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Chapter 4

Robust Regulation of Polytopic
Uncertain Linear Hybrid
Systems with Networked
Control System Applications™

Hai Lin and Panos J. Antsaklis

Abstract; In this chapter, a class of discrete-time uncertain linear hybrid systems,
affected by both parameter variations and exterior disturbances, is considered. The
main question is whether there exists a controller such that the closed loop system ex-
hibits desired behavior under dynamic uncertainties and exterior disturbances. The
notion of attainability is introduced to refer to the specified behavior that can be
forced to the plant by a control mechanism. We give a method for attainability check-
ing that employs the predecessor operator and backward reachability analysis, and
we introduce a procedure for controller design that uses finite automata and linear
programming techniques. Finally, networked control systems (NCS) are proposed as
a promising application area of the results and tools developed here, and the ultimate
boundedness control problem for the NCS with uncertain delay, package-dropout,
and quantization effects is formulated as a regulation problem for an uncertain hy-
brid system.
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4.1 Introduction

Hybrid systems are heterogeneous dynamical systems whose behavior is determined
by interacting continuous-variable and discrete-event dynamics [2, 26]. The last
decade has seen considerable research activities in the modeling, analysis, and syn-
thesis of hybrid systems involving researchers from a number of traditionally distinct
fields. On the one hand, computer scientists extend their computational models and
verification methods from discrete systems to hybrid systems by embedding the con-
tinuous dynamics into their discrete models. Typically these approaches are able to
deal with complex discrete dynamics described by finite automata and emphasize
analysis results (verification) and simulation methodologies. From this perspective,
the safety or invariance properties have gained the most attention [3, 23]. Other prop-
erties investigated include the qualitative temporal notions of liveness, nonblocking,
fairness along infinite trajectories, and qualitative ordering of events along trajec-
tories {24]. One of the main formal methods is symbolic model checking, which
is based on the computation of reachable sets for hybrid systems [1]. As a result, a
good deal of research effort has been focused on developing sophisticated techniques
drawn from optimal control, game theory, and computational geometry to calculate
or approximate the reachable sets for various classes of hybrid systems [9, 3]. How-
ever, the reachability (hence verification) problem is undecidable for most interesting
classes of systems [1]. Working in parallel, researchers from the areas of dynamical
systems and control theory have viewed hybrid systems as collections of differential/
difference equations with discontinuous or multivalued right-hand sides [7, 19, 4].
In these approaches, the models and methodologies for continuous-valued variables
described by ordinary differential/difference equations were extended to include dis-
crete variables that exhibit jumps or extend results to switching systems. Typically
these approaches are able to deal with complex continuous dynamics and mainly con-
cern stability [19, 10], robustness [15, 10], and synthesis issues [7, 19, 10]. However,
there has been little work done on integrating these concerns within a framework for
formal methods, perhaps because formal methods traditionally lie in the realm of
discrete mathematics, while these concerns from control theory lie separately in the
realm of continuous mathematics. In this chapter, we will attempt to integrate these
concerns within a framework of formal methods.

The model uncertainty and robust control of hybrid systems is an underexplored
and highly promising field [15, 24]. Reachability analysis for uncertain hybrid sys-
tems has appeared in [17, 21], and there is also some work on analyzing the induced
gain of switched systems [14, 29, 30]. In [29], the £, gain of continuous-time linear
switched systems is studied by an average dwell time approach incorporated with a
piecewise quadratic Lyapunov function, and the results are extended to the discrete-
time case in [30]. In [14], the root-mean-square (RMS) gain of a continuous-time
switched linear system is computed in terms of the solution to a differential Ric-
cati equation when the interval between consecutive switchings is large. In [24],
the authors give an abstract algorithm, based on modal logic formalism, to design
the switching mechanism among a finite number of continuous systems, and the
closed-loop system forms a hybrid automata and satisfies the specifications. In [13],



uiesscd. 1ne proposed approach 1s to employ logic-based switching amon g a family
of candidate controllers. Note that most of the existing methods for synthesizing hy-
brid control systems either manually decouple the synthesis of the continuous control
law and the design of the discrete event control signal, or only design the switching
mechanism. Considering that the continuous dynamics and discrete dynamics are
interacting (coupling) tightly in hybrid systems, we believe that the synthesis prob-
lem of hybrid systems has not been solved in a satisfactory way. In this chapter we
attempt to present an integrated framework that directly addresses synthesis issues
for both the continuous and discrete parts of the hybrid control systems.

In this chapter, we concentrate on a class of uncertain hybrid systems with poly-
topic uncertain continuous dynamics, called “discrete-time polytopic uncertain linear
hybrid systems.” The motivation for introducing uncertainty into the hybrid dynam-
ical systems model can be described as follows. First, uncertainty of the plant and
environment is one of the main challenges to control theory and engineering. There-
fore, it is very important for the controller design stage to ensure that the desired per-
formances are preserved even under the effect of uncertainties. The system param-
eters are often subject to unknown, possibly time-varying, perturbations. Moreover,
the real processes are often affected by disturbances and it is necessary to consider
them in control design. Another challenge to control theory and engineering is the
nonlinearity of the real world dynamics, since no general methodologies that deal
effectively with nonlinear systems exist as yet. In order to avoid dealing directly
with a set of nonlinear equations, one may choose to work with sets of simpler equa-
tions (e.g., linear) and switch among these simpler models. This is a rather common
approach in modeling physical phenomena. In control, switching among simpler dy-
namical systems has been used successfully in practice for many decades. Recent
efforts in hybrid systems research along these lines typically concentrate on the anal-
ysis of the dynamic behaviors and aim to design controllers with guaranteed stability
and performance, see, for example, [28, 16, 5, 18] and the references therein.

Uncertain systems with strong nonlinearities are often of interest. If we use or-
dinary piecewise linear Systems to approximate and study such nonlinear systems,
we have to shrink the operating region of the linearization. This results in a large
number of linearized models, which makes the subsequent analysis and synthesis
computationally expensive or even intractable. So we propose to introduce a bundle
of linearization, whose convex hull covers the original (may be uncertain) nonlinear
dynamics, instead of approximating with just a single linearization. In this way, we
may keep the operating region from shrinkin g and we may study uncertain nonlinear
Systems in a systematic way with less computational burden (see Figure 4.1.1).

Our contro! objective is for the closed-loop system to exhibit certain desired be-
havior despite the uncertainty and disturbance. Specifically, given finite number of
regions {Qp, 2, -, s} in the state space, our goal is for the closed-loop system
trajectories, starting from the given initial region g, to go through the sequence of
finite number of regions Q;, §22,---, Qs in the desired order and finally to reach
the final region €2, and then remain in ) »m. This kind of specification is analo-
BOus to the ordinary tracking and regulation problem in pure continuous-variable
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Figure 4.1.1: Piecewise linear approximation and uncertain piecewise linear cover-
age

dynamical control systems. In addition, it also reflects the qualitative ordering of
event requirements along trajectories. One of the main questions is to determine
whether there exists admissible control law such that the region sequence can be
followed. If there exists such admissible control law, the region sequence specifica-
tion {2, 1, -+, S} is called attainable. The attainability checking is based on
the backward reachability analysis and the symbolic model checking method. The
next question is how to design an admissibie control law to satisfy the closed-loop
specification. An optimization-based method is given in this chapter to design such
admissible control law.t

The organization of the chapter is as follows. Section 4.2 defines polytopic uncer-
tain linear hybrid systems and formulates the tracking and regulation problems. Then
in Section 4.3, a robust one-step predecessor operator for the uncertain linear hybrid
systems is studied, which serves as the basic tool for the analysis that follows. In
Section 4.4, the necessary and sufficient conditions for checking the safety, reacha-
bility, and attainability are given. Then, the robust tracking and regulation controller
synthesis problem for the polytopic uncertain linear hybrid systems is formulated and
solved in Section 4.5, which is based on linear programming techniques. In addition,
Networked Control System (NCS) is proposed as a possible application field of the
theoretic results and tools developed here, and the ultimate boundedness control for
NCS is formulated as a regulation problem for the uncertain hybrid systems studied
in this chapter. Finally, concluding remarks are made.

4.2 Problem Formulation

We are interested in the following discrete-time uncertain hybrid dynamical systems.

Definition 4.2.1. The discrete-time polytopic uncertain linear hybrid systems are de-

TThis chapter is an extension of our group's previous work [18] to uncertain systems and to more
general cases. Earlier work appeared in [21, 22].
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fined by

a(t) = d&(q(t — 1), m(z(t)), 0.(t), 0u(?)) (4.2.2)
where ¢ € Q = {¢1,¢2,- - ,¢s} and Q is the collection of discrete states (modes);

x € X C R" and X stands for the continuous state space. For mode ¢, the continu-
ous control u € U, C R™, and the continuous disturbance d € D, C RP, where U,,
D, are bounded convex polyhedral sets. Denote

u=\Ju, o=\,

geQ geQ

o A4, € RV B, € R**™, and E, € R**? are the system matrices for the
dlscretc state g. The entries in A and B are unknown, and may be time-
variant, but [4,, B,] are contamed in a convex hull in R®*" x R®*™, that
is

N‘J Nq
[Ag, Bjl =Y M[ALBI, A20) A=l
i=1 i=1

e 7: X — X/E, partitions the continuous state space X C R™ into polyhedral
equivalence classes.

e g¢(t) € act(w(z(t))), where act: X/E, — 29 defines the active mode set.

o §:QxX/E; xE, x L, = @ is the discrete state transition function. Here
o. € ¥, denotes a controllable event and ¥, the collection of uncontrollable
events.

e The guard G(q, g') of the transition (g, ¢') is defined as the set of all continuous
states x such that ¢' € act(w(z(t))) and there exist controllable event o, € X,
such that ¢’ = é(q, n(x}, 0., 0y ) for every uncontrollable event o,, € L,,. The
guard of the transition describes the region of the continuous state space where
the transition can be forced to take place independently of the disturbances
generated by the environment.

Remark 4.2.1. Note that in the above definition, we do not consider *“state jumps”
(reset) for continuous state z explicitly. However, the reset function can be easily
included in our model by adding some auxiliary modes.

In the following we assume the existence of the solution for such uncertain hybrid
Systems under given initial conditions. And we assume that exact state measurement
(g,z) is available. An admissible control input (or law) is one that satisfies the
input constraints (X.,,). The elements of an allowable disturbance sequence are
contained in (X, Dy).
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We consider specifications that are described with respect to regions of the hybrid
state space. Consider a finite number of regions {Qg, 21, -+, Qu} C Q x X,
where §); = (q;, P;) are regions in the hybrid state space. Note that the continuous
part P; does not necessarily coincide with the partitions of 7 in Definition 4.2.1, and
this gives us more flexibility. However, it is required that the following consistency
condition holds:

P; C ﬂ Inv(q;) (4.2.3)
qiEq;

where Inv(g;) = {z € X: ¢; € act(n(z))}. Inv(g;) is similar to the concept of
invariant set of mode ¢; in hybrid automnata.

Our control objective is for the closed-loop system trajectories to follow a given
sequence of regions {Q, 1,---, ar} C @ x X, despite the uncertainty and
disturbance. One of the main questions is to check whether there exists an admissi-
ble control law, o.[q(t), z(t)] € L. and u[g(t), z(t)] € Uy, such that the hybrid
state trajectory (g(t), z(t)) goes through the regions, Qg, (1, 3, - - -, in the specified
order and the closed-loop system satisfies some desired requirements. This solution
involves sequencing of events and eventual execution of actions. If there exist admis-
sible control laws such that the region sequence starting from Qg can be followed, we
call the sequence of regions specification {Qg, Q,---, Qu} C Q x X attainable.
To check the attainability of a sequence of regions specification, two different kinds
of properties should be checked: the direct reachability from region ©; to Q;, for
0 < ¢ < M and the safety (or controlled invariance) for region Qps. The analysis
problems for safety and direct reachability are formulated as follows.

e Safety: Given a region 2 C @ x X, determine whether there exist admissible
control laws such that the evolution of the system starting from Q will remain
inside the region for all time, despite the presence of dynamic uncertainties
and disturbances.

o Reachability: Given two regions Q;, 3 C Q x X, determine whether there
exist admissible control laws such that all the states in §2; can be driven into
§22 in finite number steps without entering a third region.

The safety, reachability, and attainability checking are all based on the backward
reachability analysis and the symbolic model checking method. In the next section,
we will briefly discuss the backward reachability analysis, which serves as one of
the basic tools for the analysis that follows. After answering how to check the at-
tainability of a specification, we will design the admissible control law, o, [g(t), z(t)]
and u[g(t), z(¢)], such that the hybrid state trajectory (¢(t), z(t)) goes through the
regions, 1o, 1y, - - -, in the specified order and such that the closed-loop system sat-
isfies some desired requirements.

4.3 Robust One-Step Predecessor Set

The basic building block to be used for backward reachability analysis is the robust
predecessor operator, which is defined below.




Definition 4.3.1. The robust one-step predecessor set, pre({2), is the set of states
in @ x X, for which, despite disturbances and dynamic uncertainties, admissible
control inputs exist and guarantee that the system will be driven to {2 in one step, i.e.,

pre(f) = {(¢(t),2(t)) € Q x X|Vo, € Tu,d(t) € Doy, Ioe € T, ult) € Uy,
st. (gt +1), Agoz(t) + Byou(t) + Byyd(t)) € Q)

where : } N ‘
[Aqt)» Bycy] € Conv, 1 [Ayy. Byyy)-

The predecessor operator has the following properties.

Proposition 4.3.1. For all Q) and Q,, ) C Qs = pre(Qy) C pre(2s). If Qs
given by the union, Q = |J; Q;, then pre(Q) = | J; pre(Q;).

Next, we assume that a region of the state space is defined as ¢ = (q,P) C
@ x X, where P is a piecewise linear set. Without loss of generality, we assume that
P is convex and can be represented by P = {z € X|Gz < w}, where G € R"*",
w € R”. Here a < b means that all entries in the vector (a — b) are all nonpositive.
If P is nonconvex, then it is known that nonconvex piecewise linear set P can be
written as finite union of convex piecewise linear set F;, that is, P = U2, P; [27].
And © = | J, Q; = J,(q, F;). Because of the above proposition, we have pre(Q2) =
U, pre(§2;). Similarly, without loss of generality we assume that the discrete part of
{2 contains only one mode, that is |q| = 1 or q = {g}.

We are interested in computing the set of all the states that can be drivento (} =
(g, {Gx < w}) by both continuous and discrete transitions despite the presence
of dynamic uncertainties and disturbances. To calculate pre(S?), we first calculate
the predecessor set for §) either purely by discrete transition, pre,(2), or purely by
continuous transition at mode g, pref(P). Then an algorithm is given for pre(Q?) by
considering the coupling between pre,(?) and pred(P).

4.3.1 Discrete transitions

The predecessor operator for discrete transitions is denoted by prey: 29X —
29%X and it is used to compute the set of states that can be driven to the region
by a discrete instantaneous transition ¢’ — g which can be forced by the controller
for any uncontrollable event. The predecessor operator in this case is defined as
follows:

pre; () = {(¢',z) € Q x PVo, € Z,,F0. € ¢, g =6(¢',z,0¢,0.)}.

For every discrete transition that can be forced by a controllable event we have that

preg() = |J {d}x(G(d. 9N P)

g'€act(P)

where G(g', g) is the guard set of transition ¢’ — ¢.
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4.3.2 Continuous transitions

In the case of continuous transitions, we define the continuous predecessor oper-

ator under mode ¢ as
pred : 2% 5 2%,

It computes the set of states for which there exists a control input so that the contin-
uous state will be driven into the set P for every disturbance and uncertainty, while
the system is at the discrete mode ¢. The action of the operator is described by

pred(P) = {z € X|Vd € D,,V[4,, B,] € Convi\s ({48, Bi)), Fu € U,
s.t. Agz + Byu + E,d € P}.

4.3.3 Computation of the predecessor operator

As explained above, the predecessor operator for discrete transitions is given by
the union of the guards of those transitions that are feasible and can be forced by a
control mechanism. Since the guards are regions of the state space that are included
in the description of the model, we concentrate on the predecessor operator for the
continuous transitions.

Let us denote pre{ ;(P) the continuous predecessor set of the ith vertex [A}, Bi]
forl <i <N, That is,

pre{ ;(Py = {z € X|Vd € Dy, Fu € Uy, s.t. Az + Biu + E,d € P}

Because of linearity and convexity, we can derive the relationship between pre] (P)
and pre?( P) as the following proposition.

Proposition 4.3.2.

pre(P) = () pre ;(P)

Remark 4.3.1. The significance of the proposition is that the calculation for the con-
tinuous predecessor for the polytopic uncertain linear hybrid systems can be boiled
down to the finite intersection of continuous predecessor sets corresponding to the
dynamic matrix polytope vertices, which have deterministic continuous dynamics.
The predecessor set under deterministic continuous dynamics, pregﬂ-(P), can be
computed by Fourier-Motzkin elimination [25] and linear programming techniques,
given in [18].

In the following, we describe an algorithm for calculating the robust predecessor
set pre(f2) under both discrete and continuous transitions. Consider the uncertain
hybrid systems of Definition 4.2.1 and a region 0 = (q,P). We denote {Pr'}
(1 = 1,---, N) the partition of the continuous state space X by the map 7 as given
in Definition 4.2.1. The following algorithm computes all the states of the hybrid
system that can be driven to §2 in one time step.




Algorithm 4.3.1. Predecessor Operator

INPUT: Q = (q,P), S =0

fori=1,---,N,
Q;=PNPr
ifQ: #0

for ¢' € act(P])
8¢ =G(g,9)NQ
if ST # 0
V=X
forj=1,--- ,Nyp
V =Vnpred (57)
end
ifV #0
S=Su({d}xV)
end if
end if
end
end if
end
OUTPUT: pre(?) = S

Remark 4.3.2. Note that pre] ;(P) is a piecewise linear and piecewise linear sets
are closed under finite intersections, so

N‘i

m preg,i(P )

i=1
is also a piecewise linear set. Piecewise linear sets are relatively easy to calculate
and be efficiently represented in computers.

Let us see an numerical example for the predecessor operator.

Example 4.3.1 (Predecessor Operator). Consider an uncertain hybrid system with
two modes, gg and ¢;. The continuous dynamics are described by

[ Aoz(t) + Bou(t) + Eod(t), ¢=qo
(t+1) = { fl(::c(t) + B’Tu(t) + Ec:d(t), qg=q
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where
0.9568 0.1730 0.2523 1.0934 0.3721 0.5367
Ay = |[0.5226 0.9797 0.8757 |, A2 = |0.5343 1.2785 1.3450
0.8801 0.2714 0.7373 1.7740 0.9329 0.8021
0.9883 1.5038 0.2259
By = |0.5828 0.9167 |, Ey = | 0.5798
0.4235 0.8564 0.7604
0.1509 0.8600 0.4966 0.2154 0.8942 0.5500
Al = [0.6979 08537 0.8998 |, A2 0.7797 0.8826 0.9725
0.3784 0.5936 0.8216 0.4444 0.6277 0.8526
0.8385 0.9088 0.6946
B = |[05681]), B2=1{06227|, E; = | 06213 ].
0.3704 0.4149 0.7948

The partition of the state space is obtained by considering the following hyperplane
h]_(a:) =T — 5, hg(.’L‘) = Ty — 9, hg(il:) = T3 — 5, h4($) =, hs(m) = Ia, and
he(z) = z3. Assume v € U = [~1,1],d € D = [-0.1,0.1]. Here we assume that
X =R and G = G¥ = X. Consider region Q2 = ({qo,q1}, P), where P is
the tube with edge 5. In order to calculate pre(£2), we first calculate the continuous
predecessor sets pre?° (P), pre (PN Gi1), pred! (P), and pre?' (P N Gi°). It turns
out that pre*(PNGY) = pref°(P), Wthh is shown in Figure 4.3.1, and preﬁ“(Pﬂ
G¥°) = prel' (P) as shown in Figure 4.3.2. The predecessor operator is given by

pre(Q)) = (qo, pre’ (P)) U (qu, pre* (P)).
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Figure 4.3.1: Illustration for the predecessor sets
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Figure 4.3.2: Illustration for the predecessor sets

4.4 Safety, Reachability, and Attainability

In this section, we first present necessary and sufficient conditions for checking the
safety for a given region @ C @ x X and the direct reachability between two given
regions 2; and Q5. Then a necessary and sufficient condition for checking the at-
tainability of a given specification is presented.

4.4.1 Safety

The following is an important, well-known geometric condition for a set to be
safe (controlled invariant).

Theorem 4.4.1. The set Q) is safe if and only if 2 C pre(f2).

The proof follows immediately from the definition of the predecessor set pre(2).
Testing for safety include the following: compute pre({2), which can be efficiently
done by the predecessor operator algorithm described in the former section; test
whether 0 C pre(2), which can be checked by the feasibility of a linear program-
ming problem. So this condition can be efficiently tested by solving a finite number
of linear programming problems that depend on the number of regions and discrete
states of the system.

4.4.2 Reachability

Consider the reachability problem for uncertain linear hybrid systems in Defini-
tion 4.2.1. It should be emphasized that we are interested only in the case when
reachability between two regions 2; and Q is defined so that the state is driven to
Qs directly from the region Q; in finite steps without entering a third region. This
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is a problem of practical importance in hybrid systems since it is often desirable to
drive the state to a target region of the state space while satisfying constraints on the
state and input during the operation of the system.

The problem of deciding whether a region {25 is directly reachable from €2; can be
solved by recursively computing all the states that can be driven to {2; from Q; using
the predecessor operator. Given {2; and §1,, define an N-step directly reachable set
from €} to 5,

PREg1 () = Pre(- - pre(pre(2) N )N Q- ),

N times

assume PRE?)1 (Q2) = Q; N Q. With the introduction of the directly reachable set
from §2; to Q) by taking union of all the finite step directly reachable set from §2; to
2, thatis CRq, (2) = UN -0 PREY ,(€22), the geometric condition to check the
direct reachability can be given as follows.

Theorem 4.4.2. Consider an uncertain hybrid system described by Definition 4.2.1
and the regions (0, and Q. The region Qs is directly reachable from ; if and only
if 1 C CRq, ().

In general, the reachability problem for hybrid systems is undecidable. So the
above procedure is semidecidable [1] because the termination of the procedure is not
guaranteed. To formulate a constructive procedure for reachability, two approaches
may be employed. First, we consider an upper bound on the time horizon and we
examine the reachability only for the predetermined finite horizon. Second, we for-
mulate a termination condition for the reachability algorithm based on a grid-based
approximation of the piecewise linear regions of the state space [18].

4.4.3 Attainability

Given a finite number of regions {{2y, @1, -+, Qp} C Q x X, the attainability
for this sequence of region specification is equivalent to the following two differ-
ent kinds of properties, that is, the direct reachability from region ©; to ;. for
0 < i < M and the safety (or controlled invariance) for region Q3s. Therefore the
attainability checking can be expressed as follows.

Theorem 4.4.3. The specification {Q0, Q, -+, Qum} C Q x X is attainable if
and only if the following conditions hold: First, Qs is safe, and second, the region
Qi1 is directly reachable from 2y, fori =0,1,--- , M — 1.

4.5 Hybrid Regulation

The hybrid regulation problem considered in this section is to design the admissi-
ble control law, o.[q(t), z(t)] and u[g(t), z(¢)], such that the hybrid state trajectory
(q(t), z(t)) goes through the regions, 9,2, Qy, - - -, in the specified order and so
that the closed-loop system satisfies some desired requirements. The requirements
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include sequencing of events and eventual execution of actions. In Section 4.4, we
have specified the conditions for the existence of such control laws so that the closed-
loop system satisfies the specifications, that is, safety, reachability, and attainability.
A regulator is designed as a dynamical system to implement the desired control pol-
icy. Here we design such control laws based on optimization techniques. From the
discussion in the previous section, the attainability regulation problem can be divided
into two basic problems, that is, safety regulation and direct reachability regulation.
The two basic regulation problems are formulated as follows.

o Safety Regulation: Given a safe set 2 C @ x X, determine the admissible
control laws such that the evolution of the system starting from {2 will remain
inside the set for all time, despite the presence of dynamic uncertainties and
disturbances.

¢ Reachability Regulation: Given two regions 23, 02 C @ x X, where §2; is
directly reachable from §2;, determine the admissible control laws such that all
the states in §2; can be driven into {25 in finite number steps without entering
a third region.

In the following we present a systematic procedure for the regulator design for
these two basic cases based on optimization techniques. Then a procedure for attain-
ability regulation is given.

4.5.1 Safety regulator

First we consider terminating the safety regulation for the terminating region,
QO = (qar, Pa), of the state space. We assume that Pyy = {z: Guyz < wpr}.
We define the cost functional Jar: Q x [0,1]Ve x U, - R

_ i y.git [z
JM(QJ /\,‘U) = ||Gum Z[’\ A » i B (u(t) )
o0
where ||-}|c stands for the infinite norm. The control signal is selected as the solution
to the following minmax optimization problem:

min max J Au
ety A€[01]Ve M(Q: )

ot Agz(t) + Byu(t) + E,d(t) € Py
u€ly, deD,

Because of the linearity and convexity, the constraints can be equivalently trans-
formed into the following form.

min max Ja(g, A u
wely relo )M m(q )

¢ GulAlz(t) + Blu(t)] < war — 6
G4l t)+33u(t)]5wM—5

Gum[Ay (1) + By u(t)] < wy — 6
L u €U,
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where § is a vector whose components are given by §; = maxgep, g}"Eqd, and g}"
is the jth row of matrix Gps. The optimal action of the controller is one that tries
to minimize the maximum cost, and also tries to counteract the worst disturbance
and the worst model uncertainty. This kind of solution is referred to as a Stackelberg
solution. The above minmax optimization problem can be equivalently transformed
to the following semi-infinite programming problem [6],

min 2

ueldy
( JM (q,/\ u) <z

GumlAg g (t)+1’5fg u(t)] <wn -9

G'M[A z(t) + B u(t)] Swp — 6
GM[A z(t) +B u(t)] <wpy — 46
L u € U,.

s.t. ¢

In addition, because of the special form of Js, the above optimization problems can
be reduced to the following form:

min z
ueEl,

¢ GulAlz(t) + Blu(t)] <
Gulabz(t) + Bhu(t) <

......

Cu[AY z(t) + B u@t) < 2

s.t.{ GulAlz(t) + Blu(t)] < war - 6
Gm{ASz(t) + Biu(t)] < was - 8
GulAYz(t) + BNu(t)] < wa — 6
\ U E u,,.

The above problem can be solved very efficiently by solving a linear programming
problem for each possible discrete mode. The following algorithm describes the pro-
cedure for the synthesis of the safety regulator for an given initial condition (go, zo)
containing in a specified region Qpr = (qar, Puy).

Algorithm 4.5.1. Safety Regulator

INPUT: Qpr = (qur, Par), (go, Zo):
if min, maxy Jar{qo, zo, A, u) feasible
u* = arg min, Ja(qo, To, A, u)
q" = qo
else
fori=1, -, |aum|
g =qm ()
if zg € Gg(‘)
Ji;= min, maxy Jar(q:, zg, A, )
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end
end
g" = argmingeq,, Jiy
u* = arg min, Jj;
end
OUTPUT: u*, ¢*

In the procedure, we first try to retain the mode and avoid switching, simply
because switching may be costly. However, sticking to mode gy may not be a
good choice, and there may not exist a feasible control signal. So the procedure
tries to take possible mode switchings into consideration and choose the mode that
can make the next continuous state farthest from the boundary. It is claimed that
there must exist at least one mode ¢ € qas such that the above optimization prob-
lem is feasible. Otherwise, it leads to a contradiction to the safety of the region
Qa = (qar, Pu). Here ¢* stands for the mode that corresponds to the minimum
cost value Jjs, then the candidate control input is selected as (o, (t),u*(t)) where
g* = d(q(t), m(z(t)),0.(¢),Z.) and u* is the solution of the above optimization
procedure. In a formal way we can express it as the following proposition.

Proposition 4.5.1. If the region Qs = (qar, Pa) is safe, then the procedure de-
scribed in Algorithm 4.5.1 can solve the safety problem.

4.5.2 Reachability regulator

Next we consider the reachability specification between the regions Q;, = (qy,
Pr) and Qry1 = (Qk+1, Pes1). The control objective is to drive every state in
to 2+;. Let the convex polyhedral set P, = {z: Gz < w}. For a pair of modes
% € qx and gj, € qx+1, assume that the intersection of the guard set for (g, q}),

Gq,c , with the common reglon of Py and Py, is not empty. Denote this polytope as

Péq"’q") PN P NGE = {z: Gez < we}. Because of the direct reachability

)

between 2 and Q4.1 the existence of nonempty P* %) can be shown. We define

the cost functional, Jo: Q x @ x [0,1]Ve x U, ~ R

N

Tolawsd A = |Go Y Indiy, 483) ()

i=1
o0

The control signal is selected as the solution to the following minmax optimization
problem:

e 1]
min  max Jo(gk,q;, A, u)
u€lly, aglo,1)V o

G[AL, z(t) + Bl u(t)]
G[A;, z(t) + B, u(t)]
st d i
GIAN® 2(t) + By u(t)] < w — 8
u € Uy, .
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Similarly, the above minmax optimization problem can be equivalently transformed
to the following linear programming problem:

Join z
[ GolA] z(t) + By u(t)] < z
GC[Ag 2(t) + Bou(t)] < z
GolAn™ $(t)+Bq:f'° ()] < 2
st.¢ GlAL z(t) + Bl u(t)) <w -6
Glal t)+33 u(t)] R,

......

GlAN™2(t) + Bpu(t)] <w — 6
u € Uy, .

\

The following algorithm designs the regulator to guarantee the direct reachability.

Algorithm 4.5.2. Reachability Regulator
INPUT: Qi = (gk, Pr). Qk+1 = (Qr+1, Pet1), (90, 20), feasibility = 0;
forj=1,---, |qr41l,
¢ = qk+1(j)
if min,, maxy Je(qo, qJ , o, A, u) feasible
JE*%) = min, max, Je(qo, 45, To, A, u)
feambzllty =3

end
end
if feasibility ==
ind = arg ming eq,,, J(qo e
u* = arg min, JOY
" = qo
else
fori=1, .-, |ql
g = qi (i)

if zo € GJi
fOl‘j =1, qu+1|’
g; = dk+1(7)
J((;.q"qj) = min, maxy Jo(gi, ¢}, To, A, 1)
end
end
end
[q*: Q'] = arg minqiEQk;Q}GQkH ']I(J'qu)
u* = argmin, J5;
end
OUTPUT: u*, ¢*
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Similarly, we have the following proposition.

Proposition 4.5.2. If the region Q, = (qi, Py) is directly reachable to Qipy =
(Qk+1, Pet1), then the procedure described in Algorithm 4.5.2 can solve the reach-
ability problem.

4.5.3 Attainability regulator

The following algorithm designs the regulator to guarantee the direct attainability
for the specification described by {Q, Q1,--- , Qar}.

Algorithm 4.5.3. Attainability Regulator

INPUT: {1, , 2} (90, Z0);

forn=1-..- M-I,
while 29 € Q,, and zp ¢ Q41
Design Reachability Regulator from 2, to 2,4
end

end

Design Safety Regulator for Q

OUTPUT: v*, ¢*

From Theorem 4.4.3 and the previous two propositions on safety and direct reach-
ability regulation, we can conclude the following proposition.

Proposition 4.5.3. [f the region sequence {0,Q,- -, 0} is attainable, then the
procedure described in Algorithm 4.5.3 can solve the attainability problem.

Let us turn to an example to illustrate the regulation method.

Example 4.5.1 (Temperature Control System). The systemn consists of a furnace
that can be switched on and off. The control objective is to control the temperature
at a point of the system by applying the heat input at a different point. So the discrete
mode contains only two states, which are the furnace is “off;” go, and the furnace is
“on,” g;. The continuous dynamics are described by !

_ [ Aoz(t) + Bou(t) + Eod(t), =g
#t+1) = { Arz(t) + Bru(t) + Bod(t), g = a,

where
o - (082 0135 g2 1 035
¢ = \068 » 707 \0.068 0.555
. B2 = (19 _ {0.0387
Bo = (006) (0.08)’E°“(0.3772)
41— (~0664 0.199 a2 (D07 032
17 L0199 0.264 0.32 0.44
L »_ (09 _ {0.1369
By = (0.1) By (0.2 » Br=1{ 05363 )

1using zero-order hold sampling with T = 1 sec.
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The state space is partitioned by the following hyperplane b1 (z) = z; ~20, ho(z) =
T2 — 5, h3(z) = zo, and hy(z) = z;. Assumeu € U = [-1,1],d € D =
(—0.1,0.1). Consider region Q; = ({go,q1},P,) and Q, = ({90,491}, P2}, where
P={zeR|0<2 <20)A(-20< 2, <0)},and P, = {zx e R}|(0 < 7, <
20) A (0 < z2 < 5)}. Our control objective is that for every initial state (go, zo)
within region 2, there exist control v € I and o, € . so that from (g0, To)
the state can be driven to 2, without entering a third region. Then the state will
stay inside {23, no matter what the dynamic uncertainty and continuous and discrete
disturbances. Let us check the attainability. We first calculate pre(§2;), which covers
the region (2, so {2 is safe. By recursively using pre(-), we find that ; can be
driven to {2 in three steps, i.e., {); reachable from ;. So the attainability of the
specification is satisfied. Then we design the regulator and plot the simulation result
for nominal plant (here we choose the epicenter of the state matrix , i.e., 1 (AL + A2)
in Figures4.5.1 and 4.5.2. Also the control signal output (o, u) of the regulator is
plotted in Figures 4.5.1 and 4.5.2.

2 T T T T T

15F ]

05K .

1 ] L L L L
-2 -15 -1 -0.5 0 05 1 5 2 25 3

Figure 4.5.1: Simulation for closed-loop nominal plant (assuming d = Q)

4.6 Networked Control Systems (NCS)

By NCS, we mean feedback control systems where networks, typically digital band-
limited serial communication channels, are used for the connections between spa-
tially distributed system components like sensors and actuators to controllers. These
channels may be shared by other feedback control loops. In traditional feedback con-
trol systems these connections are through point-to-point cables. Compared with the
point-to-point cables, there are many attractive advantages of introducing serial com-
munication networks, like high system testability and resource utilization, as well as
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{a} The conlinuous contral input u(l}

{b) The aclivive mode q{t}

o
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Figure 4.5.2: The control signals output (u, o.) of the regulator

low weight, space, power, and wiring requirements. These advantages make the use
of networks in control systems connecting sensors/actuators to controllers more and
more popular in many applications, including traffic control, satellite clusters, and
mobile robotics. Modeling and control of networked control systems with limited
communication capability has recently emerged as a topic of significant interest to
the control community.

In NCS, the real-time requirement is critical, and time delay usually has negative
effects on the NCS stability and performance. There are several situations where
time delay may arise. First, transmission delay is caused by the limited bit rate of
the communication channels. Second, the channe! in NCS is usually shared by mul-
tiple sources of data, and the channel is usually multiplexed by the time-division
method. Therefore, there are delays caused by a node waiting to send out a mes-
sage through a busy channel, which is usually called “accessing delay” and serves
as the main source of delays in NCS. There are also some delays caused by pro-
cessing and propagation, which are usually negligible for NCS. Another interesting
problem in NCS is the package-dropoutissue. Because of the uncertainties and noise
in the communication channels, there may exist unavoidable errors in the transmit-
ted package or even loss. If this happens, the corrupted package is dropped and the
receiver (controller or actuator) uses the package that it received most recently. In
addition, package-dropout may occur when one package, say sampled values from
the sensor, reaches the destination later than its successors. In such a situation, the
old package is dropped, and its successive package is used instead. Finally, accord-
ing to the finite bit rate constraint, only quantized signals can be transmitted through
the network. So the quantization scheme and its effects have to be considered in real
NCS. The primary objective of NCS is to efficiently use the finite channel capacity
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while maintaining good closed-loop control system performance, including stability,
disturbance attenuation, rising time, overshoot, and other design criteria. Therefore,
quantization and limited bit rate issues have attracted many researchers’ attention,
see for example [8, 12, 11]. In this section, we will formulate an NCS with uncertain
time delay, package-dropout, and quantization effects into the framework of poly-
topic uncertain hybrid (switched) systems. Then the methods developed here and
existing methods for hybrid (switched) systems can be employed to study NCS.

4.6.1 The delay and package-dropout

The NCS model discussed in this section is shown in Figure 4.6.1. For simplicity,
but without loss of generality, we may combine all the time-delay and package-
dropout effects into the sensor to controller path and assume the controller-actuator
communicates ideally.

d[k_l- m& z—([!)- Sampler _z_lhl
x(O=Ax(O+BuO+E d()

Ts
k] ult) X1
S zon [ | 2w =cko M samprer |2

Time Driven _
Quantizalion

Event Driven

Digital Controller 555 :l ____ y

¢ : x[k] — u[k]

Figure 4.6.1: The networked control systems model

We assume that the plant can be modeled as a continuous-time linear time-invariant
system described by

(t) = A°z(t) + Bou(t) + E°d()
{ 2(t) = Cex(t)

where z(t) € R" is the state variable, and z(t) € RP is the controlled output.
u(t) € R™ is the control input. The disturbance input d(t) is contained in D C R".
Af € R**™, B¢ € R*™™ and E° € R™*" are state matrices, and C¢ € RP*™ is the
output matrix.

It is assumed that the sensors work in a time-driven fashion. After each clock
cycle (sampling time Ty), the output node (sensor) attempts to send a package con-
taining the most recent state (output) samples. If the communication bus is idle, then
the package will be transmitted to the controller. Otherwise, if the bus is busy, then
the output node will wait for, say w < Ty, and try again. After several attempts
or time elapses, if the transmission still cannot be completed, then the package is
discarded. The controller and actuator are event driven and work in a simpler way.
The controller, as a receiver, has a receiving buffer that contains the most recently



received data package from the sensors (the overflow of the buffer may be dealt with
as package-dropout). The controller reads the buffer periodically at a higher fre-
quency than the sampling frequency, say every % for some integer N large enough.
Whenever there is new data in the buffer, the controller will calculate the new control
signal and transmit it to the actuators instantly. Upon the arrival of the new control
signal, the actuators update the output of the zero-order hold to the new value.

4.6.2 Models for NCS

In this section, we will consider the sampled-data model of the plant. Because
we do not assume synchronization between the sampler and the digital controller,
the control signal is no longer of constant value within a sampling period. Therefore
the control signal within a sampling period has to be divided into subintervals corre-
sponding to the controller’s reading buffer period, T' = % Within each subinterval,
the control signal is constant in view of the assumptions in the previous section.
Hence the continuous-time plant may be discretized into the following sampled-data
system using the lifting method:

u' [k]
z[k + 1) = Az[k] +[B B --- B] ¢ ,[k] + Ed[k] (4.6.1)
Snnn, s’ .
N uN[k]

where A = ¢4, B = foz""l e "B°dn, and E = fOT‘ eA"" E<dn. Note that for
linear time-invariant plant and constant-periodic sampling, the matrices A, B, and E
are constant.

During each sampling period, several different cases may arise. They are listed
below.

(1) Delay 7 = h x IL\}, where h = 0,1,2,--+ , Dpqas. For this case ul[k] =
ulk] = ---ulfk] = ulk - 1), uP*[k] = wPF2E[k] = - uN[k] = ulk], and
{4.6.1) can be written as

[ ulk — 1]

u[k— 1)

zlk+1] = Azlk]+([BB - B ulk] + Ed[k]

| ulK)
= Axz[k] + h- Bu[k — 1]+ (N — h) - Bu[k] + Ed[k].

If we let £[k] = [ U[Z[;] I ] , then the above equations can be written as

k+1] = l o 2]:&[k]+{(N_Ih)B ]u[k]+ [g]d[k]
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where h = 0,1,2,--+, Dy, Note that A = 0 implies 7 = 0, which corre-
sponds to the *‘no delay” case. And the controlled output z{k] is given by

zlk] = [ 0 C ]:c[k]
where C = C°.

(2) Inthe case of package-dropout due to corrupted package or delay 1 > D00 %
2, the actuator will implement the previous control signal, i.e., u![k] =
u?[k] = ---u™[k] = u[k — 1]. The state transition equation (4.6.1) for this
case can be written as follows.

ulk ~ 1]
ulk — 1]

rfk+1] = Az[k]+[BB ---B] : + Ed[k]
ulk - 1]

= Az[k]+ N - Bujk — 1] + Ed[k].
By introducing new state variables,

jw+1p=[§; 2Jﬂﬂ+[

The controlled output z[k] is given by

:k=[0 C ik

g]qm+[g]q@

where C' = C°.

4.6.3 NCS hybrid model

In this section, we reformulate the NCS problem of the previous section as a
hybrid (switched) system with D,,,, + 2 different modes. In particular,

{ :f:[i:[:] 1]

Ahft[k] + Bhu[k] + Ehd[k]
Ch[k]

(4.6.2)

0 7 I 0
whereAh—[hB A],th[(N_h)B],Eh—I:E:,,andch—

[ 0 C ] for b = 0,1,2,--+ Dppae, N. The set of modes Q is given by Q =
{0,1,2,-+- Dypaq, N}. Note that h = 0 implies 7 = 0, which corresponds to the
“no delay™ case, while h = NV corresponds to the “package-dropout” case. The dis-
crete dynamics (switching signal) may be modeled as a finite state machine (FSM),
whose discrete states correspond to the D4, + 2 modes of NCS. The discrete tran-
sition rule of the FSM should reflect the delay and package-dropout pattern of the
NCS, and it may either be specified in the average dwell-time sense or the stochastic
sense.



= . F= e A e .-

Another important issue, the quantization effect, is not considered in the above
NCS model. With finite bit-rate constraints, quantization has to be taken into con-
sideration in NCS. It has been known that an exponential data representation scheme
is most efficient [8, 12]. Here we focus on the floating point representation. Float-
ing point quantization can be viewed as a nonlinear operation described by a time-
variant sector gain, i.e., ¢(z) = k(z), k € {1 — ¢, 1], with ¢ depending on the
mantissa length, and for this reason the quantization effect can be dealt with as a
model parameter uncertainty. Now we can model the NCS with quantization effects
as a switched system with parameter uncertainty, which is a specific subclass of the
polytopic uncertain hybrid systems defined in Section 4.2. In particular,

&k + 1) = Ap[k] + Baulk] + Epd[k]

where the parameter uncertainties in Ay, and By, reflect the quantization effects in
NCS. Next we consider the robust stabilization problem for the NCS based on such
a hybrid model. Because of the parameter uncertainties in the NCS hybrid model
and exteriors disturbances, the convergence of all the closed-loop trajectories to the
origin (assumed to be the equilibrium) may not be achievable. Instead, we consider
the convergence to a small region containing the origin, and it is required that the
closed-loop trajectories of NCS be driven to a small region containing the origin for
all bounded initial conditions. In the literature this is usually called “ultimate bound-
edness control” or “practical stability problem.” In the following, we will show that
the ultimate boundedness control problem for NCS with uncertain delay, package-
dropout, and quantization effects may be formulated as a regulation problem for the
uncertain hybrid (switched) systems.

Consider the semiglobal asymptotic practical stabilization problem by assuming
bounded initial states. If we outer-approximate the bounded region containing all the
initial conditions with a polytope g, and inner-approximate the small region con-
taining the origin with another polytope §2; (as illustrated in Figure 4.6.2), then the
ultimate boundedness problem of NCS can be transformed into a regulation problem.
The ultimate boundedness of NCS can be checked by checking the attainability of
the appropriately chosen {{ly,;}. The ultimate boundedness control law may be
designed by solving the optimization-based regulator synthesis problem developed
in the previous section.

4.7 Conclusions

In this chapter, the regulation problem for the polytopic uncertain linear hybrid sys-
tems was formulated and solved. Using the optimization-based regulator introduced,
the closed-loop system exhibits the desired behavior under dynamic uncertainties,
continuous disturbances, and uncontrollable events. The existence of a controller
such that the closed-loop system follows a desired sequence of regions under uncer-
tainty and disturbance was studied first. Then, based on the novel notion of attain-
ability for the desired behavior of piecewise linear hybrid systems, we presented a
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Figure 4.6.2: The networked control systems ultimate boundedness control as a reg-
ulation problem

systematic procedure for controller design by using finite automata and linear pro-
gramming techniques. The design procedure may be seen as a one-step moving
horizon optimal control. Our future work is intended to generalize the procedure
into finite N-step moving horizon optimal control, and the main issue for this gen-
eralization is the feasibility of the optimization problems. The predecessor operator,
attainability checking, and robust regulator design methods have been implemented
in a Matlab toolbox called HySTAR [20].

The procedures given in this chapter for checking reachability and attainability,
which were based on the backward reachability analysis, are semidecidable and their
termination is not guaranteed. Future work includes specifying the class of poly-
topic uncertain linear hybrid systems that makes the procedure decidable. One way
to obtain such decidable class is to simplify the continuous dynamics, see for exam-
ple [1]. However, this approach may not be attractive to control applications, where
simple continuous dynamics may not be adequate to capture the system’s dynam-
ics. Alternatively, one may simplify the discrete dynamics instead of the continuous
dynamics, on which our current research effort is focused.

Finally, we proposed NCS as one of the promising application areas of the meth-
ods developed in this chapter. An NCS hybrid model was developed and the ultimate
boundedness control problem for NCS was formulated as a hybrid regulation prob-
lem. The advantage from formulating the ultimate boundedness control problem of
NCS with uncertain delay, package-dropout, and quantization effects as a regulation
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problem for uncertain hybrid switched systems comes from the systematic meth-
ods developed in this chapter and the existence of rich results in the field of hybrid
(switched) systems, jump linear systems, etc. Our future work includes research
into other promising application areas for the hybrid regulation methods developed
here, such as network congestion control, chemical industrial process control, traffic
management, manufacturing systems, and robotics.
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