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In this paper, a class of linear systems affected by parameter variations, additive noise and persistent disturbances is
considered. The problem of designing a set-valued state observer, which estimates a region containing the real state for
each time instant, is investigated. The techniques for designing the observer are based on positive invariant set theory. By
constructing a set-induced Lyapunov function, it is shown that the estimation error converges exponentially to a given
compact set with an assigned rate of convergence.

1. Introduction

In control theory and engineering, it is often desir-
able to obtain full state information for control or diag-
nostic purpose. Therefore it is not surprising that the
synthesis of a state observer has been of considerable
interest in classical system theory (see, e.g. O’Reilly
1983 and the references therein). The original theory
of state observer involves the asymptotic reconstruction
of the state by using exact knowledge of inputs and out-
puts (Luenberger 1966). However, the real processes are
often affected by disturbances and noise. Therefore, the
design procedures of state observers were later extended
to include the cases when disturbances and/or measure-
ment noise were present. These generalizations may be
roughly divided into two main groups. The first group
relies on stochastic control approaches, which are based
on probabilistic models of the disturbances and noise.
The stochastic approach provides optimal state estima-
tion based on the probabilistic models of the exogenous
signals. Unfortunately, in many cases, no information
about the disturbances or noise (in the deterministic or
statistical sense) is available, and it can only be assumed
that they are bounded in a compact set. Alternatively,
disturbances and noise are dealt with in the framework
of robust control. Under such framework, optimal state
estimation that minimizes the induced-norm from exo-
genous disturbances and noise to estimation errors is
often considered. In Shamma and TGu (1999), an l1

optimal estimation problem was studied for a class of
time varying discrete-time systems with process disturb-
ance and measurement noise, and a set-valued observer,
whose centres provide optimal estimates in the sense
of l1-induced norm, was designed. The optimal l1-
induced norm estimation problem was also considered

in Voulgaris (1995). There also exist results for H1 opti-
mal estimation problems (Nagpal and Khargonekar
1991).

In the previous work on observer design as men-
tioned above, deterministic dynamics was assumed
where there is no parameter variation in the model.
However, it is known that we only have partial knowl-
edge of almost all practical systems. In addition, the
system parameters are often subject to unknown, poss-
ibly time-varying, perturbations. Therefore it is of prac-
tical importance to deal with systems with uncertain
parameters. This consideration leads to the robust esti-
mation problem, where robustness is with respect to not
only exogenous signals but also model uncertainties.
There are some results for the robust estimation prob-
lem from a variety of different approaches (see, e.g.
Bhattacharyya 1976, Akpan 2001, Collins and Song
2001 and the references therein). In Bhattacharyya
(1976), the structure features of robust observers in the
presence of arbitrary small parameter perturbations
were studied from a sensitivity standpoint. A similar
problem was considered in Akpan (2001), where a tech-
nique for designing robust observers for perturbed linear
systems was presented. In Collins and Song (2001), the
robust l1 estimation with plant uncertainties and exter-
nal disturbance inputs was studied, and the estimator
was applied to robust l1 fault detection. The techniques
in Collins and Song (2001) were based on the mixed
structured singular value theory. There were also inves-
tigations into developing robust estimators using para-
metric quadratic Lyapunov theory (Haddad and
Berstein 1995).

In this paper, we deal with a class of uncertain linear
systems affected by both parameter variations and exter-
ior disturbances. The problem studied is the design of a
set-valued state observer, which constructs a set of poss-
ible state values based on measured outputs and inputs.
The techniques used in this paper are based on positive
invariant set theory and set-induced Lyapunov func-
tions. By constructing a set-induced Lyapunov function,
we can guarantee the ultimate boundedness and conver-
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gence rate of the estimation error. The work is inspired
by the success of set-induced Lyapunov function
together with positive invariant set theory in the fields
of robust stability analysis, stabilization, constrained
regulation, etc. (see Blanchini 1994, Bitsoris and
Vassilaki 1995). Blanchini (1999) gave a general review
of the set invariance theory.

This paper is organized as follows. In } 2, a math-
ematical model for uncertain linear systems is described,
and the observer design problem is formulated. Section
3 contains the necessary background from invariant set
theory and the definitions of positive D-invariance and
strong positive D-invariance are introduced. The
approaches to the observer design are developed in } 4,
and the techniques for the set-valued observers’ imple-
mentation are described in } 5. The convergence and
ultimate boundedness of the estimation error are
shown in } 6. In } 7, a numerical example is given.
Finally, concluding remarks are presented. Note that
some preliminary results were presented in Lin et al.
(2003). However, in this paper we explicitly deal with
parametric variations and measurement noise in the
measured output equation. New techniques are
employed to design and implement the set-valued ob-
server for continuous-time systems.

In this paper, we use the letters E;P;S; . . . to denote
sets. @P stands for the boundary of set P, and intfPg its
interior. For any real � � 0, the set �S is defined as
fx: x ¼ �y; y 2 Sg. The term C-set stands for a convex
and compact set containing the origin in its interior.

2. Problem formulation

In this paper, we consider linear discrete-time
systems described by the difference equation

xðtþ 1Þ ¼ AðwÞxðtÞ þ BðwÞuðtÞ þ EdðtÞ; t 2 Z
þ ð1Þ

where Zþ stands for non-negative integers. We also con-
sider linear continuous-time systems represented by the
differential equation

_xxðtÞ ¼ AðwÞxðtÞ þ BðwÞuðtÞ þ EdðtÞ; t 2 R
þ ð2Þ

where Rþ denotes non-negative real numbers. Note that
in the above uncertain discrete-time and continuous-
time state equations, state variable xðtÞ 2 R

n, control
input uðtÞ 2 U � R

m, disturbance input dðtÞ 2 D � R
r.

Assume that U and D are C-sets, and that the entries of
the state matrix AðwÞ and BðwÞ are continuous functions
of w 2 W, where W � R

v is an assigned compact set. In
particular, AðwÞ : W ! R

n�n and BðwÞ : W ! R
n�m.

Without loss of generality, we assume that E 2 R
n�r is

a constant matrix. Associated with the above uncertain
discrete-time and continuous-time linear systems is the
measured output

yðtÞ ¼ CðwÞxðtÞ þ nðtÞ ð3Þ

where measurement noise nðtÞ 2 N � R
p. Also assume

that N is a C-set, and that the output matrix CðwÞ is a
continuous function from W to R

p�n.
For this parametric uncertain linear system, we are

interested in determining the state xðtÞ based on the
measured output yðtÞ and control signal uðtÞ. Because
of the uncertainty, disturbance and noise, we cannot
estimate the state xðtÞ exactly. Therefore, it is reasonable
to estimate a region in which the real state is contained,
which is called set-valued state estimation in the litera-
ture. The problem being addressed in this paper can be
formulated as follows.

Problem: Given the above discrete-time or continuous-
time linear uncertain system with the measured output
yðtÞ and input uðtÞ, find XðtÞ such that xðtÞþ
eðtÞ 2 XðtÞ, and assure that the estimation error eðtÞ is
uniformly ultimately bounded in a given C-set, E, with
an assigned rate of convergence.

Here, uniformly ultimately bounded in E means that
for any initial value of the estimation error eðt0Þ =2E,
9T � t0 such that for all t � T , eðtÞ 2 E. The exact
meaning of the convergence rate will be explained later
in } 6. Our methodology for designing the observer that
guarantees uniformly ultimate boundedness of the
estimation error is based on positive invariant sets and
set-induced Lyapunov functions. For systems with line-
arly constrained uncertainties,{ it is shown that such
method can be derived by numerically efficient algor-
ithms involving polyhedral sets.

3. Positive disturbance invariance

Consider first the following discrete-time system

xðtþ 1Þ ¼ AðwÞxðtÞ þ EdðtÞ ð4Þ

where dðtÞ is assumed to be contained in a C-set D.

Definition 1: A set S in the state space is said to be
positive D-invariant (PDI) for this system if for every
initial condition xð0Þ 2 S, xðtÞ 2 S for t � 0, for every
admissible disturbance dðtÞ 2 D and every admissible
parameter variation wðtÞ 2 W.

In the particular case when D ¼ f0g, the positive D-
invariance is equivalent to the positive invariance
(Blanchini 1999). For the counterpart of continuous-
time systems, we have corresponding definitions for
invariant set and positive D-invariance.
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To consider an index of the convergence speed of the
state estimation error, we need to introduce the follow-
ing definition.

Definition 2: Let S be a compact set with non-empty
interior in the state space. S is said to be strongly posi-
tive D-invariant (SPDI) for system (4), if for every in-
itial condition xð0Þ 2 S, for every disturbance sequence
dðtÞ 2 D and every admissible parameter variation
wðtÞ 2 W with t ¼ 0; 1; . . ., we have that xðtÞ 2 intfSg
for t � 0.

If no disturbance exists, namely D ¼ f0g, we shall
refer to this property as strong positive invariance (SPI).
In the discrete-time case, the strong positive invariance
of S is equivalent to the contractivity; note that similar
definitions are given in Blanchini (1990) for determin-
istic linear systems. Next, we introduce the following
notation for system (4):

postðx;W;DÞ ¼ fx0 : x0 ¼ AðwÞxþ Ed; 8w 2 W; d 2 Dg
ð5Þ

which represents all the possible next step states under
the transition AðwÞxðtÞ þ EdðtÞ, given current state xðtÞ.
It can be shown that a set S is strongly positive D-
invariant if and only if there exists a scalar �,
0 < � < 1, such that S is �-contractive, i.e. for any
x 2 S, postðx;W;DÞ � �S.

In the following, we shall assume that D and S are
convex and compact polyhedrons containing the origin,
and in addition, S contains the origin in its interior. A
polyhedral set S in R

n can be represented by a set of
linear inequalities

S ¼ fx 2 R
n : f Ti x � �i; i ¼ 1; . . . ; sg

and for brevity, we denote S as fx : Fx � �g, where ‘‘�’’
is with respect to componentwise. Let vertfSg stand for
the vertices of a polytope S. In the discrete-time case, the
following results hold. Note that similar results were
given in Blanchini (1990) for deterministic linear
systems. The extensions to uncertain dynamics are not
difficult, so the details of proof are omitted here for
space limit.

Proposition 1: The polyhedral region S ¼ fx 2 R
n :

Fx � �g is PDI for system (4), if and only if for
every vertex of S, vj 2 vertfSg, and for every vertex
of D, dh 2 vertfDg, we have AðwÞvj þ Edh 2 S for all
w 2 W, or equivalently

FAðwÞvj þ FEdh � �; 8w 2 W ð6Þ

Similarly, we can derive the following result for
SPDI.

Corollary 1: The polyhedral region S ¼ fx 2 R
n :

Fx � �g is SPDI for system (4), if and only if there
exists �, 0 < � < 1, such that for every vertex of S,
vj 2 vertfSg, and for every vertex of D, dh 2 vertfDg,
we have

FAðwÞvj þ FEdh � ��; 8w 2 W ð7Þ

We now consider continuous-time systems of the
form

_xxðtÞ ¼ AðwÞxðtÞ þ EdðtÞ ð8Þ

Parallel to the discrete-time case, we can introduce PDI
and SPDI concepts for the continuous-time system (8).
The use of invariant sets allows us to extend results for
the discrete-time case to continuous-time systems by
introducing the Euler approximating system (EAS), as

xðtþ 1Þ ¼ ½I þ �AðwÞ�xðtÞ þ �EdðtÞ ð9Þ

It has been proven in Blanchini (1990) that: S is a SPDI
region for a deterministic continuous-time system if and
only if S is a SPDI region for its corresponding Euler
approximating system for some � > 0. Therefore, we can
derive the following proposition for uncertain continu-
ous-time system (8) with polytopic constraints.

Proposition 2: The polyhedral region S ¼ fx 2 R
n :

Fx � �g is SPDI for system (8), if and only if there
exists 0 < � < 1 and � > 0 such that ½I þ �AðwÞ�vjþ
�Edh 2 �S holds for all vj 2 vertfSg, dh 2 vertfDg,
and w 2 W. Synthetically, S is SPDI if and only if
there exists 0 < � < 1 and for some � > 0

Fvj þ �FAðwÞvj þ �FEdh � �� ð10Þ

holds for all w 2 W.

In the above proposition, there are no indications
on how to select � , for which a small value is usually
desirable. To overcome the problem of the choice of � ,
we first introduce the following notation. Let Cj be the
convex cone for a vertex vj of S, which is defined by the
delimiting planes of S. In particular

Cj ¼ fx 2 R
n : f Ti x � �i; for every fi and �i;

s:t: f Ti vj ¼ �i; vj 2 vertðSÞg ð11Þ

which is illustrated in figure 1. Similar to the case of
deterministic dynamics in Blanchini (1990), we derive
the following result for uncertain continuous-time
system (8) with polytopic constraints.

Proposition 3: The polyhedral region S ¼ fx 2 R
n :

f Ti x � �i; i ¼ 1; . . . ; sg is SPDI for system (8), if and
only if for all � > 0, for every vertex of S, vj 2 vertfSg,
and for every vertex of D, dh 2 vertfDg
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vj þ �ðAðwÞvj þ EdhÞ 2 �Cj; 8w 2 W; 8j ¼ 1; . . . ; r

ð12Þ

Note that the inequalities (12), which have fewer
constraints than inequalities (11), are valid for any
� > 0. However, the inequalities (11) only hold for
some � . Therefore, we overcome the problem of the
choice of � by introducing the convex cone Cj and deriv-
ing conditions valid for any � > 0 (12). In the next sec-
tion, we will design the set-valued observer based on the
SPDI and its properties discussed in this section.

4. Observer design

In this section, we will present the design procedure
for set-valued observers. The method is based on set
invariance theory. We will first consider the observer
design for discrete-time case, namely for the system
described by (1) and (3). The extension of these results
to the continuous-time case will be discussed later in
} 4.2.

4.1. Discrete-time case

For discrete-time system described by (1) and (3), we
consider a full state observer of the form

x̂xðtþ 1Þ ¼ ðAðwÞ � LCðwÞÞx̂xðtÞ þ BðwÞuðtÞ þ LyðtÞ ð13Þ
Assume an admissible disturbance sequence dsðtÞ 2 D,
an admissible noise sequence nsðtÞ 2 N , and an admis-
sible parameter variation sequence wsðtÞ 2 W. The cor-
responding real state trajectory is denoted as xsðtÞ for
such dsðtÞ, nsðtÞ and wsðtÞ. At every time step t, the state
region estimation of the observer (13), XðtÞ, contains a
state estimation x̂xsðtÞ, which corresponds to the specified
disturbance sequence dsðtÞ, noise sequence nsðtÞ, and
parameter variation sequence wsðtÞ. Then the estimation
error for xsðtÞ is esðtÞ ¼ x̂xsðtÞ � xsðtÞ which satisfies
esðtþ 1Þ ¼ ðAðwsÞ � LCðwsÞÞesðtÞ þ LnsðtÞ � EdsðtÞ. Con-
sidering all possible wðtÞ 2 W, dðtÞ 2 D and nðtÞ 2 N ,
we can describe the behaviour of the estimation error
eðtÞ ¼ x̂xðtÞ � xðtÞ by the equation

eðtþ 1Þ ¼ ðAðwÞ � LCðwÞÞeðtÞ þ LnðtÞ � EdðtÞ ð14Þ

Our design objective is to ultimately bound the error eðtÞ
in a given compact set E for every admissible disturb-
ance dðtÞ 2 D, noise nðtÞ 2 N and parameter uncer-
tainty wðtÞ 2 W.

Let E � R
n be a given convex and compact polyhe-

dral set containing the origin in its interior. We assume
that E can be represented as E ¼ fe : Fe � �g, and also
assume that the vertices of E are known. Otherwise a
procedure is needed to calculate the vertices of E, for
example by solving some linear equations of the form
f Ti vj ¼ �i.

In the discrete-time case, let us assume that E is SPDI
for some given 0 < � < 1 with respect to state estima-
tion error equation (14). Therefore, from Corollary 1,
the matrix L satisfies the following constraints

½AðwÞ � LCðwÞ�vj þ Ln� Ed 2 �E;

8vj 2 vertfEg; 8w 2 W; n 2 N ; d 2 D ð15Þ

It is known that in practice uncertainties often enter
linearly in the system model and they are linearly con-
strained. To handle this particular but interesting case,
we consider the class of polyhedral sets. Such sets have
been considered in the literature addressing the control
of systems with input and state constraints (Blanchini
1994, 1999). Their main advantage is that they are
suitable for computation. Therefore, in the sequel, we
consider polytopic uncertainty in AðwÞ, BðwÞ and CðwÞ.
Without loss of generality, we assume that AðwÞ ¼Pv

k¼1 wkAk, BðwÞ ¼
Pv

k¼1 wkBk, and CðwÞ ¼
Pv

k¼1 wkCk,
wk � 0;

Pv
k¼1 wk ¼ 1. Note that the vertex matrices

Ak, Bk and Ck are constant matrices of proper dimen-
sion respectively. Then the above constraints can be
written as

f Ti
Xv
k¼1

wkAk � L
Xv
k¼1

wkCk

" #
vj þ f Ti Lnl � ��i � �i

8vj 2 vertfEg; 8nl 2 vertfNg; 8i ¼ 1; . . . ; s;

8wk 2 ½0; 1�; and
Xv
k¼1

wk ¼ 1

where �i ¼ maxd2Dð�f Ti EdÞ, which incorporates the
effects of the disturbance dðtÞ. Because of linearity and
convexity, it is equivalent to only considering the ver-
tices of AðwÞ and CðwÞ, i.e.

f Ti ½Ak � LCk�vj þ f Ti Lnl � ��i � �i;

8vj 2 vertfEg; nl 2 vertfNg;

8i ¼ 1; . . . ; s; 8k ¼ 1; . . . ; v ð16Þ

For brevity, we write

F ½Ak � LCk�vj þ FLnl � ��� �;

8vj 2 vertfEg; nl 2 vertfNg; 8k ¼ 1; . . . ; v ð17Þ
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where � has components as �i. We see that the observer
design problem is solved if the sets of linear inequalities
in the unknown L derived above have a feasible sol-
ution. The feasibility of the above linear inequalities is
guaranteed by the assumption that E is SPDI for some
given 0 < � < 1 with respect to system (14), and vice
versa.

In conclusion, the existence of the set-valued state
observer of the form (13), whose state estimation error
is ultimately bounded{ in a specified region E, is equiva-
lent to the feasibility of the linear inequalities in (17),
and it is also equivalent to the condition that E is SPDI
for some given 0 < � < 1 with respect to system (14).

4.2. Continuous-time case

For a continuous-time system described by (2) and
(3), we consider a full state observer of the form

_̂xx̂xxðtÞ ¼ ðAðwÞ � LCðwÞÞx̂xðtÞ þ BðwÞuðtÞ þ LyðtÞ ð18Þ
The behaviour of the estimation error eðtÞ ¼ x̂xðtÞ � xðtÞ
is described by the equation

_eeðtÞ ¼ ðAðwÞ � LCðwÞÞeðtÞ þ LnðtÞ � EdðtÞ ð19Þ
Our design objective is to ultimately bound the error eðtÞ
in a given compact set E for every admissible disturb-
ance dðtÞ 2 D, noise nðtÞ 2 N and parameter uncer-
tainty wðtÞ 2 W.

Consider the Euler approximating system (EAS) for
the estimation error (19) as

eðtþ 1Þ ¼ ½I þ �ðAðwÞ � LCðwÞÞ�eðtÞ þ �LnðtÞ � �EdðtÞ
ð20Þ

In the continuous-time case, let us assume that E is SPDI
for some given 0 < � < 1 with respect to state estima-
tion error equation (19). From the discussion of the EAS
in the previous section, we know that E is �-contractive
with respect to the above EAS for some � > 0.
Therefore, according to Proposition 2, the matrix L
fulfills the following constraints for such �

vj þ � ½AðwÞ � LCðwÞ�vj þ �Ln� �Ed 2 �E;

8vj 2 vertfEg; 8w 2 W; n 2 N ; d 2 D ð21Þ

The choice of the constant � is not clear. However, in
the previous section, we showed that the problem of
selecting � could be solved by the introduction of the
convex cone Cj corresponding to each vertex vj of E
(Proposition 3). In particular, the polyhedral region
E ¼ fe 2 R

n : f Ti e � �i; i ¼ 1; . . . ; sg is SPDI for system
(19), if and only if for all � > 0, and for every vertex

of E, vj 2 vertfEg
vj þ � ½AðwÞ � LCðwÞ�vj þ �Ln� �Ed 2 �Cj ; 8w 2 W;

ð22Þ
which holds for all noise n 2 N and disturbance d 2 D.
The above constraints are also equivalent to consider
the vertex of N and D only. Thus, E is SPDI for system
(19), if and only if for all � > 0, for all vertices
nl 2 vertfNg and dh 2 vertfDg, the following con-
straints hold for every vertex of E
vj þ � ½AðwÞ � LCðwÞ�vj þ �Lnl � �Edh 2 �Cj;

8w 2 W; 8vj 2 vertfEg ð23Þ

By incorporating the worst case of the disturbance, we
further obtain

f Ti vj þ �f Ti ½AðwÞ � LCðwÞ�vj þ �f Ti Lnl � ��i � ��i

for every fi and �i, such that f Ti vj ¼ �i, where
vj 2 vertfEg, and �i ¼ maxd2Dð�f Ti EdÞ.

If we also assume polytopic uncertainty, i.e. AðwÞ ¼Pv
k¼1 wkAk, BðwÞ ¼

Pv
k¼1 wkBk, and CðwÞ ¼

Pv
k¼1 wkCk,

wk � 0;
Pv

k¼1 wk ¼ 1, then the above constraints can be
written as

f Ti vj þ �f Ti
Xv
k¼1

wkAk � L
Xv
k¼1

wkCk

" #
vj þ �f Ti Lnl � ��i � ��i

which holds for all wk � 0;
Pv

k¼1 wk ¼ 1, for all
nl 2 vertfNg, and for all vj 2 vertfEg. By linearity and
convexity, the above constraints hold if and only if they
hold for each vertex state matrix Ak, Bk, and Ck

f Ti vj þ �f Ti ½Ak � LCk�vj þ �f Ti Lnl � ��i � ��i; 8k ¼ 1; . . . ; v

where nl 2 vertfNg, vj 2 vertfEg, and f Ti vj ¼ �i.
Note that the above constraints hold for every � > 0.

Without loss of generality, let � ¼ 1. Therefore, for all
vj 2 vertðEÞ, we get a collection of linear inequalities
in L

f Ti vj þ f Ti ½Ak � LCk�vj þ f Ti Lnl � ��i � �i; 8k ¼ 1; . . . ; v

ð24Þ
where nl 2 vertfNg, vj 2 vertfEg, and f Ti vj ¼ �i.

Solving the above linear inequalities in L for all
vj 2 vertðEÞ, we get feasible solutions for L, which
make the set E SPDI for the estimation error (19).

5. Implementation of the observer

Note that the observer is set-valued, i.e. it estimates
the region in which the real state resides. The observer
maps the set XðtÞ to another set as time progresses. We
will first consider the implementation of the discrete-
time set-valued observer. It turns out that the observer
maps a polytope to another polytope and only a finite
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number of vertex points are necessary to construct the

set of state estimation XðtÞ.
We consider a full state observer of the form (13) for

discrete-time system described by (1) and (3). Assume

that the initial set Xðt0Þ is a polytope, whose vertices,

x̂xiðt0Þ, i ¼ 1; . . . ; n, are known. For any x̂xðt0Þ 2 Xðt0Þ,
we have x̂xðt0Þ ¼

Pn
i¼1 �ix̂x

iðt0Þ, where �i � 0 andPn
i¼1 �i ¼ 1. The next corresponding estimated state

x̂xðt1Þ, in fact a set, is given by

x̂xðt1Þ ¼ ðAðwÞ � LCðwÞÞx̂xðt0Þ þ BðwÞuðt0Þ þ Lyðt0Þ

which is just the linear transformation of x̂xðt0Þ. Note

that the linear transformation of a polytope is still a

polytope. In addition

x̂xðt1Þ ¼ ðAðwÞ � LCðwÞÞx̂xðt0Þ þ BðwÞuðt0Þ þ Lyðt0Þ

¼ ðAðwÞ � LCðwÞÞ
Xn
i¼1

�ix̂x
iðt0Þ þ BðwÞuðt0Þ þ Lyðt0Þ

¼
Xn
i¼1

�i½ðAðwÞ � LCðwÞÞx̂xiðt0Þ þ BðwÞuðt0Þ þ Lyðt0Þ�

If we assume polytopic uncertainty, i.e. AðwÞ ¼Pv
k¼1 wkAk, BðwÞ ¼

Pv
k¼1 wkBk, and CðwÞ ¼

Pv
k¼1 wkCk,

wk � 0;
Pv

k¼1 wk ¼ 1, then the implementation of the

set-valued observer can be further simplified as

x̂xðt1Þ ¼
Xn
i¼1

�i½ðAðwÞ � LCðwÞÞx̂xiðt0Þ þ BðwÞuðt0Þ þ Lyðt0Þ�

¼
Xn
i¼1

�i

Xv
k¼1

wk½Ak � LCk;Bk�
x̂xiðt0Þ

uðt0Þ

" #
þ Lyðt0Þ

( )

¼
Xn
i¼1

Xv
k¼1

�i wk½Ak � LCk;Bk�
x̂xiðt0Þ

uðt0Þ

" #
þ wkLyðt0Þ

( )

¼
Xn;v
i;k¼1

�iwk ½Ak � LCk;Bk�
x̂xiðt0Þ

uðt0Þ

" #
þ Lyðt0Þ

( )

¼
Xn�v

j¼1

�j x̂x
jðt1Þ

where j ¼ ði � 1Þ � nþ k, x̂xjðt1Þ is the corresponding

estimated state corresponding to the vertices x̂xiðt0Þ
under the vertices Ak, Bk and Ck. Also �j ¼
ð�i � wkÞ � 0 and

Pn�v
j¼1 �j ¼ 1. Therefore for the case

of polytopic uncertainty, the implementation of the

observer only needs to consider the finite vertices of

state matrices, i.e. ðAk;Bk;CkÞ for k ¼ 1; . . . ; v, and the

finite vertices of the XðtÞ, i.e. x̂xiðtÞ for i ¼ 1; . . . ; n. In
summary, the observer can be described by

x̂xð1;1Þðtþ 1Þ ¼ ðA1 � LC1Þx̂x1ðtÞ þ B1uðtÞ þ LyðtÞ

x̂xð1;2Þðtþ 1Þ ¼ ðA1 � LC1Þx̂x2ðtÞ þ B1uðtÞ þ LyðtÞ

. . .

x̂xð1;nÞðtþ 1Þ ¼ ðA1 � LC1Þx̂xnðtÞ þ B1uðtÞ þ LyðtÞ

x̂xð2;1Þðtþ 1Þ ¼ ðA2 � LC2Þx̂x1ðtÞ þ B2uðtÞ þ LyðtÞ

. . .

x̂xð2;nÞðtþ 1Þ ¼ ðA2 � LC2Þx̂xnðtÞ þ B2uðtÞ þ LyðtÞ

. . .

x̂xðv;1Þðtþ 1Þ ¼ ðAv � LCvÞx̂x1ðtÞ þ BvuðtÞ þ LyðtÞ

. . .

x̂xðv;nÞðtþ 1Þ ¼ ðAv � LCvÞx̂xnðtÞ þ BvuðtÞ þ LyðtÞ

and Xðtþ 1Þ ¼ convfx̂xð1;1Þðtþ 1Þ; . . . ; x̂xðv;nÞðtþ 1Þg,
where convf�g stands for the convex hull. However, in
the worst case, the number of the vertices of XðtÞ may
increase geometrically as the time progresses. In order to
deal with such problem, we may outer-approximate XðtÞ
with, for example, a hyper-rectangular, when the num-
ber of the vertices of XðtÞ exceeds a threshold.

We now consider the implementation of the observer
for continuous-time case. In particular,

_̂xx̂xxðtÞ ¼ ðAðwÞ � LCðwÞÞx̂xðtÞ þ BðwÞuðtÞ þ LyðtÞ
where L is a feasible solution of the linear inequalities
(24) for all vj 2 vertðEÞ. For given initial condition
x̂xðt0Þ ¼ x̂x0, the implementation of the observer, that is
the calculation of XðtÞ for each time instant, is in fact an
initial value problem for parameter uncertain ordinary
differential equations. It should be pointed out that for
general polytopic uncertainty a finite number of sol-
utions may not exist which bound the evolution of
XðtÞ. This is due partially to the fact that the image of
an interval (or a polytope) under a map is not an inter-
val (or a polytope). Therefore, we have to restrict the
class of models that can be dealt with. For example, a
class of uncertain linear interval models, whose trajec-
tory have interval boundaries corresponding to two
extreme cases, were studied in Cugueró et al. (2002).
For a more comprehensive review and development of
interval analysis and computation, see Jaulin et al.
(2001) and the references therein.

6. Convergence of the estimation error

In this section, we will study the uniformly ultimate
boundedness of the estimation error eðtÞ ¼ x̂xðtÞ � xðtÞ,
which satisfies

eðtþ 1Þ ¼ ðAðwÞ � LCðwÞÞeðtÞ þ LnðtÞ � EdðtÞ
for discrete-time case, and satisfies
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_eeðtÞ ¼ ðAðwÞ � LCðwÞÞeðtÞ þ LnðtÞ � EdðtÞ

for continuous-time case. Our objective is to show that
the error eðtÞ is uniformly ultimately bounded in some
C-set E for every admissible disturbance dðtÞ 2 D,
measurement noise nðtÞ 2 N and parameter uncertainty
wðtÞ 2 W. For this purpose, we introduce the following
concepts. Note that these concepts appeared previously
in Blanchini (1990, 1994) and also in some references
therein.

A function �: Rn ! R is said to be a gauge function
if

1. CðxÞ � 0, CðxÞ ¼ 0 , x ¼ 0;

2. for � > 0, Cð�xÞ ¼ �CðxÞ;
3. Cðxþ yÞ � CðxÞ þCðyÞ, 8x; y 2 R

n.

A gauge function is convex and it defines a distance
of x from the origin which is linear in any direction. A
gauge function C is 0-symmetric, that is Cð�xÞ ¼ CðxÞ,
if and only if C is a norm.

If C is a gauge function, we define the closed set
(possibly empty) N̂N½C; �� ¼ fx 2 R

n : CðxÞ � �g. On the
other hand, the set N̂N½C; �� is a C-set for all � > 0. Any
C-set E induces a gauge function CEðxÞ (known as
the Minkowski function of E), which is defined as
CðxÞ _¼¼ inff� > 0 : x 2 �Eg. Therefore a C-set E can be
thought of as the unit ball E ¼ N̂N½C; 1� of a gauge func-
tion C and x 2 E , CðxÞ � 1.

Lemma 1 (Blanchini 1994): If E is SPDI (or PDI if
� ¼ 1) set for system (14) with convergence index
� � 1, then �E is so for all � � 1.

Proof: Let e 2 �E, hence ��1e 2 E, so
postð��1e;W;DÞ � �E. Note ��1D � D, so

postðe;W;DÞ ¼ � postð��1e;W; ��1DÞ

� � postð��1e;W;DÞ � ��E &

Lemma 2 (Blanchini 1994): A C-set E is SPDI set
for system (14) with convergence index � < 1 if and
only if there exists a gauge function CðeÞ such that the
unit ball N̂N½C; 1� � E and, if e =2 intfN̂N½C; 1�g, then
Cðpostðe;w; dÞÞ � �CðeÞ for all w 2 W and d 2 D (or.
equivalently, N̂N½C; �� is �-contractive for all � � 1).

Although we only present the above two lemmas for
the discrete-time case, their extensions to the continu-
ous-time case are immediate by employing EAS. In view
of the above two lemmas, we can derive the following
theorem about the uniformly ultimate boundedness of
the estimation error eðtÞ.

Theorem 1: The observation error eðtÞ for the observer
designed in } 4 is uniformly ultimate bounded with con-

vergence rate 0 < � < 1 (or � ¼ ð1� �Þ=�) in the given
C-set E, if and only if the inequalities (17) (or the in-
equalities (24) respectively) are feasible. In addition

xðtÞ 2 XðtÞ � E ð25Þ

for t large enough, where � stands for the Minkowski
sum.

Proof: E is a C-set, and let  ðeÞ ¼ CEðeÞ be its
Minkowski functional. For any e 2 R

n, we have
 ðeðtþ 1ÞÞ � � ðeðtÞÞ for all eðtÞ =2 intfEg, because of
linear inequalities (17) (or the inequalities (24) respect-
ively) and according to Lemma 1. Then  ðeÞ is a Lya-
punov function for system (14) (or for system (19)
respectively), which is uniquely generated from the tar-
get set E for any fixed �. Such a function has been
named Set-induced Lyapunov function (SILF). Then
the existence of the Lyapunov function implies the
exponential convergence of the estimation error to E
according to Lemma 2. The exponential convergence is
in the sense that  ðeðtþ 1ÞÞ � � ðeðtÞÞ in discrete-time
case or  ðeðtþ �ÞÞ � e��� ðeðtÞÞ in continuous-time
case (where � ¼ ð1� �Þ=�). Also for any initial value
of the estimation error eðt0Þ, 9T � t0 such that for
all t � T , eðtÞ 2 E and xðtÞ þ eðtÞ 2 XðtÞ. Therefore,
xðtÞ 2 XðtÞ � E, where � stands for the Minkowski
sum. &

It is worth pointing out that for the linear con-
strained case the set-induced Lyapunov function
 ðeÞ ¼ CEðeÞ can be derived explicitly. Let E be a poly-
hedral C-set for which the following plane description is
given

E ¼ fe : f Ti e � �i; �i > 0; i ¼ 1; . . . ; s; or Fe � �g
ð26Þ

Then we can express the Minkowski function of E as

CEðeÞ ¼ max
1�i�s

f f Ti eg ð27Þ

which is considered as the set-induced Lyapunov func-
tion  ðeÞ ¼ CEðeÞ. The Lyapunov functions of the
above form, which are usually called piecewise linear
Lyapunov functions, have been used extensively for
the analysis and synthesis of dynamical systems in the
literature (see, e.g. Michel et al. 1984, Blanchini 1990,
Polanski 1995 and the references therein).

7. Numerical example

Consider the continuous-time uncertain system
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_xxðtÞ ¼
�0:1 w

1 �0:1

" #
xðtÞ þ

0

w

" #
uðtÞ þ

1

1

" #
dðtÞ

yðtÞ ¼ 1 w½ �xðtÞ þ nðtÞ

We assume that the uncertain parameter w is sub-
ject to the constraint 1 � w � 2, the measurement
noise nðtÞ 2 N ¼ fn : �0:01 � n � 0:01g, and the con-
tinuous disturbance dðtÞ is bounded by d 2 D ¼
fd : �0:01 � d � 0:01g. We consider a full state obser-
ver (18)

_̂xx̂xxðtÞ ¼
�0:1 w

1 �0:1

" #
� L 1 w½ �

 !
x̂xðtÞ þ

0

w

" #
uðtÞ þ LyðtÞ

Then, the estimation error eðtÞ satisfies

_eeðtÞ ¼
�0:1 w

1 �0:1

� �
� L 1 w½ �

� �
eðtÞ þ LnðtÞ �

1

1

� �
dðtÞ

where we assume that the specified set E ¼
fe 2 R

2 : kek1 � 0:1g. Our problem is to design the
matrix

L ¼
l1

l2

� �

such that the estimation error eðtÞ converges exponen-
tially to E.

Using (9) with � ¼ 1, we obtain the EAS system for
estimation error

eðtþ 1Þ ¼
0:9 w

1 0:9

� �
� L 1 w½ �

� �
eðtÞ þ LnðtÞ �

1

1

� �
dðtÞ

Then, using (17) for the above EAS system with � ¼ 0:9

0:9 w

1 0:9

� �
� L 1 w½ �

� �
eðtÞ þ LnðtÞ �

1

1

� �
dðtÞ 2 0:9Cj

where ej is a vertex of E, and Cj is a convex cone corre-
sponding to the vertex vj (see } 3). Now

Fj

0:9 w

1 0:9

� �
�

l1

l2

� �
0 w½ �

� �
ej þ Fj

l1

l2

� �
nl �

0:8

0:8

� �

where ej corresponds to the four vertices of E

e1 ¼
0:1

0:1

� �
; e2 ¼

0:1

�0:1

� �
; e3 ¼

�0:1

�0:1

� �
; and e4 ¼

�0:1

0:1

� �

Fj is the corresponding representation matrix for Cj, that
is

F1 ¼
10 0

0 10

� �
;F2 ¼

10 0

0 �10

� �
;F3 ¼

�10 0

0 �10

� �

and

F4 ¼
�10 0

0 10

� �

Solving the above inequalities with w1 ¼ 1 or w2 ¼ 2,
and n1 ¼ �0:01 or n2 ¼ 0:01, we obtain the following
conditions with respect to

L ¼
l1

l2

� �

0:7241 � l1 � 1:7273; 0:5789 � l2 � 9

If we select

L ¼
1

1

� �

then the set-valued observer is

_̂xx̂xxðtÞ ¼
�1:1 0

0 �0:1� w

� �
x̂xðtÞ þ

0

w

� �
uðtÞ þ

1

1

� �
yðtÞ

Note that the evolution of the observer with given initial
condition x̂xð0Þ ¼ x̂x0 and under the LTI uncertainty
assumption can be explicitly expressed as

x̂xðw; tÞ ¼
e�1:1t 0

0 eð�0:1�wÞt

" #
x̂x0

þ
ðt
0

0

w eð�0:1�wÞðt��Þ

" #
uð�Þ

 

þ
e�1:1ðt��Þ

eð�0:1�wÞðt��Þ

" #
yð�Þ

!
d�

At each time instant t, the output of the observer,
XðtÞ, is given as the domain of mapping
x̂xð�; tÞ : W ! R

n. And xðtÞ 2 XðtÞ � E for t large
enough, where � stands for the Minkowski sum. The
estimation error eðtÞ satisfies

_eeðtÞ ¼
�1:1 0

0 �0:1� w

� �
eðtÞ þ

1

1

� �
nðtÞ �

1

1

� �
dðtÞ

Following } 6, we take the set-induced Lyapunov
function from E ¼ fe 2 R

2 : kek1 � 0:1g as CðxÞ ¼
max1�i�sf f Ti eg ¼ k10 � ek1. We know E is �-contractive
(� ¼ 0:9) by the above design procedure, so by Theorem
1, the estimation is uniformly ultimately bounded in E
with rate � ¼ ð1� �Þ=� ¼ 0:1.

Based on the results in Cugueró et al. (2002), we
obtain the l1 norm of the estimation errors’ upper
bound, which is plotted in figure 2 from several different
initial conditions and under the assumption that
D ¼ N ¼ f0g.

8. Conclusions

The last decade has seen a lot of work on the state
estimation for dynamical systems with unknown inputs,
disturbances and/or parametric uncertainties. Such
robust state estimation problems were often treated
by robust control approaches, which might be very
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complicated. In this paper, we dealt with the robust state

estimation problem in the framework of set invariance

theory. In particular, we developed a set-valued state

observer for a class of uncertain linear systems affected

by parameter variations, persistent disturbances and

measurement noise. The design procedure proposed

assures that the estimation error will be ultimately

bounded within a given convex and compact set con-

taining the origin with an assigned rate of convergence.

The techniques were based on positive set invariance

theory and set-induced Lyapunov functions. The main

advantage of the method comes from its simplicity. To

design the observer one only needs to solve sets of linear

inequalities, and to implement the observer one only

needs to consider finite number of cases corresponding

to the polytopic vertices.

Some aspects of the robust observer proposed in this

paper need more consideration in the future, one of

which is the existence of the robust observer. We only

obtained that the existence of the observer in form of

(13) is equivalent to the feasibility of the linear inequal-

ities (17) (or the inequalities (24) respectively), namely

the condition that E is SPDI for some given 0 < � < 1

with respect to system (14) (or system (19)). However,

this condition maybe difficult to verify since it involves

the determination of a constant matrix L, which makes

E �-contractive with respect to system (14) (or system

(19)), a priori. A possible solution is to transform the

existence problem into the feasibility problem of a finite

number of convex optimization problems, which is more

suitable for computation. Furthermore, we employed

constant matrix L in the observer design (17) here,

namely a common constant matrix L that makes E �-

contractive with respect to system (14) (or system (19)).
This may be too restrictive, and one may fail to find such
L. Similarly to the case of parameterized Lyapunov
function vs. common Lyapunov function, a parameter-
ized matrix Lð�Þ may offer more flexibility in the obser-
ver design.
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