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Introduction
To study the general Regulator Problem with Inter—
nal Stability (RPIS) consider the system description

Ym = ~Hju + Giw

Yr Hpu + Gow (1)
where y, and y, are the measured and regulated outputs
respectively, u is the control input and w describes
t he exogenous signal; w 1s considered to be the output
of a known system R, that is w=Rd for a bounded vector
d, and it 1is assumed that all the poles of R are in the
unstable region of the s-plane (or z-plane). If the
control law

u = Cyp (2)
is used, the compensator C is to be determined so that,
under internal stability, the effect of the exogenous
(disturbance) signal w on the regulated output y,
diminishes asymptotically to zero., The latter condi-
tion is the regulation requirement and it is equivalent
to making the transfer matrix between y, and d, T4,
stable.

To satisfy the internal stability requirement cer-
tain assumptions must be made to guarantee that all

signals in the feedback loop will be bounded., In par-
ticular, let
H] = NlDl_l = Rl_l_ril , C= _D’c-ll‘?_c (3)

be prime polynomial matrix factorizations and assume
that: H)D] and D]G] are stable transfer matrices.
Under these assumptions; the compensated system is in
ternally stable if and only if (DcDp + N.Np)~Llois sta-
ble. Note that these assumptions have bBeen shown in
[10] to be equivalent to the ones in [9], while other
equivalent stability conditions also appear in
f11,177.

Compensator Structure and Internal Models

The special case, when the regulated and measured
outputs are the same, yp=y, (-Hy=Hjy, G1=G3), has been
studied extensively; necessary and sufficient condi-
t ions have been reported, all solutions C have been
characterized and their structure has been discussed
[1-3]. The compensators C have been shown to be of the
form

c=064"128 A @)
where Gg is a polynomial matrix and the rational C is
chosen to arbitrarily assign the closed loop eigenvzlue
[4,5]. The poles of Gd'l are these unstable exogenous
signal modes which do not appear as poles of the plant
(structure included). The role of Gq is to introduce
into the loop information about the exogencus signal,
so that the cascade connection cf the plant and the
compensator contains an internal model of R,

The concept of an Internal Model was introduced
using state space methods 1n the context of robust RPIS
in [6] and [7], where the case yz*y, was treated. By
robust RPIS it is understood that the properties of
output regulation and internal stability will hold
under small perturbations of the plant's and some of
the compensator's parameters. In this setting it is
shown that the compensator includes an appropriate in-
ternal model of the exogenous signal, Note that inter-
nal models have been also used implicity in [8].
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In the frequency domain, the concept of internal
models was defined for the special case yu=y, in [1]
without robustness considerations. Note that one way
to define an internal model in this setting 1s as
follows [1]:

Definition: Let Vi = Sﬂ-lzl’ Vo = 22‘122 be prime
polynomial matrix factorization of the proper rational
matrices V| and Vy; assume that Vi and Vy have the same
number of rows. Then, V| contains an internal model of
Vo i1f and only if Q7 is a right divisor of Qj.

In this case, y, = yr, for regulation with internal
stability, the cascade connection of the plant and the
compensator (ch) must contain an internal model of the
exogenous signal (R), which in turn implies that the
compensator C must be as in (4).

For the general model, when y,*y., the results re-
ported are mainly necessary and sufficient conditions
for the existence of C [9-15], The structure of the
compensator C in this case has been studied in [13,14]
where it is shown that if a solution exists then
c=2p_l§p must satisfy

Do Dy + No Nj = (5a)

Do(-Y1) ¥ N X3 = N (5b)
where H; = N1D;~17= El—lﬁl prime Yolynomial matrix fac-
torizations, D1X] + Nj¥; = I, D~ stable with poles
the desired closed loop eigenvalues and Ny an appro-
priate polynomial matrix. Equation (5a) corresponds to
the internal stability requirement while equation (5b)
to regulation. It should be pointed out that the poly-
nomial matrix Np is not fixed, but it can be any member
of a (large) class of matrices defined in [13] (note
that if Ny were arbitrary, then equations (5) would
guarantee just internal stability).

It has been shown in [13] that the regulation con-
ditions (5) imply that C can be written as

c=¢"! ¢ g (6)
where Gg, G, are polynomial matrices with the property
that |G3||G,| divides the polynomial lol the roots of
which are those unstable exogenous modes which do not
appear in Hy. Notice that when y, = yp then Gy = I and
(6) reduces to (4), where € is chosen to arbitrarily
assign the closed loop eigenvalues. In the general
case however, the numerator and the denominator of C
must satisfy structural requirements in addition to
(6), that is C in (6) must be chosen not only to
arbitrarily assign the closed loop eigenvalues, but
also to satisfy additicnal conditions. In other words,
(6) is not always a substitute for the regulation equa-
tion (5b); this happens only when [13]

“lﬁ‘U

6] 18] = ale] , ae R (M
In general, N, and D need to satisfy both rela-

tions in (5) for regulation with intermal stability.
Regulation imposes structural requirements on the num-
erator and denominator of C via (5b) which, under cer-
tain conditions, are equivalent to exogenous poles
appearing in Gg~! and G, (see (6)). This is in
contrast to the situation in the special case y, = vy,
where the regulation requirement is always equivalent
to exogenous poles appearing only in the denominator of
¢, in G3 (see (4))
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While G4~1 in (4) can be easily seen to indicate
t he existence of an internal model of the exogenous
signal in the cascade comnection HiC (see above defini-
tion), in the general setting of RPIS the necessity of
such an internal model for regulation is not clear.
1f, of course, G, = I and (7) is satisfied in which
case the regulation requirement is equivalent to having
C =G4t € as in (4) (see example), then, using the
above definition of an internal model it can be shown
that regulation is equivalent to having an internal
model of the exogenous signal in the cascade connection
HiC. This however happens cnly under certain condi-
tions; in general, (5b) is satisfied and might not im
ply any particular factors for the numerator and deno-
minator of C. So: In the general RPIS without robust-
ness considerations, an internal model of the exogenous
signal as defined above, does not necessarily exist in
the cascade connection of the plant and the compemn
sator. The following example clarifies the issue:

Example 1 [16] Consider the system
Ym = la/(s+b)]u + w

yr = u + [e/(s+f)]w
u=C vy, , C=n./de

where the exogenous signal w is a step of the form
w=(1/s)d. To simplify the analysis assume that a,e*0,
b>0 and £20. The objective is to find C so that the
effect of w on y, is decreased asymptotically to zero.

Solution to this problem does exist. The
compensator € must satisfy conditions (5a) and (5b)
which in this case imply:

(a) (s+b)d, + (-a)dne = Dy, Dy} stable,
(1) (aebDn (0) -be d.70) = 0, ae-bf * 0;
when ae-bf = 0 then, G = s and G, = 1.

In [10] this example was used with a=1, b=2, e=-2
and f=1 to show that the RPIS of (1) could be solved
without an internal model. Observe that in this case
ae-bf = -4 and it follows from (b) that the compensator
needs to satisfy the structural relation n.(0)~d.(0)=0
in addition to (a). 1If Dy = s+l is the desired closed
loop characteristic polynomial, an error feedback com
pensator €C=1 will regulate and internally stabilize
this system, However, if the gain e=2 then, C=-1/s
would regulate the system and give two closed loop
eigenvalues at -1.®

It is clear from the above that the unstable modes
of the exogenous signal which are not poles of the
plant do not necessarily appear as poles of C for regu-
lation; that is the existence of an internal model, in
the above sense, 1s not necessary for regulation. This
result agrees with the general comments made in
[10,18]. It is of course clear that in special cases
an internal model does exist. Such is the case when
Yr=Omym with Qp stable rational; note that this case
has been studied with robustness considerations in
[16]. In [12] a sufficiency condition for the exist-
ence of internal models has also been derived using
s tate space models and geometric methods.

Perhaps one could better understand the necessity
for (or the lack of) an internal model of the exogenous
signal in the feedback loop by studying the role of the
compensator u=Cyy, in regulation. The regulation
condition (5b) on C guarantees that the control signal
will be able to eliminate the unstable modes due to w
on yr. This implies that C will make those exogemnous
modes unobservable from the output y,. In input-output
operator terms this also implies that C will create
multivariable zeros in Ty, to counterbalance the effect
of the unstable exogenous modes. For this to happen,
it suffices, in the special case y,=yp, that the com
pensator be of the form (4) where the unstable exo
genous modes which are not poles of the plant appear as
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poles of C (in Gd‘l). In the general case, however,
for the control signal u to eliminate the unstable
modes due to w on y,, it is not generally sufficient
for these modes to appear as poles of C as before.
Certain structural relations on C, in particular (5b),
must be satisfied for this to happen. (5b) implies
that certain unstable modes of w could appear in either
the denominator or numerator of C (see (6)) but this is
not in general, sufficient for regulation. Thus, regu-
lation in the general RPIS can take place without an
internal model as defined above.

References

[1] G. Bengtsson, "Output Regulation and Internal
Models -A Frequency Domain Approach', Automatica,
Vol. 13, pp. 333-345, 1977.

f2] C.A. Desoer and Y.T. Wang, 'Linear Time-Invariant
Robust Servomechanism Problem: A Self-Contained
Exposition", Memorandum No. UCB/ERL M77/50, ERL
University of California, Berkeley, August 1977,

[3] B.A. Francis and M, Vidyasagar, "Algebraic and
Topolocial Aspects of the Servo Problem for Lumped
Linear Systems', Yale University, S & IS Report,
No. 8003, November 1980,

[4] W.A., Wolovich and P, Ferreira, "Output Regulation
and Tracking in Linear Multivariable Systems",
IEEE Trans. on Autom. Control, Vol. AC-24, 1979.

[5] P.J. Antsaklis, "Some Relations Satisfied by Prime
Polynomial Matrices and Their Role in Linear Mul-
tivariable System Theory", IEEE Trans. on Autom.
Control, Vol. AC-24, No. &4, pp. 611-616, 1979.

[6] B.A. Francis, 0.A. Sebakhy and W,M., Wonham, "Syn-
thesis of Multivariable Regulators: The Internal
Model Principle', Applied Mathematics and Optimi-
zation, Vol. 1, No. 1, pp. 64-86, 1974,

(7] W.M, Wonham, "Linear Multivariable Control: A
Geometric Approach', 2nd ed., New York: Springer-
Verlag, 1979,

[8] E.J. Davison, '"The Robust Control of a Servomech-
anism Problem for Linear Time-Invariant Multivar-
iable Systems', IEEE Trans. on Autom. Control,
Vol., AC~21, pp. 25-34, February 1976.

[9] L. Cheng and J.BR., Pearson, "Synthesis of Linear
Multivariable Regulators', IEEE Trans. on Autom.
Control, Vol. AC-26, pp. 194-202, February 1981.

[10] L. Pernebo, "An Algebraic Theory for Design of
Controllers for Linear Multivariable Systems',
Parts 1 and 1I, IEEE Trans. on Autom. Control,
Vol, AC~26, pp. 171-193, February, 19817

[11} A.C. Antoulas, "A New Approach to Synthesis Prob-
lems in Linear System Theory'", Elec., Eng. Dept.,
TR #8302, Rice Univ., April 1983,

[12] J.M., Schumaker, "The Algebraic Regulator Problem
from the State-Space Point of View'", Linear Alg.
and its Appl., Vol. 50, pp. 487-520, April 1983.

[13] P.J. Antsaklis, "On Output Regulation with Stabil-
ity in Multivariable Systems', TR #818, Elec. Eng.
Dept., Univ. of Notre Dame, April 1981.

[14] P.J. Antsaklis, "On Multivariable Regulators. An
Explicit Description", Proc. of the 19th Conf. on
Decision and Control, pp. 488-4839, December 1980,

[15] E.R. Ozguler, Skew-Primeness in the Regulator
Problem with Internal Stability, Ph.D. Disserta-
tion; Dept. of Elec. Eng., Univ. of Florida, 1982,

[16] 0.R. Gonzalez, Regulation Problem with Internal
Stability (RPIS): Compensator Structure and
Tnternal Models, M.§. Thesis, Department of Elec-
Trical Engineering, Univ. of Notre Dame, 1984,

[17] s.P. Bhattacharyya and S.W. Howze, "Transfer
Function Conditions for Stability", IEEE Trans.
on Autom. Control, Vol. AC-29, pp. 253-254, 1984,

[18] T Cheng and J.B. Pearson, "Frequency Domain
Synthesis of Multivariable Linear Regulators',
IEEE Trans. on Autom. Control, Vol. AC-23, 1978.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:20 from IEEE Xplore. Restrictions apply.





