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Abstract

Supervision based on place invariants (SBPI) is an effi-
cient technique for the supervisory control of Petri nets.
In this paper we propose extensions of the SBPI to a
decentralized control setting. In our setting, a decen-
tralized supervisor consists of local supervisors, each
controlling and observing a part of the Petri net. We
consider both versions of decentralized control, with
communication, and with no communication. In the
case of communication, the supervisors may exchange
information consisting of local observed events. We
propose efficient algorithms for the design of decentral-
ized supervisors, based on the extension of the SBPI
concept of admissibility that we define.

1 Introduction

Petri nets are compact models of concurrent systems,
as they do not represent explicitly the state space of
the system. Petri net models arise naturally in a vari-
ety of applications, such as manufacturing systems and
communication networks. Petri net methods relying
on the structure of the net rather than the state space
are of special interest, as the size of the state space,
when finite, can be exponentially related to the size
of the net. Among such methods, supervision based on
place invariants (SBPI) [1, 5, 12] offers an efficient tech-
nique for the design of supervisors enforcing on Petri
nets a particular class of state predicates, called gen-
eralized mutual exclusion constraints. Note that the
generalized mutual exclusion constraints can represent
any state predicate of a safe Petri net [1, 12]. Further-
more, without loss of any of its benefits, the SBPI has
been extended in [2] to handle any constraints that can
be enforced by control (monitor) places. While SBPI
has been considered so far in a centralized setting, this
paper proposes extensions of SBPI to a decentralized
setting.

Admissibility is a key concept in the SBPI of Petri nets
with uncontrollable and unobservable transitions. In
SBPI, a set of constraints is admissible if it can be di-
rectly enforced. On the other hand, inadmissible con-
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straints are first transformed to admissible constraints,
and then enforced. Thus, an admissible set of con-
straints is roughly3 the equivalent of a controllable and
observable specification in the Ramadge and Wonham
framework [6].

The main contributions of this paper are as follows.
First, we define d-admissibility (decentralized admissi-
bility), as an extension of admissibility to the decen-
tralized setting. Our concept of d-admissibility ex-
tends the admissibility concept in the sense that a
set of constraints that is d-admissible can be directly
enforced via SBPI (i.e., without computational over-
head) in a decentralized setting. Since d-admissibility
identifies constraints for which the supervisors can be
easily computed, rather than the class of constraints
for which supervisors can be computed, it does not
parallel controllability and coobservability in the au-
tomata setting [7]. Second, we show how to enforce d-
admissible constraints and show how to check whether
a constraint is d-admissible. Third, when a constraint
is not d-admissible, we provide an algorithmic approach
to make the constraint d-admissible by enabling com-
munication of events (transition firings).

To our knowledge, the decentralized supervisory con-
trol of Petri nets has not been yet considered in the
literature. In the automata setting, the related work is
as follows. The problem of finding necessary and suf-
ficient conditions for the existence of a decentralized
solution enforcing a state predicate is studied in [10].
In [11], the problem of finding a decentralized solution
with the same performance as a centralized solution is
considered in a setting in which communication is al-
lowed. In particular, the idea of information structures
in [11] is related to the clustering of subsystems in our
paper. Other decentralized control work can be found
in [8] and the references therein. Literature on SBPI or
closely related to it is found in [1, 5, 9] and the refer-
ences therein. Finally, the work presented in this paper
is continued in the sequel paper [3].

The paper is organized as follows. Section 2 describes
the notation and outlines the SBPI. Section 3 describes
the decentralized setting of our approach. Section 4 in-
troduces the d-admissibility and the related algorithms.
Finally, d-admissibility is applied to the design of local
supervisors with communication in section 5.

3We define admissibility with respect to the SBPI. In prin-
ciple, it is possible to have an inadmissible constraint that is
“admissible” with respect to another supervision technique.
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2 Preliminaries

A Petri net structure is denoted by N = (P, T, F, W ),
where P is the set of places, T the set of transitions, F
the set of transition arcs, and W the weight function.
The incidence matrix of N is denoted by D (places
correspond to rows and transitions to columns).

The specification of the SBPI [1, 5, 12] consists of the
state constraints

Lµ ≤ b (1)

where L ∈ Z
nc×|P |, b ∈ Z

nc , and µ is the marking
of N . Note that N represents the plant. The SBPI
provides a supervisor in the form of a Petri net Ns =
(Ps, T, Fs, Ws) with

Ds = −LD (2)
µ0,s = b − Lµ0 (3)

where Ds is the incidence matrix of the supervisor, µ0,s

the initial marking of the supervisor, and µ0 is the ini-
tial marking of N . The places of the supervisor are
called control places. The supervised system, that
is the closed-loop system, is a Petri net of incidence
matrix:

Dc =
[

D
−LD

]
(4)

An example is shown in Figure 4(a), in which the su-
pervisor enforcing µ1 +µ2 ≤ 1 and µ3 +µ4 ≤ 1 consists
of the control places C1 and C2.

Note that (3) implies that when the plant and the su-
pervisor are in closed-loop, the initial marking of the
plant satisfies (1). Let µc be the marking of the closed-
loop, and let µc|N denote µc restricted to the plant N .
Let t ∈ T be a transition. t is closed-loop enabled if
µc enables t. t is plant-enabled, if µc|N enables t in
N . The supervisor detects t if t is closed-loop enabled
at some reachable marking µc and firing t changes the
marking of some control place. The supervisor con-
trols t if there is a reachable marking µc such that t is
plant-enabled but not closed-loop enabled. Given µc,
the supervisor disables t if there is a control place C
such that (C, t) ∈ Fs and µc(C) < Ws(C, t).

In Petri nets with uncontrollable and unobservable
transitions, admissibility issues arise. Indeed, a super-
visor generated as shown above may include control
places preventing plant-enabled uncontrollable transi-
tions to fire, and may contain control places with mark-
ing varied by firings of closed-loop enabled unobserv-
able transitions. Such a supervisor is clearly not im-
plementable. We say that a supervisor is admissible,
if it only controls controllable transitions, and it only
detects observable transitions. The constraints Lµ ≤ b
are admissible if the supervisor defined by (2–3) is
admissible. When inadmissible, the constraints Lµ ≤ b
are transformed (if possible) to an admissible form

controllable and observable

uncontrollable and observable

uncontrollable and unobservable

Figure 1: Graphical representation of the transition types.

Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b [5]. Then,
the supervisor enforcing Laµ ≤ ba is admissible, and
enforces Lµ ≤ b as well. Our discussion on admissibil-
ity is carried out in more detail in section 4. We will
denote N with sets of uncontrollable and unobservable
transitions Tuc and Tuo by (N , Tuc, Tuo).

Finally, Figure 1 shows the graphical representation
of the uncontrollable and/or unobservable transitions
that is used in this paper.

3 The Model

We assume that the system is given as a Petri net
structure N = (P, T, F, W ). A decentralized super-
visor consists of a set of local supervisors S1, S2,. . .Sn,
each acting upon individual parts of the system, called
subsystems, where the simultaneous operation of the
local supervisors achieves a global specification. A lo-
cal supervisor Si observes the system through the set
of locally observable transitions To,i, and controls it
through the set of locally controllable transitions Tc,i.
So, from the viewpoint of Si, the sets of uncontrol-
lable and unobservable transitions are Tuc,i = T \ Tc,i

and Tuo,i = T \ To,i. This is the design problem:
Given a global specification and the sets of uncontrol-
lable and unobservable transitions Tuc,1, Tuc,2, . . . Tuc,n

and Tuo,1, Tuo,2, . . . Tuo,n, find a set of local supervisors
S1, S2,. . .Sn whose simultaneous operation guarantees
that the global specification is satisfied, where each Si

can control T \ Tuc,i and can observe T \ Tuo,i. A sys-
tem N with subsystems of uncontrollable and unob-
servable transitions Tuc,i and Tuo,i will be denoted by
(N , Tuc,1, . . . Tuc,n, Tuo,1, . . . Tuo,n).

As an example, we consider the manufacturing system
of [4], shown in Figure 2. In this example, two robots
access a common parts bin. The system can be modeled
by the Petri net of Figure 3(a), where µ2 = 1 (µ4 = 1)
when the left (right) robot is in the assembly area, and
µ1 = 1 (µ3 = 1) when the left (right) robot is in the
parts bin. The set of controllable transitions of the
left (right) subsystem may be taken as Tc,1 = {t1, t2}
(Tc,2 = {t3, t4}). Assume that the subsystem of each
robot knows when the other robot enters or leaves the
parts bin. Then each subsystem contains the control-
lable transitions of the other subsystem as observable
transitions; a possible graphical representation of the
subsystems is shown in Figure 3(b) and (c).
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Figure 3: A Petri net model of the robotic manufacturing system.
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Figure 4: Examples of c-admissible supervision.

4 Admissibility

To distinguish between admissibility in the centralized
case and admissibility in the decentralized case (to be
defined later), we denote by c-admissibility the ad-
missibility property in the centralized case. There-
fore, c-admissibility is taken with respect to a Petri net
(N , µ0) of uncontrollable transitions Tuc and unobserv-
able transitions Tuo. The significance of c-admissibility
is as follows. A c-admissible set of constraints (1) can
be implemented with the simple construction of (2–3),
as in the fully controllable and observable case.

It is essential for the understanding of this paper to see
that supervisors defined by (2–3) may be admissible
even when they have control places connected to un-
observable transitions, and control places connected to

uncontrollable transitions by place-to-transition arcs.
We first illustrate this fact by two examples, and then,
in the next paragraph, we show how such admissible
supervisors can be (physically) implemented. In the
first example, the supervisor enforcing µ1 + µ2 ≤ 1
and µ3 + µ4 ≤ 1 in Figure 4(a) consists of the control
places C1 and C2. By definition, the supervisor is ad-
missible, though connected to the uncontrollable and
unobservable transitions t5 and t6. The reason is that,
on one side, whenever the supervisor disables t5 (or t6),
t5 (t6) is anyway disabled by the plant and, on the other
side, t5 and t6 are dead (they require µ1 + µ2 ≥ 2 and
µ3 +µ4 ≥ 2, respectively, in order to be plant-enabled)
and so their observation is not necessary. In the second
example, the supervisor enforcing µ1 +µ2 +µ3 ≤ 3 and
µ3 ≤ 2 in Figure 4(b) consists of the control places C1

and C2. Again, the supervisor is admissible, in spite of
the fact that it may disable the uncontrollable transi-
tion t5. Indeed, the supervisor never disables t5 when
t5 is plant-enabled, and so its disablement decision does
not need to be physically implemented. In fact, the arc
(C, t5) can be seen as corresponding to an observation
action only, as the supervisor decrements the marking
of C2 whenever t5 fires.

The previous examples motivate the following interpre-
tation of the arcs between the control places of an ad-
missible supervisor and the uncontrollable and/or un-
observable transitions. Let C be a control place and t
a transition. If t is uncontrollable, an arc (C, t) mod-
els observation only, due to the fact that an admissi-
ble supervisor never disables a plant-enabled transition;
physically, this means that the supervisor has a sensor
to monitor t but no actuator to control t. If t is unob-
servable and controllable, an arc (C, t) models control
only, as the fact that an admissible supervisor does not
observe closed-loop enabled unobservable transitions in-
dicates that t is dead in the closed-loop4; physically, the
supervisor has an actuator to control t but no sensor to
monitor t. If t is unobservable and uncontrollable, arcs
between C and t can be ignored, as the fact that an ad-
missible supervisor would never disable or observe t if
plant-enabled, implies that in the closed-loop t is never
plant-enabled.

In the decentralized case, we are interested in defin-
ing admissibility with respect to a Petri net (N , µ0),

4Self-loops do not arise as long as we limit ourselves to the
constraints of the type (1).
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and the sets of uncontrollable and unobservable tran-
sitions of the subsystems: Tuc,1 . . . Tuc,n and Tuo,1 . . .
Tuo,n. Admissibility in the decentralized case is called
d-admissibility. As in the case of c-admissibility, we
would like d-admissibility to guarantee that we are able
to construct the (decentralized) supervisor without em-
ploying constraint transformations. The following def-
inition achieves this.

Definition 4.1 A constraint is d-admissible with re-
spect to (N , µ0, Tuc,1 . . . Tuc,n, Tuo,1 . . . Tuo,n), if there
is a collection of subsystems C ⊆ {1, 2, . . . n}, C 6= ∅,
such that the constraint is c-admissible with respect
to (N , µ0, Tuc, Tuo), where Tuc =

⋂
i∈C

Tuc,i and Tuo =⋃
i∈C

Tuo,i. A set of constraints is d-admissible if each

of its constraints is d-admissible.

To illustrate the definition, assume that we have a con-
straint that is c-admissible only with respect to the first
subsystem. Then, it is d-admissible, as we can select
C = 1. An interesting consequence is that when each
subsystem has full observability of the net and every
transition is controllable with respect to some subsys-
tem, any constraint is d-admissible. Formally:

Proposition 4.1 Any set of constraints is d-admissi-
ble if Tuo,i = ∅ for all i = 1 . . . n and

⋂
i=1...n

Tuc,i = ∅.

The construction of a decentralized supervisor for d-
admissible constraints is illustrated on the Petri net of
Figure 3. The mutual exclusion constraint µ1 + µ3 ≤ 1
is to be enforced. The centralized control solution is
shown in Figure 5. In the case of decentralized su-
pervision, there are two subsystems: the first one is
composed of the places p1 and p2, and the second one
of the places p3 and p4. Assume Tuo,1 = Tuo,2 = ∅,
Tuc,1 = {t3, t4} and Tuc,2 = {t1, t2}. Note that the
constraint is not c-admissible with respect to any of
(N , Tuc,1, Tuo,1) or (N , Tuc,2, Tuo,2). However, it is d-
admissible. The decentralized solution is shown also in
Figure 5. There are two control places C1 and C2, each
representing the supervisor of the left and right sub-
system, respectively. Note that C1 and C2 and their
connections represent two copies of the control place
C and its connections. As C1 and C2 have the same
initial marking as C, their markings stay equal at all
times. So, at all times C1 disables the same transitions
as C2. However, as discussed before, the disablement
of t1 (t4) is implemented by C1 (C2), while (C1, t4) and
(C2, t1) are interpreted as observation arcs.

Algorithm 4.1 Supervisor design for a d-admissible
constraint (uses the notation of Definition 4.1)

1. Create |C| copies of the centralized supervisor en-
forcing the constraint in (N , Tuc, Tuo).

2. Associate each copy to one of the subsystems i ∈ C;
it represents the supervisor of subsystem i.

3. Set the initial state of each copy to the initial state
of the centralized supervisor.

To enforce a d-admissible set of constraints, the con-
struction is repeated for each constraint. Next we prove
that the resulting decentralized supervisor is feasible
(physically implementable). Let S1, S2, . . . Sn denote
the local supervisors of a decentralized supervisor, were
each of Si can control and observe the transitions in Tc,i

and To,i, respectively. The decentralized supervisor is
feasible if for all reachable markings µc of the closed-
loop and for all transitions t: (i) for all i = 1 . . . n,
if t is closed-loop enabled and t /∈ To,i, firing t does
not change the state (marking) of Si; (ii) if t is plant-
enabled but not closed-loop enabled, there is an Si dis-
abling t such that t ∈ Tc,i.

Theorem 4.1 The decentralized supervisor constructed
in Algorithm 4.1 is feasible, enforces the desired con-
straint, and is as permissive as the centralized supervi-
sor of (N , Tuc, Tuo).

Proof: The notation of Definition 4.1 is assumed.
Note that all supervisors Si have the same connections
to the net and the same initial marking as the central-
ized supervisor. Therefore, all of Si have equal marking
at all times.

Feasibility: If t ∈ Tuo,i fires, for i ∈ C, its firing would
not affect the marking of the centralized supervisor, as
the set of constraints is c-admissible with respect to
(N , Tuc, Tuo), and Tuo,i ⊆ Tuo. Therefore, it does not
affect either the marking of any of Si.

If t is plant-enabled but not closed-loop enabled, the
centralized supervisor would also prevent the firing t.
Since the centralized supervisor is admissible, t /∈ Tuc.
Then, by the definition of Tuc, there is j ∈ C such that
t /∈ Tuc,j. So Sj disables t and t ∈ Tc,j.

Enforcement and permissivity: True, since for any
transition t, t is enabled by the decentralized super-
visor iff it is enabled by the centralized supervisor.

Next we turn our attention to checking whether a con-
straint is d-admissible. Let S be the centralized super-
visor that enforces the constraint in the fully control-
lable and observable version of N . Let T ∗

uo be the set
of transitions that are not detected by S and T ∗

uc the
set of transitions that are not controlled by S.

Algorithm 4.2 Checking whether a constraint is d-
admissible

1. Find T ∗
uo and T ∗

uc.
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2. Find the largest set of subsystems C such that ∀i ∈
C: Tuo,i ⊆ T ∗

uo.

3. If C = ∅, declare that the constraint is not d-
admissible and exit.

4. Define Tuc =
⋂
i∈C

Tuc,i.

5. Does Tuc satisfy Tuc ⊆ T ∗
uc? If yes, declare the con-

straint d-admissible. Otherwise, declare that the
constraint is not d-admissible.

In the algorithm above, as long as a constraint is d-
admissible, the constraint can be implemented for a
minimal set Cmin ⊆ C containing the minimal number
of subsystems such that T ∗

uc ⊇
⋂

i∈Cmin

Tuc,i.

Proposition 4.2 The algorithm checking d-
admissibility is correct.

Proof: We prove that the algorithm declares a con-
straint d-admissible only if it is d-admissible, and that
all d-admissible constraints are declared d-admissible.
Let Tuo =

⋃
i∈C

Tuo,i. By construction, Tuo ⊆ T ∗
uo.

A constraint is declared d-admissible if C 6= ∅ and Tuc ⊆
T ∗

uc. The definition of T ∗
uo and T ∗

uc implies that the
constraint is c-admissible with respect to (N , Tuc, Tuo).
Then, in view of Definition 4.1, the algorithm is right
to declare the constraint d-admissible.

Next, assume a d-admissible constraint. Then, there is
C′ 6= ∅ such that the constraint is c-admissible with
respect to (N , T ′

uc, T
′
uo) (where T ′

uc =
⋂

i∈C′
Tuc,i and

T ′
uo =

⋃
i∈C′

Tuc,i). Then T ′
uo ⊆ T ∗

uo; T ′
uo ⊆ T ∗

uo ⇒ C′ ⊆ C
⇒ Tuc ⊆ T ′

uc ⇒ Tuc ⊆ T ∗
uc. So, the algorithm declares

the constraint to be d-admissible.

In general, it may be difficult to compute the sets T ∗
uc

and T ∗
uo. Then estimates T e

uc ⊆ T ∗
uc and T e

uo ⊆ T ∗
uo

can be used in the algorithm instead. In this case
the algorithm only checks a sufficient condition for d-
admissibility, and so it can no longer detect constraints
that are not d-admissible. In the case of the SBPI,
such estimates can be found from the structural ad-

missibility test of [5], stating that Lµ ≤ b is admissible
if LDuc ≤ 0 and LDuo = 0, where Duc and Duo are
the restrictions of D to the columns of Tuc and Tuo.

Note that when it is possible and convenient to com-
municate in a reliable fashion with each subsystem
of a decentralized system, a centralized solution with
Tuc =

⋂
i=1...n

Tuc,i and Tuo =
⋂

i=1...n

Tuo,i is possible. Fi-

nally, note that in the implementation of d-admissible
constraints, each supervisor Si with i ∈ C relies on the
proper operation of the other supervisors Sj with j ∈ C.
By itself, a local supervisor may not be able to imple-
ment a d-admissible constraint or its implementation
may be overrestrictive. For instance, in the example of
Figure 3, the supervisor of the first subsystem can only
enforce µ1 +µ3 ≤ 1 by itself by enforcing µ1 = 0. How-
ever, this solution is overrestrictive. D-admissibility
illustrates the fact that more can be achieved when su-
pervisors cooperate to achieve a given task, rather than
when a supervisor tries on its own [7].

5 Supervision with Communication

Obviously, communication can be used to change the
attributes of otherwise inaccessible transitions to ob-
servable or even controllable. As an illustration, con-
sider again the robotic system of Figure 2. The com-
puters controlling the two robots are able to communi-
cate through a network connection. The specification
is that the robots should not access the parts bin at
the same time. By requiring each computer to signal
any transition firing in the subsystem it controls, the
sets of observable transitions become To,1 = To,2 =
{t1, t2, t3, t4}. Then the decentralized supervisory so-
lution of Figure 5 can be applied. The realization of a
program implementing a local supervisor is illustrated
on the left subsystem. The marking of C1 may be im-
plemented by a variable c1. Each time the right sub-
system signals that t3 fires, c1 is incremented, and each
time the right subsystem announces that t4 fires, c1 is
decremented. Furthermore, t1 is allowed to fire only
when c1 ≥ 1. When t1 fires, the right subsystem is an-
nounced and c1 is decremented, and when t2 fires, the
right subsystem is announced and c1 is incremented.
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The purpose of communication is to reduce the set of
unobservable transitions Tuo,i such that, if possible,
the given constraints are c-admissible with respect to
(N , Tuc, Tuo). Note that communication cannot reduce
Tuo below the attainable lower bound Tuo,L ⊆ Tuo,
where Tuo,L =

⋂
i=1...n

Tuo,i. Tuc can be changed by se-

lecting a different set C, but it cannot be reduced below
Tuc,L =

⋂
i=1...n

Tuc,i. Tuc,L (Tuo,L) is the set of transi-

tions uncontrollable (unobservable) in all subsystems.

Algorithm 5.1 Decentralized Supervisor Design

1. Is the specification admissible with respect to
(N , Tuc,L, Tuo,L)? If not, transform it to be admissi-
ble (an approach of [5] could be used) or use the de-
centralized design approach of the sequel paper [3].

2. Let S be the centralized SBPI supervisor enforcing
the specification. Let Tc be the set of transitions
controlled by S and To the set of transitions detected
by S.

3. Find a set C such that
⋂
i∈C

Tuc,i ⊆ T \ Tc.5

4. Design the decentralized supervisor by applying Al-
gorithm 4.1 to N and C.

5. The communication can be designed as follows: for
all t ∈ To ∩ (

⋃
i∈C

Tuo,i), a subsystem j such that t ∈
To,j transmits the firings of t to all supervisors Sk

with t ∈ Tuo,k and k ∈ C.

Note the following. First, no communication arises
when To ∩ (

⋃
i∈C

Tuo,i) = ∅. Second, the algorithm does

not take in account communication limitations, such
as bandwidth limitations of the communication chan-
nel. Bandwidth limitations can be considered in the
approach of the sequel paper [3]. Third, this solution
tends to require less communication than a centralized
solution. Indeed, a central supervisor not only needs to
send the control decisions to the local subsystems, but
also to remotely observe all transitions in To. Fourth,
the main limitation of the algorithm is that in the case
of inadmissible specifications, the transformation at the
step 1 may result in constraints that are too restrictive.
If so, the alternative solution we propose in [3] could
be used. Finally, the only way the algorithm can fail
is at step 1, when the specification is inadmissible and
the transformations to an admissible form fail.

Proposition 5.1 The decentralized supervisor is feasi-
ble and equally permissive to the centralized supervisor
S enforcing the specification on (N , Tuc, Tuo,L).

5At least one solution exists, C = {1 . . . n}. This can be seen
from the fact that S admissible w.r.t. (N , Tuc,L, Tuo,L) implies
Tuc,L ∩ Tc = ∅, and from Tuc,L =

⋂
i=1...n

Tuc,i.

Proof: Since S is admissible, Tc ∩ Tuc = ∅ and To ∩
Tuo,L = ∅. Communication ensures that the sets of lo-
cally unobservable transitions become T ′

uo,i = Tuo,i\To.
It follows that the specification is d-admissible with re-
spect to (N , Tuc,1, . . . Tuc,n, T ′

uo,1, . . . T
′
uo,n) and so the

conclusion follows by Theorem 4.1.

6 Conclusions

The design of decentralized supervisors is computation-
ally easy for the class of specifications identified as d-
admissible. When communication between the local
supervisors is allowed, the concept of d-admissibility
can also be used for the design of supervisors enforcing
specifications that are not d-admissible, by the identi-
fication of the events that need to be communicated.
In the decentralized settings with no communication
or with restricted communication, the enforcement of
specifications that are not d-admissible is considered in
the sequel paper [3].
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