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Summary. In this article a class of networked control systems called Model-Based
Networked Control Systems (MB-NCS) is considered. This control architecture uses
an explicit model of the plant in order to reduce the network traffic while attempt-
ing to prevent excessive performance degradation. MB-NCS can successfully address
several important control issues in an intuitive and transparent way. In this arti-
cle the main results of this MB approach are described with examples. Specifically,
conditions for the stability of state and output feedback continuous and discrete sys-
tems are derived under different scenarios that include delay compensation, constant
and time varying update times, non-linear plants and quantization of the feedback
signals. In addition, a performance measure for MB-NCS with noise inputs is intro-
duced.

1 Introduction

A networked control system (NCS) is a control system in which a data net-
work is used as feedback medium. NCS is an important research area; see for
example [16] and [15, 18, 19]. The use of networks as media to interconnect
the different components in an industrial control system is rapidly increasing.
The use of networked control systems poses, though, some challenges. One of
the main problems to be addressed when considering a networked control sys-
tem is the size of the bandwidth required by each subsystem. It is clear that
the reduction of bandwidth necessitated by the communication network in a
networked control system is a major concern. This can perhaps be addressed
by two methods: the first method is to minimize the transfer of information
between the sensor and the controller/actuator; the second method is to com-
press or reduce the size of the data transferred at each transaction. Since
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shared characteristics among popular industrial networks are small transport
time and big overhead, using less bits per packet has small impact on the
overall bit rate. So reducing the rate at which packets are transmitted brings
better benefits than data compression in terms of bit rate used. In this pa-
per, we consider the problem of reducing the packet rate of a NCS using a
novel approach called Model-Based NCS (MB-NCS). The MB-NCS architec-
ture makes explicit use of knowledge about the plant dynamics to enhance the
performance of the system. Model-Based Networked Control Systems (MB-
NCS) were introduced in [11].

In Section 2 the basic MB-NCS setup is introduced for continuous plants.
Stability of MB-NCS’ with no quantization and periodic transmissions are
considered. In Section 3 a performance measure is introduced for the previ-
ously presented MB-NCS. The stability of MB-NCS with time-varying and
stochastic transmission times is studied in Section 4. Quantization schemes
are considered in Section 5. Finally, stability for a class of nonlinear systems
is studied in Section 6.

2 Stability of Continuous Linear MB-NCS with

Constant Update Times

2.1 State Feedback MB-NCS

We consider the control of a continuous linear plant where the state sensor
is connected to a linear controller/actuator via a network. In this case, the
controller uses an explicit model of the plant that approximates the plant
dynamics and makes possible the stabilization of the plant even under slow
network conditions.

Fig. 1. Proposed configuration of networked control system.

We will concentrate on characterizing the transfer time between the sensor
and the controller/actuator, which is the time between information exchanges.
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The plant model is used at the controller/actuator side to recreate the plant
behavior so that the sensor can delay sending data since the model can provide
an approximation of the plant dynamics. The main idea is to perform the
feedback by updating the model’s state using the actual state of the plant that
is provided by the sensor. The rest of the time the control action is based on a
plant model that is incorporated in the controller/actuator and is running open
loop for a period of h seconds. The control architecture is shown in Figure 1.

Our approach is novel in that it incorporates a model of the plant, the
state of which is updated at discrete intervals by the plant’s state. We present
a necessary and sufficient condition for stability that results in a maximum
transfer time. We make use of standard stability definition such as the ones
found in [1].

If information for all the states is available, then the sensors can send this
information through the network to update the model’s vector state. For our
analysis we will assume that the compensated model is stable and that the
transportation delay is negligible. We will assume that the frequency at which
the network updates the state in the controller is constant. The idea is to find
the smallest frequency at which the network must update the state in the
controller, that is, an upper bound for h, the update time. Usual assumptions
in the literature include requiring a stable plant or in the case of a discrete
controller, a smaller update time than the sampling time. Here we do not
make any of these assumptions and the plant may be unstable.

Consider the control system of Figure 1 where plant is given by ẋ = Ax +
Bu, the plant model by ˙̂x = Âx̂ + B̂u, and the controller by u = Kx̂. The
state error is defined as e = x − x̂, and represents the difference between the
plant state and the model state. The modeling error matrices Ã = A− Â and
B̃ = B− B̂ represent the difference between the plant and the model. We will

now express the combined state z(t) =
[

x(t)T e(t)T
]T

in terms of the initial
condition x(t0). A necessary and sufficient condition for stability of the state

feedback MB-NCS will then be presented. Define Λ =

[

A + BK −BK

Ã + B̃K Â − B̃K

]

.

Proposition 1 [13] The State Feedback MB-NCS with initial conditions

z(t0) =
[

x(t0)
T 0T

]T
= z0, has the following response:

z(t) = eΛ(t−tk)

([

I 0
0 0

]

eΛh

[

I 0
0 0

])k

z0,

for t ∈ [tk, tk+1),with tk+1 − tk = h

Theorem 1 [13] The State Feedback MB-NCS is globally exponentially stable

around the solution z =
[

xT eT
]T

= 0 if and only if the eigenvalues of

M =

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

are strictly inside the unit circle.
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One can gain insight into the closed loop system behavior by noticing that

the nonzero eigenvalues of M =

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

are exactly the eigenvalues

of another matrix:

N = e(Â+B̂K)h + eAh

∫ h

0

e−Aτ (Ã + B̃K)e(Â+B̂K)τdτ (1)

This can be shown either directly or by using the Laplace transform. The
second method involves replacing the update time variable h by the time vari-
able t, transforming the expression using the Laplace transform. The trans-
formed expression can then be easily manipulated. After isolating the upper
left block matrix, inverse Laplace transform can be used to return to time
domain [10].

First we observe that the eigenvalues of the compensated model ap-

pear in the first term of N . We can see the term ∆ = eAh
∫ h

0
e−Aτ (Ã +

B̃K)e(Â+B̂K)τdτ as a perturbation on the desired eigenvalues, that is, the
eigenvalues of the compensated model. Even if the eigenvalues of the original
plant were unstable the perturbation ∆ can be made small enough by having
h and Ã+ B̃K small and thus minimizing their impact over the eigenvalues of
the compensated plant. We also observe that if the update time h is driven to
zero, then ∆ = 0. Also it is possible to make ∆ = 0 by having a plant model
that is exact.

Example 1 Consider the following unstable plant (double integrator): A =
[

0 1
0 0

]

, B =

[

0
1

]

We will use the state feedback controller given by u = Kx

with K =
[

−1 −2
]

. Usually it is assumed that the actuator/controller will
hold the last value received from the sensor until the next time the sensor trans-
mits and a packet is received. Under this assumption the controller/actuator’s
model acts as a zero order hold when updated. We will first analyze this situa-
tion. To do so, we will transform the plant model so that it holds the last state
update presented to it by the network. This is given by: ˙̂x = Âx̂ + B̂u , with

Â =

[

0 0
0 0

]

and B̂ =
[

0 0
]T

. Now we need to search for the biggest h such

that

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

has its eigenvalues inside the unit circle. To do so we

plotted the maximum eigenvalue magnitude versus the update time. The plot
is shown in Figure 2.

From Figure 2 we see that the condition for stability is to have h < 1
second. In fact the test matrix M will have one eigenvalue with magnitude
1 for h = 1 second and the system will be marginally stable. If we use the
results by [19] we would have obtained that, in order to stabilize the system,
we would need to have h < 2.1304× 10−4 seconds, which is very conservative.
Simulations of the system with update times of 2.1304× 10−4 and 0.5 seconds
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are shown in Figure 3. Note that the plant was initialized with an initial

condition of
[

1 1
]T

.
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Fig. 2. Maximum eigenvalue magnitude of the test matrix M versus the update
time h.
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Fig. 3. System response for h = 2.1304 × 10−4 and h = 0.5 sec.

It is clear that the performance obtained with h = 0.5 seconds is not too
different to the one obtained with h < 2.1304×10−4 seconds, but the difference
in the amount of bandwidth used is large. If we were to use Ethernet that
has a minimum message size of 72bytes (including preamble bits and start
of delimiter fields) the data rate would be 2.7Mbits/sec for the case of h <

2.1304 × 10−4 seconds, and 1.2Kbits/sec for the case of h = 0.5 seconds.

Example 2 In real applications uncertainties can frequently be expressed as
tolerances over the different measured parameter values of the plant. This
can be mapped into structured or parametric uncertainties on the state space
matrices. Next an example is given on how the Theorem 1 can be applied if
two entries on the A matrix of the model can vary within a certain interval.
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model: Â =

[

0 1
0 0

]

, B̂ =

[

0
1

]

;

plant: A =

[

0 1 + ã12

0 + ã21 0

]

, B =

[

0
1

]

;

with ã12 = [−0.5, 0.5], ã21 = [−0.5, 0.5]
controller: K =

[

−1 −2
]

.

The system will now be tested for an update time of h = 2.5 seconds. The
following contour plot in Figure 4 represents the magnitude of the maximum
eigenvalue of the test matrix M as a function of the (1,2) and (2,1) entries
of A parameters a12 and a21. Here the contour of height equal to one is the
relevant one to stability. It is easy to isolate the stable and unstable regions in
the uncertainty parameter plane. The stable region is between the lines labeled
as 1.
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Fig. 4. Contour Plot Maximum Eigenvalue Magnitude vs Model Error.

2.2 Output Feedback MB-NCS

We have been considering plants where the full state vector is available at the
output. We now extend our approach to include plants where the state is not
directly measurable. In this case, in order to obtain an estimate of the plant
state vector, a state observer is used. It is assumed that the state observer is
collocated with the sensor. Again, we use the plant model, ˙̂x = Âx̂ + B̂u, to
design the state observer. The observer uses the plant output and generates
a copy of the plant input applied by the controller. See Figure 5.

Having the sensor carry the computational load of an observer is justified
by the fact that typically sensors that can be connected to a network have an
embedded processor inside. This processor is usually in charge of performing
the sampling, filtering and implementing the network layer services required
to connect to the network. Ishii and Francis give a similar justification in
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Fig. 5. Proposed configuration of an output feedback networked control system.

[17]. In their approach an observer is placed at the output of the plant to
reconstruct the state vector. The result is then quantized and sent over the
network to the controller.

The observer has as inputs the output and input of the plant. In the
implementation of this set up, to acquire the input of the plant, which is at
the other side of the communication link, the observer can have a version of
the model and controller, and knowledge of the update time h. In this way, the
output of the controller, that is the input of the plant, can be simultaneously
and continuously generated at both ends of the feedback path with the only
requirement that the observer makes sure that the model has been updated.
This last requirement ensures that both the controller and the observer are
synchronized. Handshaking provided by most network protocols can be used.

Again, we use the plant model, ˙̂x = Âx̂+ B̂u, to design the state observer.
See Figure 5. The observer has the form of a standard state observer with
gain L. In summary, the system dynamic equations are for t ∈ [tk, tk+1):

Plant: ẋ = Ax + Bu, y = Cx + Du

Model: ˙̂x = Âx̂ + B̂u, y = Ĉx̂ + D̂u

Controller: u = Kx̂

Observer: ˙̄x = (Â − LĈ)x̄ +
[

B̂ − LD̂ L
] [

uT yT
]T

We now proceed in a similar way as in the previous case of full feedback. There
will be an update interval h, after which the observer updates the controller’s
model state x̂ with its estimate x̄. Define an error e that will be the difference
between the controller’s model state and the observer’s estimate: e = x̄ − x̂.
Also define the modeling error matrices in the same way as before: Ã = A−Â ,

B̃ = B − B̂ , C̃ = C − Ĉ , and D̃ = D − D̂. Define z =
[

xT x̄T eT
]T

, and

Λo =





A BK −BK

LC Â − LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ Â − LD̃K




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Theorem 2 [13] The Output Feedback MB-NCS is globally exponentially sta-

ble around the solution z =
[

xT x̄T eT
]T

= 0 if and only if the eigenvalues

of Mo =





I 0 0
0 I 0
0 0 0



 eΛoh





I 0 0
0 I 0
0 0 0



 are inside the unit circle.

The eigenvalues of the test matrix Mo can be studied in a similar fashion as
in the state feedback case. By replacing h by t, applying the Laplace transform
and isolating the nonzero upper left block of Mo we obtain:

P =







(

sI − Â − B̂K
)−1

+ ∆1 (sI − A)−1BK
(

sI − Â − B̂K
)−1

∆3

(

sI − Â + LĈ
)−1

+ ∆2







with

∆1 = (sI − A)−1(Ã + B̃K)(sI − Â − B̂K)−1

∆2 = (sI − Â + LĈ)−1
(

B̃K −
(

Ã − LC̃
)

(sI − A)−1BK
)

(sI − Â − B̂K)−1

∆3 = (sI − Â + LĈ)−1
(

Ã − LC̃ + B̃K −
(

Ã − LC̃
)

(sI − A)−1
(

Ã + B̃K
))

·

(sI − Â − B̂K)−1

It is clear that if Ã → 0 , B̃ → 0 , and C̃ → 0 then ∆1 → 0 , ∆2 → 0 , and
∆3 → 0. By doing so we obtain:

PL = lim
∆→0

P =







(

sI − Â − B̂K
)−1

(sI − A)−1BK
(

sI − Â − B̂K
)−1

0
(

sI − Â + LĈ
)−1







From here it can be seen that by making the error between the plant and
the model zero, the system’s compensated eigenvalues would be placed at

eig
{

e(Â+B̂K)h
}

∪ eig
{

e(Â−LĈ)h
}

. Similarly to the full state feedback case,

there are perturbation matrices ∆1 , ∆2 , and ∆3 that can be made small by
reducing the error between the actual plant and the model dynamic equations.
The perturbation is over a matrix that has the eigenvalues of the compensated
model. Finally note that the separation principle of classic control where con-
troller and observer can be designed independently cannot be used here.

2.3 State Feedback MB-NCS with Network Induced Delays

Previously we assumed that the network delays were negligible. This is usually
true for plants with slow dynamics relative to the network bandwidth. When
this is not the case the network delay cannot be neglected. Network delays
can occur for many reasons. There are three important delay sources:

• Processing time.
• Media access contention.
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• Propagation and transmission time.

The first one, processing time, occurs at both ends of the communication
channel. On the transmitter, the processing time is the time elapsed between
the time the transmitting process makes the request to the operating system
to transmit a message, to the time the message is ready to be sent. And on
the receiver this is the time interval that occurs between the last bit of the
message is received by the receiver, and when the time the message is delivered
by the operating system to the receiver process.

The media access contention time is the time the transmitter has to wait
until the communication channel is not busy. This is usually the case when
several transmitters have to share the same media.

The propagation and transmission time is the time the message takes to
be placed on the network media and to travel through the network to reach
the receiver. In local area networks the time the message takes to travel or
propagate through the media is small in comparison to wide area networks or
internetworks like the Internet. The time the message takes to be placed on
the network depends on the size of the message and the baud rate.

If the control network is a local area network, as is common practice in in-
dustry, the propagation and transmission time can be established beforehand
with good accuracy. Similarly for the processing time. If real time operating
systems are used the processing time can be accurately calculated. Finally,
media access contention delay can be fixed with the use of a communication
protocol with scheduling. Fast data communication networks like Token Ring,
Token Bus, and ArcNet fall into this category. Industry oriented control net-
works like Foundation Fieldbus also implements a scheduler through its LAS
or Link Active Scheduler. Even the inherently non-deterministic Ethernet has
addressed the problem of not having a specified contention time with the
so-called Switched Ethernet.

In conclusion, most of these delays can at least be bounded if the network
conditions are appropriate.

In the following, we extend our results to include the case were transmis-
sion delay is present. We will assume that the update time h is larger than
the delay time τ . As before we will assume that the update time h and delay
τ are constant. We will present here the case of full state feedback systems.

So, at times kh − τ the sensor transmits the state data to the con-
troller/actuator. This data will arrive τ seconds later. Therefore, at times
kh the controller/actuator receives the state vector value x (kh − τ). The
main idea is to use the plant model in the controller/actuator to calculate
the present value of the state. After this, the state approximate obtained can
be used to update the controller’s model as in previous setups. The system is
depicted in Figure 6.

The Propagation Unit uses the plant model and the past values of the
control input u(t) to calculate an estimate of actual state x̆(kh) from the
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Fig. 6. Proposed configuration of a state feedback networked control system in the
presence of network delays .

received data x(kh − τ). This estimate is then used to update the model that
with the controller will generate the control signal for the plant.

The system is described by the following equations:

Plant: ẋ = Ax + Bu

Model: ˙̂x = Âx̂ + B̂u

Controller: u = Kx̂, t ∈ [tk, tk+1)

Propagation Unit: ˙̆x = Âx̆ + B̂u, t ∈ [tk+1 − τ, tk+1]
Update law: x̆ ← x, t = tk+1 − τ and x̂ ← x̆, t = tk+1

(2)

We define the errors ê = x̆− x̂ and ĕ = x− x̆. We also make the following
definitions:

Ã = A − Â

B̃ = B − B̂
, Λd =





A + BK −BK −BK

Ã + B̃K Â − B̃K −B̃K

0 0 Â



 , z =





x

ĕ

ê





Theorem 3 [13] The State Feedback MB-NCS with networked induced delay

τ is globally exponentially stable around the solution z =
[

xT ĕT êT
]T

= 0

if and only if the eigenvalues of MT =





I 0 0
0 I 0
0 0 0



 eΛdτ





I 0 0
0 0 0
0 I I



 eΛT (h−τ) are

inside the unit circle.

It is interesting to note that the results on Theorem 3 can be seen as a
generalization of Theorem 1. This can be shown by driving τ to zero.

Example 3 Here we present a numeric example with the same plant we have

been using before A =

[

0 1
0 0

]

, B =

[

0
1

]

, with randomly generated plant model
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Â =

[

−0.3444 0.9225
−0.3089 0.3560

]

, B̂ =

[

−0.0098
1.3159

]

, and controller K =
[

−1 −2
]

.

Figure 7 shows the plots for the maximum eigenvalue magnitude as a function
of h for 3 different values of τ . The maximum value h can have to preserve
stability is reduced when τ is increased.
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Fig. 7. Maximum eigenvalue of test matrix M versus the update times h for τ= 0,
0.25, and 0.50 sec.

3 A Performance Index for Linear MB-NCS with

Constant Update Times

The performance characterization of Networked Control Systems under differ-
ent conditions is also of mayor concern together with stability. It is clear that,
since the MB-NCS is h-periodic, there is no transfer function in the normal
sense whose H2 norm can be calculated [2]. For LTI systems the H2 norm can
be computed by obtaining the 2-norm of the impulse response of the system.
We will extend this definition to specify an H2 norm, or more accurately, to
define an H2-like performance index [2]. We will call this performance index
Extended H2 Norm. We will study the Extended H2 Norm of the MB-NCS
with output feedback studied in subsection 2.2. A disturbance signal w and a
performance or objective signal z are included in the setup.

We will start by defining the system dynamics:

Plant Dynamics: Observer Dynamics:

ẋ = Ax + B1w + B2u ˙̄x = (Â − LĈ2)x̄ + (B̂2 − LD̂22)u + Ly

z = C1x + D12u Model Dynamics:

y = C2x + D21w + D22u ˙̂x = Âx̂ + B̂2u

Controller:
u = Kx̂

(3)

Define the following:
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Λ =





A B2K −B2K

LC2 Â − LĈ2 + B̂2K + LD̃22K −B̂2K − LD̃22K

LC2 LD̃22K − LĈ2 Â − LD̃22K





M(h) =





I 0 0
0 I 0
0 0 0



 eΛh, BN =





B1

LD21

LD21



 , CN =
[

C1 D12K −D12K
]

Theorem 4 [21] The Extended H2 Norm, ‖G‖xh2, of the Output Feedback
MB-NCS described in Equation (3) is given by ‖G‖xh2 = trace

(

BT
NXBN

)

where X is the solution of the discrete Lyapunov equation M(h)T XM(h) −
X + Wo(0, h) = 0 and Wo(0, h) is the observability Gramian computed as

Wo(0, h) =
∫ h

0
eΛT tCT

NCNeΛtdt.

Note that the observability Gramian can be factorized as Caux
T Caux =

∫ h

0
eΛT tCT

NCNeΛtdt. This allows one to compute the Extended Norm as the
regular H2 norm of a discrete LTI system.

Corollary 1 [21] Define Caux
T Caux =

∫ h

0
eΛT tCT

NCNeΛtdt and the auxiliary
discrete system Gaux with parameters Aaux = M(h), Baux = BN , Caux, and
Daux = 0, then the following holds.

‖G‖xh2 = ‖Gaux‖2

Example 4 We now present an example using a double integrator as the

plant. Let the plant dynamics be given by: A =

[

0 1
0 0

]

, B1 =

[

0.1
0.1

]

,

B2 =
[

0 1
]T

, C1 =
[

0.1 0.1
]

, C2 =
[

1 0
]

, D11 = 0 , D12 = 0.1 ,

D21 = 0.1 , D22 = 0 . We will use the state feedback controller K =
[

−1 −2
]

.

A state estimator with gain L =
[

20 100
]T

is used to place the state observer
eigenvalues at –10. We will use a plant model with the following parame-

ters: Â =

[

0.1634 0.8957
−0.1072 −0.1801

]

, B̂2 =

[

−0.1686
1.0563

]

, Ĉ2 =
[

0.8764 0.1375
]

,

D̂22 = −0.1304 .
In Figure 8 we plot the extended H2 norm of the system as a function of

the updates times. Note that as the update time of the MB-NCS approaches
zero, the value of the Extended H2 norm approaches the H2 norm of the non-
networked compensated system. Also note the performance degradation as the
update time h is increased.

4 Stability of MB-NCS with Time-Varying Update

Times

In this section we relax our assumption that the update times h(k) are con-
stant. Here we study the state feedback MB-NCS shown in Figure 1. The
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Fig. 8. Extended H2 norm of the system as a function of the update times.

packets transmitted by the sensor contain the measured value of the plant
state and are used to update the plant model on the actuator/controller node.
These packets are transmitted at times tk . We define the update times as the
times between transmissions or model updates: h(k) = tk+1 − tk. Previously
we made the assumption that the update times h(k) are constant. This might
not always be the case in applications. The transmission times of data pack-
ets from the plant output to the controller/actuator might not be completely
periodic due to network contention and the usual non-deterministic nature of
the transmitter task execution scheduler. Soft real time constraints provide a
way to enforce the execution of tasks in the transmitter microprocessor. This
allows the task of periodically transmitting the plant information to the con-
troller/actuator to be executed at times tk that can vary according to certain
probability distribution function. This translates into an update time h(k)
that can acquire a certain value according to a probability distribution func-
tion. Most work on networked control systems assumes deterministic commu-
nication rates [17,20] or time-varying rates without considering the stochastic
behavior of these rates [9, 19]. Little work has concentrated in characterizing
stability or performance on a networked control system under time-varying,
stochastic communication.

We first study the stability properties of the feedback MB-NCS assuming
that the update times can take any values in an interval [hmin, hmax]. In
this case we will assume that we don’t have any statistical knowledge about
the update times. We analyze the stability properties of this system using
Lyapunov techniques. This is the strongest type of stability presented and will
provide a first cut on the characterization of the stability properties perhaps
for comparison purposes.

Next, two types of stochastic stability are discussed, namely Almost Sure
or Probability-1 Asymptotic Stability and Mean Square or Quadratic Asymp-
totic. The first one is the one that mostly resembles deterministic stability
[3]. Mean square stability is attractive since it is related to optimal control
problems such as the LQR.
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Two different types of time-varying transmission times are considered for
each case of stochastic stability criterion. The first assumes that the trans-
mission times are independent identically distributed with probability distri-
bution function that may have support for infinite update times. The second
type of stochastic update time assumes that the transmission times are driven
by a finite Markov chain. Both models are common ways of representing the
behavior of network transmission and scheduler execution times.

4.1 Lyapunov Stability of MB-NCS

The stability criterion derived in this section is the strongest and most con-
servative stability criterion. It is based on the well-known Lyapunov second
method for determining the stability of a system. We will assume that the
properties of h(k) are unknown but h(k) is contained within some interval.
This criterion is not stochastic but provides a first approach to stability for
time-varying transmission times NCS.

Definition 1 The equilibrium z = 0 of a system described by ż = f (t, z)
with initial condition z(t0) = z0 is Lyapunov asymptotically stable at large
(or globally) if for any ε > 0 there exists β > 0 such that the solution of
ż = f (t, z) satisfies ‖z (t, z0, t0)‖ < ε , ∀t > t0 and lim

t→∞
‖z (t, z0, t0)‖ = 0

whenever ‖z0‖ < β.

Theorem 5 [14] The State Feedback MB-NCS is Lyapunov Asymptotically
Stable for h ∈ [hmin, hmax] if there exists a symmetric positive definite matrix
X such that Q = X − MXMT is positive definite for all h ∈ [hmin, hmax]

where M =

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

.

Theorem 5 may be used to derive an interval [hmin, hmax] for h for which
stability is guaranteed. It is clear that the range for h, that is the interval
[hmin, hmax], will vary with the choice of X. Another observation is that the
interval obtained this way will always be contained in the set of constant
update times for which the system is stable (as derived using Theorem 1).
That is, an update time contained in the interval [hmin, hmax] will always be
a stable constant update time.

Several ways of obtaining the values for hmin andhmax can be used. One is
to first fix the value of Q, obtain the solution X of the Lyapunov equation in
Theorem 5 for a value of h known to be stable. Then, using this value of X,
the expression X − MXMT can be evaluated for positive definiteness. This
can be repeated for all the values of h known to stabilize the system to obtain
the widest interval [hmin, hmax].

4.2 Almost Sure or Probability-1 Asymptotic Stability

We will use the definition of almost sure asymptotic stability [3] that pro-
vides a stability criterion based on the sample path. This stability definition
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resembles more the deterministic stability definition [4], and is of practical
importance. Since the stability condition has been relaxed, we expect to see
less conservative results than those obtained using the Lyapunov stability con-
sidered in the previous section. We now define Almost Sure or Probability-1
Asymptotic stability.

Definition 2 The equilibrium z = 0 of a system described by ż = f (t, z)
with initial condition z(t0) = z0 is almost sure (or with probability-1) asymp-
totically stable at large (or globally) if for any β > 0 and ε > 0 the solution of

ż = f (t, z) satisfies lim
δ→∞

P

{

sup
t≥δ

‖z (t, z0, t0)‖ > ε

}

= 0 whenever ‖z0‖ < β.

This definition is similar to the one presented for deterministic systems
in Definition 1. We will examine the conditions under which the full state
feedback continuous networked system in Figure 1 is stable.

MB-NCS with Independent Identically Distributed Transmission

Times

Here we will assume that the update times h(k) are independent identically
distributed (iid) with probability distribution function F (h). We now present
the conditions under which the full state feedback MB-NCS with iid update
times is asymptotically stable with probability-1. We will use a technique
similar to lifting [2] to obtain a discrete linear time invariant representation
of the system. It can be observed that the system can be described by

ξk+1 = Ωkξk, with ξk ∈ L2e and ξk = z(t + tk), t ∈ [0, hk). (4)

Here L2e stands for the extended L2. It can be shown that the operator Ωk

can be represented as:

(Ωkν)(t) = eΛt

[

I 0
0 0

]

h(k)
∫

0

δ(τ − h(k))ν(τ)dτ (5)

With δ(t) representing the impulse function. Now we can restate the defi-
nition on almost sure stability or probability-1 stability given in Definition 2
to better fit the equivalent system representation (4).

Definition 3 The system represented by (4) is almost sure stable or stable
with probability-1 if for any β > 0 and ε > 0 the solution of ξk+1 = Ωkξk

satisfies: lim
δ̃→∞

P

{

sup
k≥δ̃

‖ξk(t0, z0)‖2,[0,tk] > ε

}

= 0 whenever ‖z0‖ < β. Where

the norm ‖·‖2,[0,h(k)] is given by ‖ξk‖2,[0,h(k)] =

(

h(k)
∫

0

‖ξk(τ)‖
2
dτ

)1/2

.
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16 Luis A. Montestruque, Panos J. Antsaklis

This definition allows us to study almost sure stability of systems such as
(4) when the probability distribution function for update times has infinite
support. Based on this definition the following result can now be shown.

Theorem 6 [14] The State Feedback MB-NCS, with update times h(j) in-
dependent identically distributed random variable with probability distribu-
tion F (h) is globally almost sure (or with probability-1) asymptotically stable

around the solution z =
[

xT eT
]T

= 0 if N = E
[

(

e2σ̄(Λ)h − 1
)1/2

]

< ∞

and the expected value of the maximum singular value of the test matrix M ,

E [‖M‖] = E [σ̄M ], is strictly less than one, where M =

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

.

Note that the condition may give conservative results if applied directly
over the test matrix. To avoid this problem and make the condition tighter
we may apply a similarity transformation over the test matrix M .

The condition on the matrix N ensures that the probability distribution
function for the update times F (h) assigns smaller occurrence probabilities to
increasingly long update times, that is F (h) decays rapidly. In particular we
observe that N can always be bounded if there exists hm such that F (h) = 0
for h larger than hm. We can also bound the expression inside the expecta-

tion to obtain E
[

(

e2σ̄(Λ)h − 1
)1/2

]

< E
[

eσ̄(Λ)h
]

and formulate the following

corollary:

Corollary 2 The State Feedback MB-NCS, with update times h(j) that are
independent identically distributed random variable with probability distribu-
tion F (h) is globally almost sure (or with probability-1) asymptotically sta-

ble around the solution z =
[

xT eT
]T

= 0 if T = E
[

eσ̄(Λ)h
]

< ∞ and
the expected value of the maximum singular value of the test matrix M ,
E [‖M‖] = E [σ̄M ], is strictly less than one.

Note that Corollary 1 condition T = E
[

eσ̄(Λ)h
]

< ∞ is automatically
satisfied if the probability distribution function F (h) doesn’t have infinite
support. It otherwise indicates that F (h) should roll off fast enough as to
counteract the growth of M ’s maximum singular value as h increases.

Example 5 We use the unstable double integrator plant. We now assume
that h(k) is a random variable with a uniform probability distribution func-
tion U (0.5, hmax). The plot of the expected maximum singular value of a
similarity transformation of the original test matrix M is shown in Figure 9.
The similarity transformation used here was one that diagonalizes the matrix
M for h = 1.

We see that the maximum value for hmax is around 1.3 seconds (maximum
constant update time for stability is h = 1 second.) So we see that, the double
integrator with uniformly distributed update time between 0.5 and 1.3 seconds
is stable, while the same system but with a constant update time of 1 second
is unstable. This also represents an improvement over the result that we may

Luis Montestruque, Panos J. Antsaklis, “Networked Control Systems: A Model-Based Approach,” The 
Handbook of Networked and Embedded Systems, Hristu and Levine, Eds., pp. 601-626, Birkhauser, 2005.



Networked Control Systems: A Model-Based Approach 17

have obtained by using the previously discussed Lyapunov Stability condition
in which the maximum update time obtainable would have been less than 1sec.
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Fig. 9. Average Maximum Singular Value for h ∼ U (0.5, hmax) as a function of
hmax, zero dynamics plant model.
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Fig. 10. Average Maximum Singular Value for h ∼ U (0.5, hmax) as a function of
hmax, improved plant model.

The advantage of using a model-based approach resides in its ability to
reduce the amount of bandwidth required. The previous example shows sta-
bility conditions for a model that represents a zero order hold, that is, the
control value is kept constant until the next update time. We will now show
the same plots for a model that better resembles the plant; this was done
by randomly perturbing the plant matrices. The plant model matrices are:

Â =

[

0.0844 0.9353
0.0476 −0.0189

]

, B̂ =

[

0.0871
1.0834

]

. Figure 10 shows that stability is

maintained for update times that have uniform distribution with a max up-
date time of 5.5 seconds. This shows that improved knowledge over the plant
dynamics can translate into a significant improvement in terms of stability.
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MB-NCS with Markov Chain-Driven Transmission Times

In certain cases it is appropriate to represent the dynamics of the update times
as driven by a Markov chain. A good example of this is when the network
experiences traffic congestion or has queues for message forwarding. We now
present a stability criterion for the model-based control system in which the
update times h(k) are driven by a finite state Markov chain. Assume that the
update times can take a value from a finite set:

h (k) ∈ {h1, h2, ..., hN} and hi 6= ∞, ∀i ∈ [1, N ] (6)

Let us represent the Markov chain process by {ωk}with state space {1, 2, ..., N}
and transition probability matrix Γ and N ×N matrix with elements pi,j and

initial state probability distribution Π0 =
[

π1 π2 ... πN

]T
. The transition

probability matrix entries are defined as pi,j = P{ωk+1 = j|ωk = i}. We can
now represent the update times more appropriately as h(k) = hωk

.
A sufficient condition for the almost sure stability of the system under

Markovian jumps is given in the following theorem.

Theorem 7 [14] The State Feedback MB-NCS with update times h(k) =
hωk

6= ∞ driven by a finite state Markov chain{ωk} with state space {1, 2, ..., N}
and transition probability matrix Γ with elements pi,j and initial state proba-

bility distribution Π0 =
[

π1 π2 ... πN

]T
is globally almost sure asymptotically

stable around the solution z =
[

xT eT
]T

= 0 if the matrix T has all its
eigenvalues inside of the unit circle, where:

T =









‖M |h1
‖ 0 0 0

0 ‖M |h2
‖ 0 0

0 0 ... 0
0 0 0 ‖M |hN

‖









ΓT ; M |hi
=

[

I 0
0 0

]

eΛhi

[

I 0
0 0

]

If Γ is irreducible it follows that, since ‖M‖ is non-negative, T is also
irreducible. Then it can be shown using the Perron-Frobenius theorem as in
[6], that T ’s maximum magnitude eigenvalue is real and sometimes referred
to as the Perron-Frobenius eigenvalue.

4.3 Mean Square or Quadratic Asymptotic Stability

We now define a different type of stability, namely Mean Square Asymptotic
Stability:

Definition 4 The equilibrium z = 0 of a system described by ż = f (t, z) with
initial condition z(t0) = z0 is mean square stable asymptotically stable at large

(or globally) if the solution of ż = f (t, z) satisfies: lim
t→∞

E
[

‖z (t, z0, t0)‖
2
]

= 0
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A system that is mean square stable will have the expectation of system
states converging to zero with time in the mean square sense. This definition
of stability is attractive since many optimal control problems use the squared
norm in their formulations. We will study the two cases studied in the previous
section under this new stability criterion.

MB-NCS with Independently Identical Distributed Transmission

Times

We present the conditions under which the state feedback networked control
system is mean square stable, we also discuss how these conditions relate to
the ones for probability-1 stability.

Theorem 8 [14] The State Feedback MB-NCS with update times h(j) in-
dependent identically distributed random variable with probability distribu-
tion F (h) is globally mean square asymptotically stable around the solution

z =
[

xT eT
]T

= 0 if K = E
[

(

eσ̄(Λ)h
)2

]

< ∞ and the maximum singu-

lar value of the expected value of MT M ,
∥

∥E
[

MT M
]∥

∥ = σ̄
(

E
[

MT M
])

, is

strictly less than one, where M =

[

I 0
0 0

]

eΛh

[

I 0
0 0

]

.

We note the similarity between the conditions given by Theorems 6 and
8. For the first one we require the expectation of the maximum singular value
of the test matrix to be less than one. While for the second stability criterion
it is required to have the maximum singular value of the expectation of the
test matrix (multiplied by its transpose) to be less than one.

MB-NCS with Markov Chain-Driven Transmission Times

The type of stability criteria above depend on our ability to find appropriate
P (i) matrices. Several other results in jump system stability [5, 7] can be
extended to obtain other conditions on stability of networked control systems.
Note though, that most of the results available in the literature deal with
similar but not identical type of systems.

Theorem 9 The State Feedback MB-NCS with update times h(k) = hωk
6=

∞ driven by a finite state Markov chain {ωk} with state space {1, 2, ..., N}
and transition probability matrix Γ with elements pi,j is globally mean square

asymptotically stable around the solution z =
[

xT eT
]T

= 0 if there exists
positive definite matrices P (1), P (2), . . . , P (N) such that:





N
∑

j=1

pi,j

(

H(i)T P (j)H(i)
)

− P (i)



 < 0,∀i, j = 1..N with H(i) = eΛhi

[

I 0
0 0

]
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5 Stability of Linear MB-NCS with Quantization

Here we extend our stability results to consider the case where quantization
errors occur. In particular a state space MB-NCS is considered. Two static
quantizers are studied: the Uniform Quantizer and the Logarithmic Quantizer.
These are called static since they partition the state space into invariant re-
gions that are fixed in time. We also note that these quantizers represent
two of the most common data representations: fixed point format for uniform
quantizers and floating point format for logarithmic quantizers. We will as-
sume that the transmission times are constant. We will also assume that the
compensated networked system without quantization is stable which in view
of Theorem 1 there exists positive definite P that satisfies:

(

e(Â+B̂K)
T

h + ∆(h)T
)

P
(

e(Â+B̂K)h + ∆(h)
)

− P = −QD (7)

where ∆(h) = eAh
∫ h

0
e−Aτ (Ã+B̃K)e(Â+B̂K)τdτ and with QD symmetric and

positive symmetric. Note that e(Â+B̂K)h+∆ (h) was previously defined in (1).

5.1 State Feedback MB-NCS with Uniform Quantization

Define the Uniform Quantizer as a function q : Rn → Rn with the following
property ‖z − q(z)‖ ≤ δ, z ∈ Rn, δ > 0.

Theorem 10 [21] The plant state of the State Feedback MB-NCS satisfying
(7) and using the Uniform Quantizer will enter and remain in the region
‖x‖ ≤ R defined by:

R =
(

eσ̄(Â+B̂K)h + ∆max(h)
)

r +
(

eσ̄(A)h + ∆max(h)
)

δ

where r =

√

λmax((eAh−∆(h))T P (eAh−∆(h))T )δ2

λmin(QD)

and ∆max(h) =
∫ h

0
eσ̄(A)(h−τ)σ̄

(

Ã + B̃K
)

eσ̄(Â+B̂K)τdτ

5.2 State Feedback MB-NCS with Logarithmic Quantization

Define the Logarithmic Quantizer as a function q : Rn → Rn with the follow-
ing property ‖z − q (z)‖ ≤ δ ‖z‖ , z ∈ Rn, δ > 0.

Theorem 11 [21] The State Feedback MB-NCS satisfying (7) and using the
Logarithmic Quantizer is exponentially stable if:

δ <

√

√

√

√

λmin (QD)

λmax

(

(eAh − ∆(h))
T

P (eAh − ∆(h))
)
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Example 6 For our example we will use the following plant model parame-

ters: A =

[

0 1
1 3

]

, B =

[

0
1

]

. The plant will be a perturbed version of our plant

model: Â =

[

−0.0689 0.9757
1.0396 3.0720

]

, B̂ =

[

0.0707
1.0187

]

. Both are unstable plants. The

controller is designed using the plant model: u =
[

−2 −5
]

x̂. This controller
places both eigenvalues of the compensated plant model at –1. Using update
time of h = 0.6 s, we will test two logarithmic quantizer functions q1 with a
mantissa word length of 12 bits and q2 with mantissa word length of 13 bits.
Their relative errors for the two dimensional space they will work on are for

q1 : 0.33 and for q2 : 0.20. Initializing the plant at
[

2T 3T
]T

, we observe
from Figure 11 that the system working with quantizer q1(δ = 0.33) is unsta-
ble, while with q2(δ = 0.20) is stable (Figure 11). By using Theorem 11 and
a QD = I we obtain a maximum relative error of 0.1241.
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Fig. 11. Plant state time response for q1 and q2.

6 Stability of a Class of Non-Linear MB-NCS

We will determine sufficient conditions for the stability of a state feedback
MB-NCS when the plant and controller are nonlinear. Let the plant, plant
model and controller be given by:

plant: ẋ = f(x) + g(u); model: ˙̂x = f̂(x) + ĝ(u); controller:u = ĥ(x̂) (8)

Also define e = x− x̂ as the error between the plant state and the plant model
state. From (8) we obtain:

ẋ = f(x) + g
(

ĥ(x̂)
)

= f(x) + m(x̂);

˙̂x = f̂(x̂) + ĝ
(

ĥ(x̂)
)

= f̂(x̂) + m̂(x̂)
(9)

We will also assume that the plant model dynamics differ from the actual
plant dynamics in an additive fashion:
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f̂(ς) = f(ς) + δf (ς); m̂(ς) = m(ς) + δm(ς) (10)

So we can rewrite (9) as:

ẋ = f(x) + m(x̂)
˙̂x = f(x̂) + m(x̂) + δf (x̂) + δm(x̂) = f(x̂) + m(x̂) + δ(x̂)

(11)

We will now assume that f and δ satisfy the following local Lipschitz condi-
tions for x, y ∈ BL with BL a ball centered on the origin:

‖f(x) − f(y)‖ ≤ Kf ‖x − y‖ ; ‖δ(x) − δ(y)‖ ≤ Kδ ‖x − y‖ (12)

At this point it is to be noted that if the plant model is accurate the Lipschitz
constant Kδ will be small.

We will assume that the non-networked compensated plant model is ex-
ponentially stable when x̂(t0) ∈ BS , with x̂(t) ∈ Bh for t ∈ [t0, t0 + h) with
BS and Bh balls centered on the origin.

‖x̂(t)‖ ≤ α ‖x̂(t0)‖ e−β(t−t0), with α, β > 0. (13)

Theorem 12 [21] The non-linear MB-NCS with dynamics described by (8),
that satisfies the Lipschitz conditions described by (12) and with exponentially
stable compensated plant model satisfying (13) is asymptotically stable if:

(

1 − α

(

e−βh +
Kδ

β

(

eKf h − e−βh
)

(

β

Kf + β

)))

> 0

Theorem 12 presents a sufficient condition for stability of a class of nonlinear
systems. Note that if the model has the exact same dynamics as the plant,
that is if Kδ = 0, then the condition will be satisfied for arbitrarily large h.

Example 7 We use the inverted pendulum in Figure 12 as example.

Fig. 12. Inverted Pendulum.

The parameters for the plant are g = 10, L = 10, k = 0.1, and m = 1.01.
The model parameters are the same as the plant ones, except for the mass that
is m = 1.00. Finally the controller is given by: τ =

[

−316 316
]

x̂. Using the
following Lipschitz and exponential stability constants: Kf = 1.0507, Kδ =
0.0450, α = 1.5, and β = 0.6, Theorem 12 predicts stability for update times
between 0.55 and 2.55 sec. Simulations show that the system is unstable for h

greater that approximately 4.5 sec.
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Conclusions

The MB-NCS control architecture presented in this chapter represents a
natural way of placing critical information about the plant on the network so
to reduce the data traffic load. By making the sensor and actuator more “in-
telligent” the networked control system is able to predict the future behavior
of the plant, and send the precise information at critical times so to ensure
plant stability.

Model-based networked control systems are only one of the various ap-
proaches to networked control. We study these systems since the benefits and
properties they have make them well suited for a variety of practical applica-
tions. Furthermore, the control structures presented appear to be amenable
to detailed analysis.
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