈ X (t). Therefore,
x(t) ∈ X (t) ⊕ E , where ⊕ stands for the Minkowski
sum. This completes the proof. �
In the following, we will focus on linear constrained case
for computational tractability. Let E be a polyhedral
C-set for which the following plane description is given:

E = {e : fie ≤ θi, θi > 0, i = 1, · · · , s} (5.3)

or synthetically, E = {e : Fe ≤ θ}. We call a polyhe-
dral function the Minkowski function of a polyhedral
C-set. This function has expression

Ψ(e) = max
1≤i≤s

{fie} (5.4)

We consider elements of the above form as candidate
Lyapunov functions.

6 Numerical Example

Consider the following continuous-time uncertain sys-
tems:

ẋ(t) =
[ −0.1 w

−1 −0.1

]
x(t) +

[
0
w

]
u(t) +

[
1
1

]
d(t)

y(t) =
[

0 1
]
x(t)

We assume that the time varying uncertain parameter
w is subjected to the constraint 1 ≤ w ≤ 2, and the
continuous disturbance d(t) is bounded by d ∈ D = {d :
−0.05 ≤ d ≤ 0.05}. We consider a full state observer
of the form (4.1):

˙̄x(t) = (

[ −0.1 w
−1 −0.1

]
−L

[
0 1

]
)x̄(t)+

[
0
w

]
u(t)+Ly(t)

Then, we know that the estimation error e(t) satisfies

ė(t) = (
[ −0.1 w

−1 −0.1

]
−L

[
0 1

]
)e(t)−

[
1
1

]
d(t)

we assume the specified set E = {e ∈ R2 : ‖e‖∞ ≤ 0.1}.
Our problem is to design the matrix L =

[
l1
l2

]
, such

that the estimation error e(t) exponentially converges
to E .
Using (3.7) with τ = 1, we obtain the EAS system for
estimation error as follows:

e(t+1) = (
[

0.9 w
−1 0.9

]
−L

[
0 1

]
)e(t)−

[
1
1

]
d(t)

Then, using (4.3) for the above EAS system with λ =
0.8, we obtain

(

[
0.9 w
−1 0.9

]
−

[
l1
l2

] [
0 1

]
)ei ≤ 0.8

[
1
1

]
+min

d∈D

[
1
1

]
d(t)
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where ei corresponding to the four vertices of E , that

is e1 =
[

0.1
0.1

]
, e2 =

[
0.1
−0.1

]
, e3 =

[ −0.1
−0.1

]
, and

e4 =
[ −0.1

0.1

]
. Solving the above inequalities with

w1 = 1 and w2 = 2, we get the following conditions

with respect to L =
[
l1
l2

]
.

−5.05 ≤ l1 ≤ 8.05, −6.05 ≤ l2 ≤ 7.85

For example, we select L =
[

1
1

]
. Then the set-valued

observer has the form:

˙̄x(t) =
[ −0.1 w − 1

−1 −1.1

]
x̄(t)+

[
0
w

]
u(t)+

[
1
1

]
y(t)

According to the discussion in Section 4, the implemen-
tation of the set-valued observer only needs to consider
the evolution of the vertices of X (t) with respect to
the case w = 1, 2. If we assume that the initial value
of the observer is (or outer-approximated by) a poly-
tope, X0, then at each time-being the output of the
observer is also a polytope, X (t), which is the convex
hull of the mapping of the vertices of X0 under the case
of w = 1, 2. And x(t) ∈ X (t) ⊕ E for t large enough,
where ⊕ stands for the Minkowski sum. The estimation
error e(t) satisfies

ė(t) =
[ −0.1 w − 1

−1 −1.1

]
e(t) −

[
1
1

]
d(t)

Following Section 5, we take the set-induced Lyapunov
function from E = {e ∈ R2 : ‖e‖∞ ≤ 0.1} as Ψ(x) =
max1≤i≤s{fie} = ‖e‖∞. We know E is λ-contractive
(λ = 0.8) by the above design procedure, so by theorem
5.1, the estimation is uniformly ultimately bounded in
E with rate β = 1−λ

τ = 0.2.

7 Concluding Remarks

In this paper, we developed a set-valued state observer
for a class of uncertain linear systems affected by both
parameter variation and persistent disturbance. The
design procedure proposed assures that the estimation
error will be ultimately bounded within a given convex
and compact set containing the origin with an assigned
rate of convergence.
A necessary and sufficient condition for the existence
of the observer in form of (4.1) was derived. However,
the answer to the existence problem is not satisfac-
tory, because the feasibility of these linear inequalities
in (4.3), namely the condition that E is SPDI for some
given 0 < λ < 1 with respect to system (4.2), is still a
problem. Some stronger results need to be obtained for
the existence problem. In addition, a method should
be developed to specify the parameter τ in the Euler
approximating system (3.7).
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