Xuping Xu, Panos J.Antsaklis, “Results and Perspectives on Computational Methods for Optimal Control of
Switched Systems,” Hybrid Systems: Computation and Control, Oded Maler and Amir Pnueli (Eds.), pp. 540-
555, Lecture Notes in Computer Science 2623, Springer 2003. Proceedings of the 6th International Workshop
(HSCC 2003), Prague, The Czech Republic, April 3-5, 2003.

Results and Perspectives on Computational
Methods for Optimal Control of Switched
Systems*

Xuping Xu' and Panos J. Antsaklis?

! Department of Electrical and Computer Engineering,
Penn State Erie, Erie, PA 16563, USA,
Xuping-Xu@psu.edu
? Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA,
antsaklis.1@nd.edu

Abstract. This paper surveys some of the recent progresses on com-
putational methods for optimal control of switched systems. A general
model of switched system that allows externally forced switching (EFS)
and internally forced switching (IF'S) is first introduced and two impor-
tant classes of optimal control problems are formulated. After a brief
review of some relevant theoretical results, we present the idea of two
stage optimization. Based on the theoretical results and two stage opti-
mization, we then survey computational methods based on discretization,
and computational methods not based on discretization. Comments are
made on the merits and restrictions of each method.

1 Introduction

Switched systems are a particular class of hybrid systems consisting of several
subsystems and a switching law specifying the active subsystem at each time
instant. Examples of switched systems can be found in chemical processes, au-
tomotive systems, and electrical circuit systems, to name a few.

Recently, optimal control problems of hybrid and switched systems have at-
tracted researchers from various fields in science and engineering, due to the
problems’ significance in theory and application. The available results on such
problems include theoretical and computational ones. The available theoretical
results usually extend the classical maximum principle or dynamic programming
to such problems. As to the computational results, researchers have taken ad-
vantage of efficient nonlinear optimization techniques and high-speed computers
to develop efficient numerical methods for such problems.

This paper surveys some of the recent progresses on computational methods
for optimal control problems of switched systems. Such problems are difficult to
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solve, due to the involvement of switchings of subsystem dynamics. The recent
decade has seen some breakthrough in the development of efficient computational
methods for such problems. However, the literature results are often based on
different models and differ in problem formulations and approaches. Therefore,
it is necessary to call for an overview of these results under a unified framework.
In this paper, we first propose a general model of switched system that in-
cludes externally forced switching (EFS) and internally forced switching (IFS)
and formulate EFS and IFS optimal control problems. Such formulations then
serve as unified frameworks for our survey. After a brief review of some relevant
theoretical results, we present the idea of two stage optimization for EFS prob-
lems where stage 1 seeks optimal continuous input and stage 2 seeks optimal
switching sequence. Extensions of the two stage optimization to IFS problems
are also mentioned. Based on the theoretical results and two stage optimization,
we survey two classes of computational methods — those based on discretization
and those not based on discretization. Several methods based on discretization
and methods for discrete-time problems are overviewed and their merits and
restrictions are indicated. We then report recent developments of computational
methods not based on discretization for stage 1 optimization in which a prespec-
ified sequence of active subsystems is given. We point out that a stage 1 problem
can further be decomposed into stage 1(a), which is a conventional optimal con-
trol problem that seeks the optimal cost given a switching sequence, and stage
1(b), which is a nonlinear optimization problem that seeks the optimal switching
instants. Stage 1(b) poses difficulties because it is hard to obtain the information
of the derivatives of the stage 1(a) optimal cost with respect to the switching
instants. To address these difficulties, we finally overview two methods which can
find approximations and accurate values of the derivative values, respectively.

2 Problem Statement

2.1 Switched Systems

A switched system consists of several subsystems and a switching law. A switch-
ing usually takes place when a certain event signal is received. An event signal
may be an external signal (generated exogenously) or an internal signal gener-
ated when an internal condition for the states, inputs and/or time evolution is
satisfied. In the sequel, we call a switching triggered by an external event an
externally forced switching (EFS) and a switching triggered by an internal event
an internally forced switching (IFS).

Definition 1. A switched system is a 3-tuple S = (D, F, L) where

e D = (I,E) is a directed graph indicating the discrete mode structure of the
system. I = {1,2,--- , M} is the set of indices for subsystems. E is a subset of
IxI—{(i,4)|i € I} which contains the valid events. If an event e = (iy,i2) takes
place, the system switches from subsystem iy to is. Furthermore E = Eg U Ej
(Eg and Er may not be disjoint) where Eg is the external event set and Ej is
the internal event set.
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o F={fi: X; xU; = R"|i € I} where f; describes the vector field for the i-th
subsystem & = f;(x,u). Here X; C R and U; C R™ are respectively the state
and control constraint sets for the i-th subsystem.

o L = LrULy provides logic constraints that relate the continuous state and mode
switchings. Here Ly = {Ac|A. C R™,0 # A, C X;, N X;,,e = (i1,i2) € Eg}
corresponds to the external events; only when x € A, for e = (i1,i2), an EFS
from subsystem i1 to is is possible. Also here L = {I[|[I, CR*, 0 #I, C X;, N
Xi,,e = (i1,i2) € Er} corresponds to the internal events; when subsystem iy is
active and the state trajectory intersects I, for e = (i1,i2), the event e = (i1,i2)
must be triggered and the system is forced to switch to subsystem is. O

For a switched system, the presence of switchings makes the behavior of
the system more complicated than that of conventional systems. In particular,
the evolution of the continuous and discrete states will leave us with a timed
sequence of active subsystems that is defined as a switching sequence as follows.

Definition 2. A switching sequence o in [to,tf] is a timed sequence o =
((toai0)7(t1ai1)7"' a(tKaiK))’ where 0 < K < 00, tg <t < - <tk < tf’ and
ir €I for 0 <k<K. O

A switching sequence o defined above indicates that the system starts from
subsystem ig at tg, and switches to subsystem i from subsystem ix_; at ¢ for
1 <k < K. Subsystem i, will remain active in [ty, tx+1). For a switched system
to be well-behaved, we generally exclude the undesirable Zeno phenomenon, i.e.,
infinitely many switchings in finite amount of time. The pairs (¢, i)’s in o can be
classified into two categories — those corresponding to EFS denoted by (tkE, zkE),
and those corresponding to IFS denoted by (¢,il). By distinguishing EFS and
IFS, we can define the EFS sequence or = ((to,i0), (¢1,i1 ), - , (ti,,i%,)) and
the IFS sequence o7 = ((to,%0), (t1,41), - , (tk,,i%,)). The combination of o5 and

o1 gives us the overall switching sequence o = ogUor (here K1 + Ky = K).

Given a switched system, the overall exogenous control input is a pair (o g, u).
Along with the evolution of z(t), an IFS sequence o will be generated implicitly.
op and o7 then lead to the overall o. Given initial pair (z(to),4o), an exogenous
input pair (og,u) is said to be wvalid if the evolution of the system under it
generates a nonblocking state trajectory z(¢) and a nonZeno o.

Remark 1. For switched systems in Definition 1, the continuous state does not
exhibit jumps at switching instants. We propose this framework due to two rea-
sons. First, in many applications such as some chemical processes, there are no
state jumps at switchings. Second, analysis and design of switched systems with-
out jumps usually require simpler notations and are more amenable to rigorous
study as opposed to systems with jumps. Therefore, we mainly focus on systems
without jumps in this paper. However, we note that many methods reported in
the paper can actually be extended to problems with jumps. O

Remark 2. If we let all subsystems be discrete-time systems, we can similarly
define discrete-time switched systems. |



Xuping Xu, Panos J.Antsaklis, “Results and Perspectives on Computational Methods for Optimal Control of
Switched Systems,” Hybrid Systems: Computation and Control, Oded Maler and Amir Pnueli (Eds.), pp. 540-
555, Lecture Notes in Computer Science 2623, Springer 2003. Proceedings of the 6th International Workshop
(HSCC 2003), Prague, The Czech Republic, April 3-5, 2003.

2.2 Optimal Control Problems

Although general optimal control problems can be formulated for switched sys-
tems with both EFS and IFS, notations would be complicated and results would
be difficult to obtain. Hence, we choose to study two important classes of prob-
lems, i.e., optimal control problems for systems with EFS only (EFS Problems),
and problems for systems with IFS only (IFS Problems). In doing so, the objec-
tive of overviewing available results can be fulfilled, because most of the available
literature results are on computational methods for one of these two classes of
problems. In the following, we call a valid (og,u) (or u for IFS problems) ad-
missible if the corresponding x(¢) meets the terminal manifold.

Problem 1 (EFS Problem). Consider a switched system S with EFS only. Find
an admissible control pair (g, u) (u is piecewise continuous) such that z departs
from a given initial state z(tg) = xo at the given initial time o and meets an
(n — l¢)-dimensional smooth manifold Sy at ty (ty is free) and

J= ¢( ) +ftf L( )) dt+Zl<k<K6($(tk)’ik*17ik)
is minimized (here K is the number of switchings in o). |

Problem 2 (IFS Problem). Consider a switched system S with IFS only. Find
an admissible u(t) (u is piecewise continuous) such that x departs from a given

initial state x(tp) = o at the given initial time t, and meets an (n — ly)-
dimensional smooth manifold Sy at tf (ty is free) and

J = ¢( ) ftf L( )) dt+Zl<k<K6($(tk)’ik*17ik)
is minimized (here K is the number of switchings in o). |

Remark 3. Problems 1 and 2 are formulated as general Bolza problems with
terminal cost v, running cost ft 7 L dt, and switching cost 6. In the sequel, we
assume that f;, ¢, L, and § are smooth enough (e.g., twice continuously differ-
entiable). In the results we will overview, various additional assumptions may
be imposed. For example, for the convenience of developing numerical methods,
problems with fixed ¢y are sometimes studied. In fact, a free-final-time problem
can always be transcribed into a fixed-final-time one by introducing additional
state variables (see page 101 in [30]). O

Remark 4. Problems 1 and 2 are different due to the different exogenous inputs.
Such difference makes the two problems different in many aspects when we de-
velop computational methods. In fact, the implicit generation of oy makes the
IFS problem more difficult. a

3 An Overview of Some Theoretical Results

In this section, we briefly overview some basic theoretical results that can help
understand Problems 1 and 2 and can serve as foundations for the development
of various computational methods.

The Mazimum Principle



Xuping Xu, Panos J.Antsaklis, “Results and Perspectives on Computational Methods for Optimal Control of
Switched Systems,” Hybrid Systems: Computation and Control, Oded Maler and Amir Pnueli (Eds.), pp. 540-
555, Lecture Notes in Computer Science 2623, Springer 2003. Proceedings of the 6th International Workshop
(HSCC 2003), Prague, The Czech Republic, April 3-5, 2003.

[28] is an early paper on continuous-time optimal control problems for a
class of hybrid systems in which transitions of discrete state are triggered by the
continuous state (an IFS problem). The main results in [28] include a version of
MP. In particular, it is proved that the costate satisfies some jump conditions
at the switching instants. Another early paper [25] studies problems akin to
IFS Problem 2 and reports conditions for the existence of optimal solutions for
problems with two subsystems.

More general optimal control problems for hybrid systems with switchings
and jumps have recently been reported in [20, 26]. [20] introduces a general hybrid
system model similar to Definition 1 except for the jumps. Due to the general
hybrid systems model, even analysis of the existence of solutions is quite involved
(and additional assumptions must be made). Hence [20] then focuses on two
special classes of problems and proves a version of MP. In [26], optimal control
problems for hybrid systems with a similar formulation to that of [20] are studied.
The optimal control problems studied there are more like EFS problems. Several
versions of MP are then given there, including a nonsmooth version.

More recent results on EFS problems have been reported in [23,24]. A version
of MP is proposed for problems with running cost only. The MP is specifically
applied to time optimal control problems and linear quadratic problems.

The MPs proposed in the above papers usually provide necessary conditions
with no specific sequence of active subsystems assumed. This introduces a prob-
lem formed by a continuous-time mixed differential algebraic equation (DAE)
and an integer programming problem, which is not amenable for numerical com-
putations. However, in Section 4.2, after introducing the two stage optimization
method, we will state a version of MP for a given sequence of active subsystems
that only involves DAE and can be used for numerical methods.

The Dynamic Programming

Similar to conventional optimal control, DP can be used to derive the HJB
equation for Problems 1 and 2. Detailed derivations of HIB equations for various
formulations of optimal control problems for switched systems and systems with
impulse effect and costs for switchings can be found in [37]. Following the ideas
in [37], a version of HJB for EFS Problem 1 without cost for switchings is derived
in [29], under additional assumptions X; = R*, U; = R™, A, = R". To briefly
reiterate the result, we define

Vi (a,t) 2 mingduissible (o {9(@(00)) + J17 L((r), u(m) dr}
where z(7) is equal to z at time instant 7 = t. If V*!(z,t) € C*[to,t;], then we
have the following HJB equation

min { minjg{ir‘(i,ir)eEE} {V*j (ZL‘, t)} - V*i(l‘, t), ‘/t*i(l‘, t) + minueRm {L(:L‘, u)

+VE (@ D filw,w)} } =0 (1)

The DP method and HJB equation can be useful in developing methods uti-

lizing value functions. (1) is very difficult to solve analytically. One way to solve

it is to discretize the continuous time and state spaces and then apply backward

searching methods to solve the discretized problem. However, combinatorial ex-
plosion problems may arise as the discretization level becomes finer.
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A result closely related to DP is the derivation of the generalized quasi-
variational inequalities (GQVT’s) reported in [5]. The hybrid DP developed in
[12] is also relevant in this regard.

4 Two Stage Optimization

4.1 Two Stage Optimization Formulation

Problem 1 requires the solution of a valid optimal pair (o7}, u*) such that
J(of,u") = ming gpicsible (om,u)s J(om,u). (2)
In [29], a lemma is given which proposes a way to formulate (2) into a two stage

optimization problem. With only slight modifications, we can rewrite the lemma
to be applicable to Problem 1 as follows.

Lemma 1. For Problem 1, if

(a). an admissible optimal solution (o3, u*) exists and
(b). for any given EFS sequence op for which at least one continuous input u
exists so that (og,u) is admissible, there exists a corresponding admissible

u* = u}_ such that the function J, (u) 2 J(og,u) is minimized,

then the following equation holds

min _ J(og,u) = min min J(og,u). (3)
ad. (og.u)’s c€{og|Fu,(ocg,u) 18 ad.} ue{u|(cg,u) 15 ad.}
Here ’ad.’ stands for ’admissible’. |

The right hand side of (3) needs twice the minimization processes. This im-
plies that the following two stage optimization method can be applied.

A Two Stage Optimization Method

Stage 1. Fixing o, solve the inner minimization problem (or claim that op is
invalid, i.e., no u exists for the given og such that (og,u) is admissible).
Stage 2. Regarding the optimal cost for each valid o as a function

Ji = Ji(or) = minue{u\(aE,u) is admissibley J(om,u),
minimize J; with respect to all valid og’s. O

n [29], under the assumptions X; = R*, U; = R™, A, = R", and ¢; being
given, we implement the above method by the following more detailed algorithm.

Algorithm 1 (A Two Stage Algorithm).

Stage 1.(a). Fix the total number of switchings to be K and the sequence of
active subsystems and let the minimum value of J with respect to u
be a function of the K switching instants, i.e., J;1 = Ji(t1,--- ,tx) for
K >0 (to <t1 <---tg <ty). Find Ji. (J1 = 0o when no admissible
pair (og,u) can be found.)
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(b). Minimize J; with respect to t1,--- ,tk.
Stage 2. (a). Vary the sequence of active subsystems to find an optimal solution
under K switchings.
(b). Vary the value of K to find an optimal solution for Problem 1. ad

In the following, when we mention stage 1 optimization, we actually refer to
stage 1 in Algorithm 1. In practice, many problems only require the solutions of
optimal continuous inputs and optimal switching instants for stage 1 optimiza-
tion in which a prespecified sequence of active subsystems is given. We will focus
on such stage 1 optimization in the rest of this section.

IFS problems are more difficult due to the additional constraint that 2 must
be in the set I{;, ;,) when the system switches from subsystem i; to i. Moreover,
the switching instants can depend on the continuous input in a complicated way.
In [31], an extension of the algorithm for EFS problems to stage 1 optimization
of IFS problems is proposed (in the case that the switching set is a hypersurface).

Method 1 (A Method for IFS Problems)

1. Denote in a redundant fashion that an optimal solution to the IFS prob-
lem contains both an optimal continuous input and an optimal switching
sequence (starting at subsystem ig), i.e., regard an IFS problem as an EFS
problem with additional state constraints at the switching instants. Solve
the corresponding EFS problem.

2. Verify the validity of the solution for the IFS problem (i.e., if the system
under the continuous input can evolve validly and generate the corresponding
switching sequence). m|

The decomposition of the problem into two stages and the conceptual Algo-
rithm 1 are still applicable to step 1 in the above method. Such an extension
must address the additional requirement that the system’s state is restricted to
a switching hypersurface at each switching instant.

4.2 More on Stage 1 Optimization

Now we concentrate on stage 1 optimization. Note that many real world problems
are in fact stage 1 optimization problems. For example, the speeding-up of a
power train only requires switchings from gear 1 to 2 to 3 to 4. As can be seen
from Algorithm 1, stage 1 can be further decomposed into two sub-steps (a)
and (b). Stage 1(a) is in essence a conventional optimal control problem which
seeks the minimum of J with respect to » under a given switching sequence
o= ((to,i0), (t1,i1), -+ , (tx,ix)). We denote the corresponding optimal cost as a

) . <A . .
function J; (), where £ = (t1,t2,--- ,tx)?. Stage 1(b) is in essence a constrained
nonlinear optimization problem

min; J; (At) (4)
subject tot € T

where T 2 {f = (t;,- -+ ,tx)T|to <t < -+ < tc < t;}.
Stage 1(a)
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For stage 1(a) where a switching sequence o = ((to,%0), (t1,41),-- -, (tx,ix))
is given, finding .J; (£) for the corresponding  is a conventional optimal control
problem. In stage 1(a), we need to find an optimal continuous input « and the
corresponding minimum J. In order to find solutions for stage 1(a) problems,
computational methods must be adopted in most cases. Most of the available nu-
merical methods for unconstrained conventional optimal control problems with
fixed end-time can be used. See [16,21] for surveys of computational methods.
It is not difficult to use the calculus of variations techniques (see e.g. [13]) to

prove the following necessary conditions.

Theorem 1 (Necessary Conditions for Stage 1(a)). Consider the stage
1(a) problem for Problem 1. Assume subsystem k is active in [ty_1,tx) for 1 <
k < K and subsystem K+1 in [tx,ty]. Let u be a piecewise continuous input such
that © departs from a given initial state x(to) = xo and meets Sy = {z|p;(z) =
0,6 : R* — Rs} at ty. In order that u be optimal, it is necessary that there
exists a vector function p(t) = [p1(t), - ,pn()]T, t € [to,ts], such that

(a). For almost any t € [to,ts] the state equation dfi—(f):(%—g(a:(t),p(t),u(t)))T
and costate equation dfi(tt):—(%—Z(m(t),p(t),u(t)))T hold. Here H(x,p,u)
L(z,u) + pT fr(z,u), if t € [ti—1,tr) (k=K +1ift € [tx,tf]).

(b). For almost any t € [to,ty], the stationarity condition 0= (%—’Z (z(t),p(t), u(t)))T
holds. e "

(c). Atty, the function p satisfies p(tf):(%(iﬂ(tf))) + (% (a:(tf))) A, where A
is an l¢-dimensional vector.

(d). At any t, k=1,2,--- , K, we have p(t,—) = p(tp+). |
In general, it is difficult or even impossible to find an analytical expression of

Ji(t) using the above conditions. The reason is that conditions (a)-(d) present

a two point boundary value differential algebraic equation (DAE) that, in most

cases, cannot be solved analytically. However, the above DAE can be solved ef-

ficiently using many numerical methods (e.g., shooting methods and collocation
methods). Note that Theorem 1 can also be extended to IFS problems if a pre-
specified sequence of active subsystems is given and each set I, is a hypersurface.

The only difference in the IFS case is that the costate will have discontinuous

jumps at the switching instants (see [28,31] for more details).

Stage 1(b)

In stage 1(b), we need to solve the constrained nonlinear optimization prob-
lem (4) with simple constraints. Computational methods for the solution of such
problems are abundant in the nonlinear optimization literature. For example, fea-
sible direction methods and penalty function methods are two commonly used
classes of methods. These methods use the information of first-order derivative
% and even second-order derivative ‘9821 (see [4,17] for details).

Finally in this section, we should point out that [9, 10] independently propose
a conceptual method of hierarchical decomposition similar to stage 1(a) and 1(b)
for a class of hybrid systems optimal control problems under the assumption of

>
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a given sequence of active subsystems. The problems are motivated by previous
works in manufacturing systems [6, 18,19] but the formulation is more general.
Both IFS and EFS problems can be formulated. The method decomposes the
solution of such problems into two levels. The lower level is a conventional op-
timal control problem seeking an optimal continuous input and the higher level
is a nonlinear optimization problem seeking initial and final states (since they
are not prespecified in the problem formulations in [9, 10]) and the optimal time
durations.

5 Computational Methods Based on Discretization

Now we will look at specific computational methods for Problems 1 and 2. The
first class of computational methods are based on discretization of the original
problem, or discretization of some continuous conditions. The benefits of using
discretization-based methods are two fold. First, such methods are usually not
restricted to stage 1. Second, since such methods are usually directly built on
nonlinear programming methods, general constraints can be dealt with and both
EFS and IFS problems can be handled within a unified framework.

5.1 Methods Based on Discretization

A discretization-based method in line with the two stage optimization in Section
4 is reported in [27]. An EFS problem with running cost and switching cost is
considered, assuming no state, continuous input, and switching set constraints.
The subsystem dynamics and the cost functional are discretized to obtain a
discrete-time problem. The cost functional becomes
J(i(0), - i(N = 1),u(0), -+, u(N = 1) = T, (L(2(7), u()) + ()

where the switching cost ¢ is 0 if no switching occurs during the time interval
[t(5),t(4 +1)). A discrete-time version of the two stage optimization then is

Jopt J(Z(O)y 7i(N_ 1)7’“’(0)7"' 7u(N_ 1)) (5)

= inf inf
1(0),--,i(N—1)€I u(0),-- ,u(N—1)ER™

It can be seen that (5) can be solved in two stages. For a given discrete sequence

of active subsystems (i(0),--- ,i(N — 1)) (denoted as i in the following), denote

J1(27$(0)): J(l(O), 71(N_1)7u(0)7 7u(N_1)) (6)

inf
u(0),---,u(N—1)ER™
subject to the discretized system equation. (6) is a classic discrete-time optimal
control problem. The optimal hybrid control is achieved by
Jopt = infi Jl (i, 1‘(0)) (7)
One disadvantage of solving (7) to find the optimal 7 is that it is enumerative.
Another approach based on discretization is reported in [11,12], in which free-
final-time EFS problems with running and switching costs are studied. Instead
of directly discretizing the optimal control problem, the authors first introduces
a set of piecewise C' functions V;’s and forms inequalities of Bellman type. It is
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10

then proved that for every given initial condition (zg,%0), Vi, (zo) gives a lower
bound on the cost for optimally bringing the system from (zg,%0) to the given
(xs,is). To simplify the notation, let us assume that all X; = X and U; = U.
The inequalities can then be written as

0< %@ £ (2 u) + L(z,u), Vo € X,u e Uyjiel

0 < Vi, (z) — Vig(x) + 6(,i1,42), VYV € A(il,w), i1,02 € I, i1 # i2

0= Vif (mf)
For the above equations, a set of value functions V;(z) is involved, with i be-
ing the index of the initial active subsystem. Note that the result of a max-
imization of V;(z) is always identical to the optimal cost for the correspond-
ing initial (z,4). In order to utilize a computer to solve the above inequalities
and maximize V;,(z9), a straightforward approach is to grid the state space
and inequalities to be met at a set of uniformly distributed points. Such a dis-
cretization method leads to a lower bound V; which is a good approximation of
the optimal cost. A suboptimal feedback control law can then be obtained as
u(z,i)=argmin, ¢, { %fi (z,u)+L(z,u)} and i(t)=argmin ;;—) e pp|rea {Vi(z)
+6(z,i(t™), i)}

A closely related paper which also utilizes Bellman type inequalities is [22].
The paper focuses on piecewise linear quadratic optimal control and uses linear
matrix inequalities (LMIs) to solve the maximization problems.

As can be seen from the above discussions, discretization-based methods are
capable of dealing with problems with constraints. Today’s efficient nonlinear
optimization solvers can even provide us with solutions of global optima or solu-
tions close to them. However, the solutions thus obtained may not be accurate
enough in terms of their continuous counterparts.

(i(t7),t)

5.2 Discrete-time Problems

Since discrete-time problems are closely related to discretization methods, here
we briefly mention some results related to our discussions.

[14] utilizes a discrete-time DP approach for quadratic full information EFS
optimal control problems for systems with stochastic linear subsystems. In the
discrete-time setting, the optimal value function can be expressed as a quadratic
function of the continuous state and the optimal continuous input can be ex-
pressed in state feedback form. The optimal switching sequence is found by
backward iteration. The main result in [14] is a method for efficient pruning of
the backward search tree to avoid combinatoric explosion. The idea of the al-
gorithm is to make sure that pruned sequences would have resulted in a higher
cost than those remaining after the pruning. Although this result is proposed in
stochastic settings, it may be extended to deterministic cases.

An early result on discrete-time IFS problems is reported in [15]. In [15],
an IFS optimal control problem for a discrete-time switched system is studied.
The switching of the subsystems depends on the continuous state as well as the
current active subsystem. For each i, it is assumed that IT;;, j € I do not
overlap (expect for the shared boundaries) and cover the state space R® (Here
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I, is understood as the set where the system stays at subsystem 7). An iterative
algorithm using constrained differential dynamic programming, which is similar
to that for IFS problems proposed in Section 4, is proposed. Assume an initial
(2(0),i(0)) is given. An initial guess of u(k),k = 0,--- , N —1, is chosen and then
the corresponding state trajectory z(k) and the active subsystem sequence i(k)
can be computed. Now regard the sequence of active subsystems as a constraint
and solve a constrained optimal control problem. Accept the result if no resultant
state z(k) lies on the boundary of some switching set. Otherwise, according to
certain termination rules, either accept the result or perturb the active subsystem
sequence constraint and repeat the constrained optimization.

One of the very nice modeling frameworks for hybrid systems is the mixed
logical dynamical (MLD) systems [1], which describes discrete-time switched and
hybrid systems as follows

z(k+1) = Az(k) + Biu(k) + B26(k) + Bsz(k) (8)

E26(k) =+ E3Z(I€) < Elu(k) =+ E4ZL'(]€) + Es (9)

where z € R" x {0,1}™ is a vector of continuous and binary states, u €

R™e x {0,1}™ are the continuous and binary inputs, 6 € {0,1}" and z € R"

represent auxiliary binary and continuous variables respectively, which are intro-
duced when transforming logic relations into mixed-integer linear inequalities.

Based on that modeling framework, [2] studies optimal control problems
which require the minimization of a weighted [; /oo-norm of the tracking error
and the input trajectory over a finite horizon. The problem is motivated by the
requirement of designing a stabilizing model predictive controller. The overall
optimal control problem subject to constraints (8)-(9) can then be regarded as
a multiparametric mixed-integer linear programming (MILP) problem. If the
optimal control problem uses performance criteria based on quadratic norms, a
recent result in [3] shows that the optimal control for the finite time optimal
control problem is a time-varying piecewise affine state feedback control law.
Such optimal control law can be computed by means of dynamic programming
and multiparametric quadratic programming. Note that the benefit of using
an MLD framework is that there is no need to distinguish the optimization of
continuous and discrete inputs (i.e., stages 1 and 2). However, such result can
only be obtained for a class of discrete-time problems with linear subsystems.

6 Computational Methods Not Based on Discretization

As mentioned in Section 5, solutions obtained by discretization-based methods
may not be accurate enough in terms of their continuous counterparts. Recently,
some results that do not rely on discretization have been reported. In particular,
many of these results are developed for stage 1 of Algorithm 1. The ideas of
these results are based on the observation that stages 1(a) and 1(b) can be
solved separately and iteratively. The following conceptual algorithm describes
such an iterative method and provides a formal framework for the optimization
methods in the sequel.

Algorithm 2 (A Conceptual Algorithm for Stage 1 Optimization).
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. Set the iteration index j = 0. Choose an initial ¢/. N
. By solving an optimal control problem (i.e., stage (a)), find Jy (#).

(1)

(2) 3

(3). Find %(ﬂ) (and e (t7) if second-order method is to be used).
(4)

[N

12
. Use some feasible direction method to update # to be #1! = 7 4+ o d#/
(here dti = —(%(fj))T or dil = —(%(fj))fl (%(fj))T and the stepsize
o’ is chosen using the Armijo’s rule [4]). Set the iteration index j = j + 1.
(5). Repeat Steps (2), (3), (4) and (5), until a prespecified termination condition
is satisfied (e.g. the norm of the projection of % (#7) on any feasible direction
is smaller than a given small number ). |

N

Note that following the similar two stage decomposition idea, [9,10] also in-
dependently come up with iterative solution methods similar to Algorithm 2. Tt
should be noted that the key difficulty of Algorithm 2 lies in the computation
of %(fj) (and 88tJ21 (7)) in step (3). In [9], it is proposed that the lower level
problems be solved analytically first and then the result is substituted into high
level to seek the optimal switching instants. However, we should point out that
it is not always possible to derive analytical solutions to the lower level optimal
control problems. This is evident from the fact that only few classes of conven-
tional optimal control problems possess closed form solutions. Even for the case
of linear quadratic (LQ) problems, we do not have the closed form solutions [35].
Therefore it is necessary to devise optimization methods that do not require the
explicit expression of J; as a function of ¢;’s. In [32,34, 35], the authors noticed
that stage 1(b) (i.e., higher level) is a nonlinear optimization problem that can
be optimized if we know the derivatives of the cost with respect to the switching
instants. Instead of seeking closed form solutions to stage 1(a), we only need
accurate values of the derivatives in order to carry out stage 1(b) optimization.
Here we will survey two methods of computing these derivatives. In the follow-
ing, we assume that X = R*, U; = R, 4. = R*, Sy = R", and there is no
switching cost in the problem formulation.

6.1 Method Based on Direct Differentiations of Value Functions

The first method was reported in [34] that approximates the derivatives by direct
differentiations of value functions. Consider stage 1 optimization where the num-
ber of switchings is K and the order of active subsystems is 1,2,--- , K, K + 1.
We need to find an optimal switching instant vector ¢ = (¢1,--- ,tx)” and an
optimal control input wu.

Given a nominal # and a nominal u, we denote the corresponding cost as a
value function (which is not necessarily optimal)

VO(x(to),to,tr, -+ stx) = ¢(x(ts)) + [} L(w,u) dt+ -+ [ L(w,u) dt
where the superscript 0 is to indicate that the startlng time for evaluation is t.
Similarly, we can define the value function at the k-th switching instant as
Vk(x(t)tk,tkﬂ,--- tK): ( )—l—ft’““Lxu dt + - +fthxu dt.

82v°
8t2 )

The idea of the method is to approximate itl and 24 by 2 (% and

o2
respectively.
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8%vO
o2

avo
a7
Vig = LET — LM VEH (57 — 5,
‘/:t?ctk = (fk7 - fk+)Tkaz+(fk7 - .fk+) - (Vzk+falcc+ + Llac:+)(fk7 - .fk+) + (ka+(f17
—fo )+ L = L) f* 7+ (VT fam + LT )alt ™ — (VI + Ly )i,
Vi = (Vat(Fm = £ + (F7 = Vel + L — L) Al t6) (£ = £7),
where we write a function with a superscript k— (resp. k+) whenever it is eval-
uated at t; and the nominal values z(¢1), u(tr—) (resp. ¢, and the nominal
values z(t), u(tr+)) (see [34] for details). Note here A(#;,t) is the state tran-

and

The explicit expressions of are derived in [34]. They are

sition matrix for the variational time-varying equation g(t) = Wy(t) for
y(t),t € [tk,t]; here f corresponds to the active subsystem vector field at each
time instant and u, z are the current nominal input and state. Also note here
b & dulten) apd ght 2 dulle),
Furthermore, a modified and more efficient version of the method is reported

in [34] for EFS problems with linear subsystems and general quadratic costs.

6.2 Method Based on Parameterization of the Switching Instants

As opposed to approximations in [34], a method is proposed in [32, 35] to obtain
accurate values of the derivatives of J;. The method is based on solving boundary
value differential algebraic equations (DAEs). Such DAEs are similar to those
for conventional optimal control problems, except for more equations due to the
differentiations with respect to the switching instants (regarded as parameters).

To illustrate the method and make notation clear, let us concentrate on
the case of two subsystems where subsystem 1 is active in the interval ¢t €
[to,t1) and subsystem 2 is active in the interval ¢t € [t1,t] (1 is the switching
instant to be determined). We also assume that Sy = R™ (for general Sy, we can
introduce Lagrange multipliers as in Theorem 1 and develop similar method).
It was shown in [32,35] that the stage 1 problem can be transcribed into the
following equivalent problem.

Problem 3 (An Equivalent Problem). For a system with dynamics
da(r) _ {(mnﬂ —to) fi(z,u), for T €]0,1),

dr (t;y — znt1) fo(z,u), for 7 € [1,2],
find optimal parameter z,11 and u(7), 7 € [0, 2] such that the cost functional

T =9¢(z(2)) + [ (o1 — to)L(z,u) dr + [ (t; — xns1)L(z,u) dr
is minimized. Here ty, t; and 2(0) = zo are given. ,4; is a parameter which
corresponds to the switching instant ¢;. The independent time variable 7 has
the following relationship to the original time variable ¢
_{t0+($n+1—t0)7', 0§T<1,

O
Tni1 + (tf — iL'n+1)(T — 1), 1<r<2.

Based on the equivalent Problem 3, we now develop a method for deriving
accurate numerical value of ‘Uil—{ll. First note that for Problem 3, the optimal z
and u will be functions in z,,41. Also note that

Ji(Tn41) = w($(2,$n+1)) + fol (n4+1 — to)L(x,u) dr + ff(tf — Tnt1)L(z,u) dr.
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Differentiating J; with respect to x,+1 provides us with

a z(2,2y .
dJq — 111( ( +1)) oz (2,2p41) +f01 (L(l‘,u)+(1‘n+1 _to)(aL oz

dep, 41 oz 0Ty 41 Bz Oy 41
a Is 2 s ls s a
+% B:cnu+1 )) dr + fl ( - L(l‘, ’lL) + (tf - xn+1)(5_§ 5znz+1 + % 5znu+1 )) dr.
dx ou

Therefore, what we need to know are the values of z, u In

’ M7 m
[32,35], it was shown that their values for 7 € [0, 2] can be obtained by solving
a two point boundary value DAE formed by the parameterized state, costate,
stationarity equations (in order to make exposition brief, we do not list them

here but refer the readers to Theorem 1), the boundary and continuity conditions
$(0, $n+1) = Zo, -
(2, Tnt1) = (%(ﬁ@yfcnﬂ)))

for Problem 3 and their derivatives with respect to the parameter x,;.

For each given z,41, the DAE can be solved using numerical methods.
Assume we have solved the above DAE and obtained the optimal z(7, zp11),
p(1, p41) and u(7, Z,41), we can then obtain the value of the derivative diﬁl'
Using this method, we can address general problems involving nonlinear systems
and cost functionals. This method is also applicable to the case of more than
one switchings and to the computation of higher order derivatives. Moreover, for
EFS problems with linear subsystems and general quadratic costs, the burden of
solving DAE can be relieved and one only needs to solve a set of ODEs formed
by the Riccati equations and their differentiations with respect to the switching
instants. A preliminary result of applying this method to IFS problem based on
Method 1 discussed at the end of Section 4.1 is also reported in [31, 35].

6.3 Results for Switched Autonomous Systems

When each subsystem is autonomous (i.e., with no continuous input), stage 1
problem becomes a nonlinear optimization problem and J becomes a function of
the switching instants. The method in Section 6.1 can still be applied to similar
stage 1 problems where a prespecified sequence of active subsystems is given.
Because u is absent, it is shown in [33] that accurate values of % and 8;521
can be obtained. The result has been extended to hybrid autonomous systems
with state jumps [36]. Closely related papers are [7,8] that present closed-loop
solutions to a special class of problems, i.e., infinite horizon problems for switched
linear autonomous systems. However, there are some differences between the
results in [7, 8] and [33, 36]. First, [33,36] deal with finite horizon problems with
nonlinear subsystems, and with costs which are not necessarily quadratic, while
[7,8] deal with infinite horizon problems with linear subsystems and quadratic
costs. Moreover, the result in [33,36] can be applied to reachability problems,
while the result in [7, 8] fits better for stability problems.

7 Conclusion

In this paper, we have surveyed some recent results on computational methods
for optimal control of switched systems. In particular, we formally formulate
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the problems and discussed in detail the two stage optimization. Computational
methods based on discretization and computational methods not based on dis-
cretization are surveyed. We have aimed at providing an overview of general
results and ideas. For technical details, the reader may consult the reference
listed below. Despite the results reported here, it can be seen that the subject is
still largely open and we are far from total understanding and complete solution
of such problems. Each result we presented usually imposes several additional
assumptions so that a specific method can be developed. There are many future
research directions which we can pursue. For example, even stage 1 optimization
for problems with state and input constraints has not been solved yet. By solv-
ing this problem, applications to real-world processes can be greatly expanded.
From the paper, it can also be seen that very few results are available for effi-
cient optimization of the number and the order of active subsystems. This can
be a very challenging problem that our continuous methods may no longer be
capable of handling. Moreover, extensions of the surveyed methods to general
hybrid systems can also provide us with many new results. In all, the subject
of computational methods for optimal control problems of switched and hybrid
systems is an exciting open area that deserves more attention and can stimulate
the development of hybrid system theory and application.
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