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Introduction

The theory of polynomial and rational function
interpolation is well understood and its importance in
many disciplines is well known [1,2]. Recently, a
theory generalizing certain interpolation results to
polynomial matrices was introduced [3,4]. This gen-
eralization appears to be well suited to study and re-
solve a variety of multivariable system and coantrol
problenms.

Many control problems can be formulated in terms
of polynomial equations (e.g. the Diophantine equation
XD+YN=Q) where solutions with specific properties are
of interest (e.g. X~ 1Y exists and it is proper). It
is well known that equations involving just poly-
nomials can be solved by either equating coefficients
of equal powers of the indeterminate s or equiva
lently, by using the values obtained when appropriate
values for s are substituted in the given polynomials;
in the latter case one employs results from the theory
of polynomial interpolation. In multivariable con-
trol, polynomial matrix equations appear, which can be
similarly studied either by equating coefficients
[5,6] or by using the recently introduced polynomial
matrix interpolation theory [3,4]., Using this latter
method, the given matrices do not have to be reduced
to any appropriate form before the method is applied
(e.g. in XD+YN=Q, D does not have to be column re-
duced), equations involving rational matrices can also
be directly treated (e.g.det|X+YP| desired with P=ND;1
in eigenvalue placement problem) and equations where
certain given matrices are not completely known
but they belong to certain known class can be solved
(e.g. XD+YN=WR, W arbitrary polynomial matrix). Note
that polynomial matrix interpolation methods have been
used in the past to solve special cases of XD+YN=0;
these include the eigenvalue placement problem via
real output feedback and via state feedback [7,8,6].
Note however that this was done without using the the-
oretical polynomial matrix interpolation results which
are essential in fully solving the general Diophantine
equation.

A suite of interactive computer programs has been
developed [9] to study the effectiveness of polynomial
matrix interpolation in solving control problems and
certain of the results are reported here. In additiom
certain basic interpolation results together with some
new extensions are briefly outlined and the relation
to interpolation conditions used in [10,11] is shown.

Basic Interpolation Results

The basic theorem of polynomial interpolation can
be stated as follows [2]: Given n+l distinct complex
points 83 j=1,...,0+1 and o+l complex values b:, there
exists a unique nth degree polynomial q(s) for which

als;) = bj j=1,...,n+1 D)
A generalization of this result to polynomial matrices
is as follows: .
Let S(s) = bfk diag [1,s,...,sd1]T where dj 1=1,...,m
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are non-negative integers; let aj¢0 and bj denote
(mxl) and (pxl) complex vectors respectively and sj
complex scalars. m
Theorem 1l: Given (Sj, aj, bj)j=1,...,% with 2= ) di+m
such that the (2x%) matrix 1

Sy = [S(s1)al,...,S(sg)ag] (2)

has full rank, there exists a unique (pxm) polynomial
matrix O(s) with column degrees 3.i[0(s)]=d; for
which

0(s;)aj = bj =1l,...,%. (3)

When p=m=1 and di{=n this theorem reduces to the
polynomial interpolation theorem. To see this, note
that the non-zero scalars aj j=1,...,%=n+1 can be
taken equal to 1 in which case S2 is exactly the well
known Vandermonde matrix which is mon-singular if and
only if s; are distinct.

In view of the above polynomial matrix interpo-
lation result, the basic rational matrix interpola-
tion theorem follows:

Theorem 2: Assume that (sj,cj,bj) j=1,...,% with

m
L= dj+m and an (mxm) polynomial matrix D(s) with

1
]D(Sj)l*o are given, such that the Sg matrix in (2)
with aj=[D(Sj)]-l s Cj¢0 has full rank. There
exists a unique rational matrix Q(s) of the form
Q(s)=N(s)D(s)~1, where the polynomial matrix N(s) has
Column degrees 3:1i[N(s)1=dj, for which

g(sj)cj = b; i=1,...,2 (&)

Notice that in Theorem | the polynomial matrix
0(s) with 8.;[0(s)1=d; is uniquely determined from
0(s)=08(s) with O satisfying
0Sg = Iby,...,be] =Bt (5)
It is clear that there are many matrices O(s) with
column degrees greater than di which satisfy (3).
This additional freedom can be exploited so that Q(s)
satisfies requirements in addition to (3). Similar
comments apply to the rational matrix Q(s) of Theorem
2. Such is the case in [10,11] where 2 {rational)
matrix 0(s) must satisfy [|0(jw) ]| < 1 in addition to
interpolation constraints of the form
Q(zy) = Oy k=1,...,k (6)
Note that these conditions are a special case of con-
ditions (4) (or(3)). To see this, consider (4) where
si=z], ci=ei, with i=l,...,m, sp+i=2z72 with c¢p+i=ej and
so on, where the entries of e; are zero except the ith
entry which is 1; then Q3 = [b],...,by] and so on.
Conditions of the form (6) are derived if (polynomial)
rational function interpolation is applied to each
entry of (0(s)) Q(s) and the results are combined in
matrix form. -

*1t is clear that alternative polynomial bases (other
than l,s,...), which might offer computational advan-
tages, can be used,
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The exact relationship between a non-singular
polynomial matrix Q(s) and its characteristic value
and vector pairs (Sj,aj) has been established in [4]
where the case of repeated characteristic values has
been treated in detail. If the characteristic values
and vectors of Q(s) satisfy

Q(s )a = j=1,...,n (7)
where n—deng(s)] (e g when sj are distinct) then, a
(pxm) polynomial matrix A(s) can be written as A(s) =
2(s).Q(s) with A(s) some polynomial matrix, if and
only if
A(s)aj=0 §=1,.00m (8)

The basic 1nterpolat10n results outlined above
have been used to study and develop methods to resolve
a nunber of system and control questions. These in-
terpolation methods have been successfully implemented
via an interactive computer program [9] and some of
the results obtained are presented in the following
section.

Some Applications of Interpolation

(A) Determine solutions (X,Y) of the Diophantine equa-
tion

D(s)
[X(s),Y(s)] = M(s)L(s) = Q(s). (9)
N(s)

Let M(s)=Mg+. .. +Mps?, write Ly(s)=[L(s)T,...,sTL(s)T]T

and consider interpolation points (sj,aj,bj) j=1,...,%
where m ’
2 dj + m(r+1), (10)

L(s) is (txm), b;=Q(s; )aJ and (s3,a;) satisfy the com-
ditions of Theorem 1 %for 3qil M(s)Lzs)] = 3.31[L(s) ]+

= dj+r). Then if M=[My,...,M ] and Bg=[by,...,bg] the
equation to be solved is

MLy 4 = Bg (11)

where Ly g={Le(si)ag,...,Ly(sglag] ((r+Dtxt).
Theorem 3: Assume r satisfies

dcilQls)] < dj + r. (12)

Then, any and all solutions M(s) of (9) of degree r
are derived by solving (11).

Clearly, solution M(s) of degree r might not
exist; Theorem 3 guarantees that searching for degree
r solutions of (9) is equivalent to solving (11).
Assume (N,D) right prime. For solutions of degree r
to exist, r must satisfy certain inequality, in addi-
tion to (12) (e.g. r > V-1 where V the observability
index of ND™1). Solutions with x~ly proper are also
obtained by specifying part of the structure of X via
the interactive computer program {(Note that the method
does not require any special structure for the given

matrices) .

s2 0 s+l 0
1f D(s) = s,  N(s) =

1 =-s+l 1 1

s3 + 262 - 35 - 5, -58-5
and Q(s) =

-282 - 5 - 4, -2~ 35 - 2

then [9] r Z 1, % = 5+2r, and for r = 1
g+5 5 -3 -10

X(s) = s Y(s) =

2 sth -4s-2 -6

where X ly proper. Note that (sJ,aJ) are almost

arbitrarily chosen, the only restriction being to

satisfy condition of Theorem 1. Similarly a

-
D I
unimodular matrix U such that U NJ = [O] is derived.

(B) 1If 1Q(s)| is given and not Q(s), as in the eigem
value assignment problem, a proper X~!Y is derived by
solving equations of the form

[XD + YN](sJ)aJ = 0. (13)
where sj are the desired eigenvalues and 2j (almost)
arbitrary vectors; the choices for ajs correspond to
different O(s) satisfying Q(s: )aJ'O Eigenvalue
assignment is also accomplxshed using directly the
transfer matrix P=ND"! and the equation

[X + YP](sJ)aJ = 0. (14)
(C) Solutions (X,Y) of
D
[x,v]{ J = WR (15)
N

where R given and W arbitrary are also obtained. If
D, N as in (A) and R = diag[s+1] then for (sj,a;)

satisfying R(Sj)aj =0 [9]
s+1 s
and Y(s) = .
s 1

s+3/2 1/2

s+1/2  s+1/2
(D) Stable rational matrices X such that (I—Zy)D'l is
stable are obtained via interpolation. Note that this
condition must be satisfied when characterizing the
stabilizing feedback controllers using the parameter X
[12], write X(s) = X(s)/d(s) where d(s) Hurwitz and
solve

X(s) =

[T - (1/d(s{))X(si)N(sj)]aj = O (16)

where D(s;)aj=0 with s; all the unstable poles of b1,
(E) Eigenvalue assignment via state and constant out-
put feedback is also accomplished.

The interactive computer program [9] is written
in Fortran 77 and it is run on an IBM~3033 computer,
LINPACK is used for solving the linear equations and
testing the singular values and condition number of
the matrices. A complete description of the poly-
nomial matrix interpolation theory with applications
is under preparation and will be available shortly.
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