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Abstract—In this paper, we consider a controller failure time  sors, controller, actuators, etc.), and thus packet dropouts
analysis problem for a class of symmetric linear time-invariant  occuring inevitably due to unreliable transmission paths lead
(LTI) systems controlled by a pre-designed symmetric static , congroller failures. Certainly, we can think of package

output feedback. We assume that the controller fails from time d ¢ itivelv in th that tt limited
to time due to physical or purposeful reason, and analyze ropouts posiively In the sense that we expect {o use imite

stability and H.. disturbance attenuation properties for the rate of data and information to control our system. The
entire system. Our objective is to find conditions concerming control problems in that case also fall in the framework of

controller failure time, under which the system’s stability and  feedback control system with controller failures.
Hoo disturbance attenuation properties are preserved 10 a 15 oy recent works, we have considered several analysis

desired level. For both stability andH .. disturbance attenuation bl for feedback trol t ith - |
analysis, we show that if the unavailability rate of the controller problems for feedback control Systems with occassiona

is smaller than a specified constant, then global exponential controller failures. First, we considered in [4] a controller
stability of the entire system and a reasonablé{., disturbance failure time analysis problem for exponential stability of

attenuation level is achieved. The key point is to establish a |T| continuous-time systems with a pre-designed stabilizing
common quadratic Lyapunov-like function for the case vv_here state feedback. By using a piecewise Lyapunov function,
the controller works and the case where the controller fails. - I
we showed that if the unavailability rate of the controller

is smaller than a specified constant and the average time
interval between controller failures (ATBCF) is large enough,

In this paper, we consider some quantitative properties fahen global exponential stability of the system is guaranteed.
linear time-invariant (LTI) control systems with controllerin [5], the result of [4] was extended to LTI discrete-
failures. The motivation of studying such a problem stem#ime systems. Furthermore, we extended the consideration to
from the fact that controller failures always exist in reall, gain analysis for LTI continuous-time feedback control
control systems due to various environmental factors. Faystems with controller failures in [6].
example, in a feedback control system which is composed of Recently, we extended the results in [4], [6] to dynamical
a system and a feedback controller, controller failures occautput feedback case in [7]. In that context, we showed
when the signals are not transmitted perfectly on the routhat if the unavailability rate of the controller is smaller
between the system and the controller, or when the controllthan a specified constant and the ATBCF is large enough,
itself is not available sometimes due to some known ahen exponential stability of the system is guaranteed. Con-
unknown reason. Another important motivation concerningerning H., disturbance attenuation, we showed that if
controller failures is that we can think about “failure” inthe unavailability rate of the controller is smaller than a
a positive way: “suspension”. That is, in the situation thagpecified constant, then the system with an ATBCF achieves a
economical issue or system life consideration is concernegiasonable weighte#(., disturbance attenuation level, and
we desire to suspend the controller purposefully from timéhe weightedH.., disturbance attenuation level approaches
to time. the same normal{., disturbance attenuation level when

For feedback control systems, the problem of possessitige ATBCF is sufficiently large. However, the results in [7]
integrity was considered in [1], where it was proposed tare quite conservative, and the reason is supposed to be in
design a state feedback controller so that the closed-lodipe use of piecewise Lyapunov functions. This observation
system remains stable even when some part of the controllmotivates us to think about the following questioithat
fails. In [2], similar control systems were dealt with usingkind of feedback control systems have a common quadratic
the name of asynchronous dynamical systems (ADS), ahgapunov-like functiorn8] for the case where the controller
two real systems, the control over asynchronous network amebrks and the case where the controller fails? What kind of
the parallelized algorithm, were discussed. In that contexproperties can be obtained for such systems?
a Lyapunov-based approach was proposed to construct then this paper, we give a clear (though not complete) answer
controller so that the system has desired properties. Reéb.the above question. More exactly, we will show that a class
[3] stated similar control problems in the framework ofof symmetric LTI control systems, which are composed of
networked control systems (NCS), where informations (refa symmetric open-loop LTI system and a symmetric static
erence input, plant output, control input, etc.) are exchangexaitput feedback, will have a common quadratic Lyapunov-
through a network among control system components (selike function for the case where the controller works and the

I. INTRODUCTION & PROBLEM DESCRIPTION
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case where the controller fails. Furthermore, we will showyapunov functions in form, it does not meet the requirement
that if the unavailability rate of the controller is smaller tharfor traditional Lyapunov functions, and thus calledmmon

a specified constant, then the original system’s exponentigliadratic Lyapunov-like functiom this paper. It should be
stability andH . disturbance attenuation properties will benoted here that the idea of common quadratic Lyapunov-like
preserved to a reasonable level. We take symmetric systefusictions forH., control systems with controller failures in
into consideration since they appear quite often in manthis paper originates from the recent paper [12], where sta-
engineering disciplines (for example, RC or RL electricability and £, gain properties of switched systems composed
networks, viscoelastic materials and chemical reactions) [9f stable symmetric LTI subsystems were analyzed. In this
[10], [11], and thus belong to an important class in contropaper, we extend the approach in that context to symmetric

engineering. H~ control systems which include the unstable situation
The system we consider is described by equations of thehen the controller fails.
form [1. STABILITY ANALYSIS
alk +1] = Az[k] + Biwlk] + Baulk] In this section, we set[k] = 0 in the system (1) to
z[k] = Cizlk] + Dw(k] (1) analyze stability for the system with controller failures. First,
ylk] = Coz[k], we give a definition concerning exponential stability of an

n o autonomous system quantitatively.
where z[k] € R" is the stateu[k] € R™ is the control Definition 1: The systeme[k-+1] — f(z[k]) with £(0) = 0

. - . . b
input, wik] € R" is the dlsturbance inpuylk] € %7 is the is said to beexponentially stable with decay rafe< ;< 1
measured outputz[k] € R? is the controlled output, and . P

. - if J|z[E]|| < ep”||2[0]]| holds for anyz[0], anyk > 1 and a
A, By, By,Cq,Co, D are constant matrices of appmp”ateconstantc> 0

du'(f:)e ?ﬁéog'5-22::1)[;3hsolrngntqh;rigaiﬁethgvseizseucr)?esatisfyin Now, we assume that a controller (3) has been designed
Y y 9 forthe system (1) so that the closed-loop system

__ AT _ T _ T _ nT.
A=A", Bi=Cr, By=Cy, D=D";  (2) wlk+ 1) = Aalk], A=A+ ByK.Cy (4)

(i) A is not Schur stable and a symmetric static outpy, exponentially stable. However, the designed controller

feedback sometimes fails and we need a (not definitely constant) time
u=Kyy, K,=KI (3) interval to recover it. Obviously, when the controller fails,

i the closed-loop system assumes the form of
has been designed so that the closed-loop system composed P sy

of (1) and (3) has desired property (exponential stability with z[k + 1] = Az[k], ©)
certain decay rate or certaif,, disturbance attenuation which is obtained by substituting — 0 in (1). Hence,
level). However, due to physical or purposeful reason, thg,e herformance of the entire system is dominated by the
designed controller sometimes fails with a (not constant ne?c')llowing piecewise difference equation:

essarily) time interval until we recover it. In this setting, we

derive the condition of controller failure time, under which ekt 1] = { Agx[k] when the controller works

the system’s exponential stability and it§,, disturbance Axl[k] when the controller fails
attenuation properties are preserved to a desired level. As C I
in [4], [5], [6], we use the word “controller failure” in this co-rlw—?rf)llgfx\t/vﬂ(ii:ﬂhnmloa n;Saagﬁlé}atlh;Izniiv{ar::gb"gyerrate of the
paper to mean complete breakdown of the controller(0) Defi 't" > F play b1 denote b pkpth. total
on certain time interval, neither as the one in [1] that part of efinition 2: For anyk > 1, we denote byl (k) the tota

the controller fails, nor as the one in [2] that the controIIeFr'm.e 'Qf?{;’al of controller failures durinfp, k), and call the

decays slowly at a rate atio =4~ the unavailability rate of the controllerin the
L ) . . tem.
To analyze stability an@®., disturbance attenuation prop- Syst . .
erties of the symmetric system with controller failures, we Sinced, is Schur stable and is not Schur stable, we can

utilize a common quadratic Lyapunov-like function approachilviays f|nd. twospﬁsmv;a Elcalavss illband)‘“ >Sl ?]UCh :hglt
It is well known that Lyapunov function theory is the most’ s*"° remains Schur stable an, €comes Schur stavle.

general and useful approach for studying qualitative pro;£S can be seen later, large, and Sf?a")‘“ are desirable.
erties of various control systems. However, for the syste urthermore, sihce nowk, A, anq A, A are Schur stable,
on hand, traditional Lyapunov functions do not exist sincgnOl both matrices are symmetric, we obtain

the system is unstable when the controller fails. Instead(A\,4,)? = X242 <1, (A\;'A)? = (\)242<1. (7)

of traditional Lyapunov functions, we construct a common We define the followinccommon quadratic Lvapunov-like
guadratic Lyapunov-like function along with the situation of ¢ q yap

the controller. Although the common quadratic Lyapunovfunctmncand|date

like function proposed in this paper is similar to traditional V (k) = 2T [k]z[k] (8)
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for the entire system. thus it is always exponential stable no matter how long
Without loss of generality, we assume that the designetie unavalability time of the controller is; see the detailed
controller works duringkz;, k2,+1), and the controller fails discussions in [12].
during [k2;+1, k2j4+2), 7 = 0,1, -- -, whereky, = 0. Then, we
obtain for anyk > 1 that 1. Hoo DISTURBANCE ATTENUATION ANALYSIS
—2(k—kay) _ In this section, we assume that a controller (3) has been
A TV kag) i Ry < k<Ko designed for the system (1) so that the closed-| t
V(k) < 9) esigned for the system (1) so that the closed-loop system
)\i(k_k%Jrl)V(kQ '+1) if ko ir1 < k < ko )
7 = I { alk + 1] = Agz[k] + Biwlk]

z[k] = Ciz[k] + Dwlk], (15)

and by induction that for ang > 1,
< \—2(k=Tu(k)) \2Tu (k) . _
Vik) < A Ay V(0), (10) is Schur stable and th&l., norm of the transfer function
which is equivalent to from w to z is less than a prespecified constantSince
our interest here is to analyZe., disturbance attenuation

—(k=Tu(k)) yTu(k)
k]l < Ag i GV (11) property of the system, we assumf@] = 0.
If there exists a positive scalar satisfying A < 1 such Also, we suppose that the designed controller sometimes
that fails and we need a (not constant necessarily) time interval to
Tu(k) _ InXs +1nA 7 (12) recover it. When the controller fails, the closed-loop system
Eo 7 lnAs+1nA, assumes the form of
which is a condltloq on the unavailability rate of the con- o[k +1] = Az[k] + Biw[k]
troller, then we obtain easily from (12) that (16)
z[k] = Ciz[k] + Dwlk].

AsA) T8 < AP = AT TN < AR (13) _ _ S
Then, the behavior of the entire system is dominated by the

and thus . piecewise LTI system: the system (15) when the controller
[z[k]|| < A%[[=[O]]] - (14)  works and the system (16) when the controller fails.
Thus, the entire system is exponentially stable with decay SiNceAs is Schur stable anfiC' (21— A,) ™' B1+ Do <
rate \ . 4, according to the Bounded Real Lemma [13], there exists
The above discussion is summarized in the followings > 0 such that
theorem. o . —-P, PA, P.B 0
Theorem 1:If the unavailability rate of the controller in ATP, —P, 0 cr

the system (1) is small in the sense of satisfying (12) for
o : : BTp, 0 —I DT
some positiveh < 1, then the system (1) is exponentially 1
stable with decay rata. 0 C1 D =9I
Remark 1:According to the unavailability rate condition
(12), we see that comparatively long controller failure time
T.(k) is tolerable for large\; and small),. This is rea-

<0. a7

To proceed, we need the following lemma.
Lemma 1:P, can be replaced witl in (17), i.e.,

sonable since the closed-loop system has large decay rate -1 A, B 0

(thus good stability property) when the controller works with A, -1 0 cr

large \s, and the open-loop system does not diverge greatly BT 0 I D <0. (18)
1 _

when the controller fails with smalh,. Therefore, if we
concentrate on stability of the system, we should design the 0 ¢ D =l
controller so that a larga, can be obtained. Proof: Since P, > 0, there always exists a nonsingular
Remark 2:Although we concentrated on the case Ofnatrix U satisfyingU” = U~! such that
complete controller breakdown & 0) in this paper, it is an
easy matter to extend the discussion to the case where due U'P,U =% =diag{oy, o2, -+, on} (19)
to various reason the controller (3) decays in the sense of 0, >0, i=1,2,---,n.
u — au With « being a fixed constant satisfyitg< « < 1.
This case is very common in recent works on control systentd®- and post-multiplying the inequality (17) respectively by
which are controlled by limited rate of data or informationdiag{U”",U", 1,1} and diadU, U, I, I}, we obtain
In that case, if the closed-loop system composed of (1) and % YA, 3By 0
u = aK,y is unstable, the discussions up to now are the - ) _
AsEo =3 0 By

same by making some notation modification. If this is not i <0, (20)
the case, then the entire system can be considered as a Bi¥o 0 —-I D
switched system composed of two stable subsystems, and 0 BT D —~I
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where A, = UTA,U, B, = UTB;, and we replaced’; By repeating this process, we see that = I also satisfies
with Bf. Furthermore, pre- and post-multiplying the first(20), i.e.,

; 1
and second rows and columns in (20) By leads to 1 A B 0

-1 F7yv-1 B _ _
_%O, ASZO1 B (1) ) A, -1 0 B, 0 30)
¥ As Xy 0 X, B = :
0 0 o B g 1) B 0 —yI D
0 BIsy! D —I

] Pre- and post-multiplying this inequality respectively by
In (21), we exchange the first and second rows and columngiag(/, 7, 1, I} and diadU”,U7”, 1,1}, we obtain (18).
and then exchange the thrid and fourth rows and columngpis completes the proof.

to obtain When the controller works, we rewrite (18) as
-5t Yt4A, S'Br 0 I A B 0
Axgt -xgt 0 B !
I 0 Yo, (22 A, -1 0o CT
Bi % N -l D BT 0 —4I D
0 BT D —qI 0 ¢ D I
Sinceo; > 0, there always exists a scalag such that
0<A <1, Mo+(1—=XM\)ot=1. (23)

<0. (31)

It is easy to confirm that this inequality is equivalent to

Then, by computlng\ix(ZO) j (1 — A1)x(22), we obtain BTA, + %DC’l BTB, + %DQ o <0, (32
=¥ YA, ¥iB1 0
A3, -3 0 B 0 2 and thus there exists a positive scalar< 1 such that
BTv, 0 —~I D ’ A2+ 2CTCL =N ABi+ 20D 0
0 Bl D I BfA,+1DCi  BIBi+1D? 41 | T
where (33)
. . . Next, we consider the case when the controller fails. In
21 = diag{Aion + (1= A)oy Moz + (1= Aoy this case, we can always find a scajasatisfyingd < 7 < 1
Mo+ (L= Aoy} such that)A is Schur stable and tH&., norm of the system
AL _ (nA,nB1,nC1,nD) is smaller thany. Since symmetricity of
= diag{1,7,++,an} > 0. (25) this adjusted system remains the same, we use the proof of
In the similar way to obtain (22), we can obtain Lemma 1 to obtain
-x7t o 2tA, S7'B 0 -1 nA nB; 0
Azt -7t 0 B A -I 0o ncf
. 171 1 1 <0 (26) 77T nti <0, (34)
Bfy; 0 -—~I D nBi 0 —I nD
0 BT D —~I 0 nCi nD —I
from (24). Sinces, > 0, there exists a scalay, such that  and by some simple calculation,
O<X<l1, )\252+(17>\2)5’2_1:1. 27) A2+%C’1T0177772I ABl+%C%1D 0
Then, the combination, x (24) + (1 — \y)x(26) results in Bf A+ 2DCy BBy +3D* =21 '

(39)

= Y9A, Y,B L . . .
2o 2Br 0 In this inequality, we find a positive scalar, > n~2 such

Be, o g p |0 €@ ™
! o A2+ 20TC = MI AB +1CTD
0 B b BITA+1iDC,  BTBy+1iD?*—~I ] <0
where k k (36)
3, = diag{1, Ay + (1 — Ao)o ", This is always possible sinc8{ B, + 2 D* —~vI < 0 is

e AaGn + (1= A )5_1} guaranteed by (32) and the (1,1)-block of the left sitfe+
1 2%n 2/%n 1CTCy — Al in (36) will be negative definite “enough”
diag{1,1,---,6,} > 0. (29) with a large scalap,,.
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Now, we consider the difference of the common quadratiBy induction, we obtain that for ang > 1,
Lyapunov-like function (8) along the trajectories of the k=T (k) \ T (K)
system. When the controller works, V(k) < X AV (0)

k—1
V(k+1)—V(k) ! > Akt (e =L tm) T ) =Tu D (1) | (44)
Vo=
= (Az[k] + Byw[k])" (Ayz[k] + Brwlk]) — 27 [k]x[k] °
and thus fromz(0) = 0 and V' (k) > 0 that
o A2 -1 ATBy | _
=z [k] e . 7k k—1
Bl As Bl B] Z /\‘I;—l—m—(T“(k)—Tu(m))A'Z;u,(k)—Tu(m)l—\(m) (45)
lcTer+ (- )1 Lcfp e
< _iqu] v i ( ) 1721 k] =
;DCl ;D -1 _ Z()\;1)*(k—l—mf(Tu(k)—Tu(m)))AEu(k)fTu(m)F(m) <o0.
1 m=0
- _§F(k) — (A =A)V(k), (37) According to the discussion in the previous section, if the
where unavailability rate of the controller satisfies the inequality
#k) 2 [2Tk) wTk])]" ) Tu(k) _ ;) +InA  mA—In\, )
= —1 - Y
L'(k) 4 2Tk z[k] — v2wT [k|w(k] k In(As ) +In), InA,—InA
and (33) was used to obtain the inequality. Therefore, in tH8" SOMe positive scalak, < A <1, then
case where the designed controller works, A= 1= (T (k) =Tu(m) \Tu (k) =Tu(m) < \b=1=m (47)
V(k+1) <\ V (k) — lF(k:). (39) Combining (45) and (47), we obtain
0
. k—1 k—1
When the controller fails, Z A== T ] < 42 Z A== T s [m]
_ m=0 m=0
Vik+1)—V(k) 48)
= (Az[k] + Biw[k]))" (Az[k] + Byw[k]) — 27 [k]z[k] Summing both sides of the above inequality frém= 1 to
A2 ATB, k = oo (by rearranging the double-summation area) leads to
! Lo o O 2Rk < T D wlRwlk], (49)
lofey+(1-a)1  tofp * m=0 m=0
] I S W e B | | |
DGy D =l which means arH. disturbance attenuation levef 4—:
1 is achieved under the unavailability rate condition (46).
=——T(k) = (1 =)V (k), (40) We summarize the above discussions in the following
] . . . theorem.
where (36) was used to obtain the inequality. Therefore, in Thegrem 2:If the unavailability rate of the controller in
the case where the designed controller fails, the system (1) is small in the sense of satisfying (46) for
some(0 < A < 1, then the entire system achieves Hn,

1
V(k+1) <A V(k)— -T'(k). (41 ) i Y
gl disturbance attenuation levef ==~ .

As in the previous section, we assume that the designedRemark 3:If A — \;, which means from (46) that the
controller works duringks;, k2;+1), and the controller fails controller’s failure time is close to zero, then we obtain from
during [k2j41,t2542), 7 = 0,1,---, whereky = 0. Then, Theorem 2 that the achievel., disturbance attenuation

for any k > 1 in the interval[ks;, k2;41), we use the well |evel \/1=2=~ also approaches the origingl In this sense,
known difference theory to obtain from (39) that

11?;7 is a reasonable estimation in the situation where

controller failures exist.
Remark 4:1t is an easy task to extend the discussions

k—1
v<k>9’;—k%v<k2j>—§ S A (n), (42)

m=ha here to the case where the controller (3) decays in the

and similarly for anyk € [kajy1,t2542), sense ofu — au with o being a fixed constant satisfying
k1 0 < a < 1. In that case, if the closed-loop system composed

V(k) < Nk (kg0 ) — 1 Z Ae=t=mp () . of (1) andu = aK,y is unstable, the discussions up to
S now are the same by making some notation change. If

(43) this is not the case, then the entire system can be viewed
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as a switched system composed of two stable subsysterhy, (A, By1, By2, Ci1,Cy2, D,) and derive corresponding
and thus a reasonable., disturbance attenuation level is results for the original symmetri¢{., control system with
achieved without considering the unavailability rate of theontroller failures.
controller; refer to the detailed discussions in [12], [14].
Remark 5: Different from our other works [4]-[6] on ) o )
controller failure time analysis for feedback control systems, 1he authors would like to thank Prof. Xinkai Chen with
we do not require any condition in Theorems 1 and 2 abodinki Un|v§r5|ty, Prof. Sh|gemas§1 Takai anq Prof. Kazunori
average time interval between controller failures (ATBCF)Yasuda with Wakayama University, for their valuable com-
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attenuation properties of time-controlled switched systems,

—_ T _ T _ T
Ay = A, Ba = C, and B,y = C,,, we can apply the Journal of The Franklin Institutevol. 338, pp. 765—779, 2001.
results we have obtained up to now for the system represented
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