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Abstract— During the last decade, there has been increasing
interest in the stability analysis and switching control design
for switched linear systems. This paper aims to briefly survey
recent results in this field, focusing on stability analysis and
switching stabilization problems. First, the stability analysis
problem for switched linear systems is reviewed. We focus
on the asymptotic stability analysis for switched linear sys-
tems under arbitrary switching, and highlight necessary and
sufficient conditions for this problem. Secondly, the switching
stabilization problem is studied, and a variety of switching
stabilization methods found in the literature are outlined. One
of the most elusive problems in the switched systems literature
has been the switching stabilizability problem, that is under
what condition it is possible to stabilize a switched system
by properly designing switching control laws. Necessary and
sufficient conditions for asymptotic stabilizability of switched
linear systems are described.

I. INTRODUCTION

A switched system is a dynamical system that consists of
a finite number of subsystems and a logical rule that orches-
trates switching between these subsystems. Mathematically,
these subsystems are usually described by a collection of
indexed differential or difference equations. In this paper,
we will focus on switched systems whose subsystems are
continuous-time linear time-invariant (LTI) systems

ẋ(t) = Aqx(t), t ∈ R
+, q ∈ Q (1)

where R
+ denotes non-negative real numbers. Also, we

consider discrete-time switched systems with a collection
of discrete-time LTI systems

x[k + 1] = Aqx[k], k ∈ Z
+, q ∈ Q (2)

where Z
+ stands for non-negative integers. The finite set

Q is an index set and stands for the collection of discrete
modes. The logical rule that orchestrates switching between
these subsystems generates switching signals, which are
usually described as classes of piecewise constant maps,
σ : R

+ → Q (or σ : Z
+ → Q). By piecewise constant, we

mean that the switching signal σ(t) (or σ(k)) has finite
number of discontinuities on any finite interval of R

+

(or Z
+). This requirement is always satisfied by discrete-

time switched systems. However, for the continuous-time
switched systems, this corresponds to no-chattering require-
ment. Note that the restriction that there are a finite number
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of switches in finite time does not necessarily exclude
sliding-like motions. Indeed, sliding motions may be in-
corporated by defining each such motion and its associated
equivalent dynamics [11] as an additional system to which
we can switch.

Switched systems have been studied for the past fifty
years to consider engineering systems that contain relays
and/or hysteresis. The primary motivation for studying such
switched systems comes partly from the fact that switched
systems and switched multi-controller systems have numer-
ous applications in control of mechanical systems, process
control, automotive industry, power systems, aircraft and
traffic control, and many other fields. In addition, there
exists a large class of nonlinear systems which can be
stabilized by switching control schemes, but cannot be
stabilized by any continuous static state feedback control
law [7]. Recent efforts in switched system research typically
focus on the analysis of dynamic behaviors, such as stability
[15], [17], [9], [19], controllability and observability [4],
[35], [37] etc., and aim to design controllers with guaranteed
stability and optimized performance [3], [15], [37].

The stability issues of switched systems, especially
switched linear systems, have been of increasing interest
in the recent decade, see for example the survey papers
[17], [9], the recent book [19] and the references cited
therein. The stability issues of switched systems include
several interesting phenomena. For example, even when all
the subsystems are exponentially stable, the switched sys-
tems may have divergent trajectories for certain switching
signals. Another remarkable fact is that one may carefully
switch between unstable subsystems to make the switched
system exponentially stable. As these examples suggest,
the stability of switched systems depends not only on the
dynamics of each subsystem but also the properties of
switching signals. Therefore, the stability study of switched
systems can be roughly divided into two kinds of problems.
One is the stability analysis of switched systems under given
switching signals (maybe arbitrary, slow switching etc.); the
other is the synthesis of stabilizing switching signals for a
given collection of dynamical systems. In this current paper,
we will briefly overview the stability and stabilizability
of switched systems from these two aspects. In particular,
Section II investigates the stability analysis problem, while
the switching stabilization problem is studied in Section III.

There have been several excellent survey papers on the
stability of switched systems. However, this field has seen
a large amount of activities and new results since their
publications. Therefore, this paper aims to briefly survey
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the recent results in this field. The authors hope that this
provides some meaningful complementary resources to pre-
vious survey papers like [17], [24], [9], [37]. In particular,
this paper highlights necessary and sufficient conditions for
stability and stabilizability of switched linear systems, and
a converse Lyapunov theorem.

II. STABILITY ANALYSIS

A. Stability Under Arbitrary Switchings

For the stability analysis problem, the first question is
whether the switched system is stable when there is no
restriction (or no a priori knowledge) on the switching
signals. This problem is usually called stability analysis
under arbitrary switching.

For this problem, it is necessary to require that all the
subsystems are asymptotically stable, since one may always
stick to a certain subsystem q all time, i.e., σ(t) = q
(or σ(k) = q) for all t (or k), which is a valid ‘switch-
ing signal’. However, even when all the subsystems of a
switched system are exponentially stable, it is still possible
to construct a divergent trajectory from any initial state
for such a switched system. Therefore, in general, the
above subsystems’ stability assumption is not sufficient to
assure stability for the switched systems under arbitrary
switching signals. On the other hand, if there exists a
common Lyapunov function for all the subsystems, then
the stability of the switched systems is guaranteed under
arbitrary switchings. This provides us a possible way to
solve this problem, and a lot of attempts have been focused
on common quadratic Lyapunov functions.

1) Common Quadratic Lyapunov Functions: The exis-
tence of a common quadratic Lyapunov function for all its
subsystems assures the quadratic stability, a special class of
exponential stability, of the switched system. However, the
conditions (on the subsystems’ dynamics) for the existence
of a common quadratic Lyapunov function is not easy to
determine. In fact, there have been various attempts to
derive conditions for the existence of a common quadratic
Lyapunov function, see for example [18], [19] and their
references. In [32], Shorten and Narendra considered a
second-order switched LTI systems with two modes; they
proposed a necessary and sufficient condition, which is
based on the stability of the matrix pencil formed by the
pair of subsystems’ state matrices, for the existence of
a common quadratic Lyapunov function. This result was
extended to a switched systems composed of more than
two LTI subsystems in [33]. Recently, King and Shorten
provided a necessary and sufficient algebraic condition for
an arbitrary switching systems composed of a pair of third-
order LTI systems [16]. They have also shown that this
result could be extended to a pair of higher order LTI
systems. However, for general cases of higher order and
more than two modes, the necessary and sufficient condition
for the existence of a common quadratic Lyapunov function
for a switched LTI systems is still lacking and remains an
open problem.

Alternatively, Liberzon, Hespanha and Morse proposed a
Lie algebraic condition in [18] for switched LTI systems,
which is based on the solvability of the Lie algebra gen-
erated by the subsystems’ state matrices. Notice that the
Lie algebraic conditions imply the existence of a common
quadratic Lyapunov function. This is because the matrices
in a solvable Lie algebra can be simultaneously put in the
upper-triangular form, and that a family of linear systems
with stable upper-triangular matrices possess a common
quadratic Lyapunov function. The algebraic condition was
also extended to switched nonlinear systems [18], [1] to
obtain local stability based on Lyapunov’s first method.

The problem of finding a common quadratic Lyapunov
function can be solved by a collection of linear matrix
inequalities (LMIs). However, the standard interior methods
for LMIs may become ineffective as the number of modes
increases. In [20], an interactive gradient decent algo-
rithm was proposed, which could converge to the common
quadratic Lyapunov function in finite number of steps. In
addition, the authors showed that the convergence rate could
be improved by introducing some randomness, where the
convergence is in the sense of probability one.

It is worth pointing out that the existence of a common
quadratic Lyapunov function is only sufficient for the sta-
bility of arbitrary switching systems. There are switched
systems that do not have common quadratic Lyapunov func-
tions, but are exponentially stable under arbitrary switching
[19]. Consequently, most of the work based on common
quadratic Lyapunov function mentioned above only gave
sufficient stability test criteria for arbitrary switching linear
systems except for some special cases. Next, we will discuss
these special cases where the quadratic stability is equiv-
alent to asymptotic stability and the subsystems’ stability
assures the existence of a quadratic Lyapunov function and
the stability of the arbitrary switching system.

2) Some Special Cases: One of such special cases is
the case of a switched LTI system whose subsystems’ state
matrices are pairwise commutative [27], [40], i.e., AiAj =
AjAi for all i, j ∈ Q. Because of the commutativity, it is
easy to derive that

Ak1
i Ak2

j = Ak2
j Ak1

i ,

for any nonnegative integer k1 and k2, and

eAit1eAjt2 = eAjt2eAit1 ,

for any nonnegative real number t1 and t2. By direct
computation, it is straightforward to verify that the switched
systems is stable if and only if all its subsystems are stable.
In addition, a common quadratic Lyapunov function can be
determined by solving a collection of chained Lyapunov
equations.

Another interesting case is when all the subsystems’ state
matrices Aq are symmetric [40], i.e., Aq = AT

q , where AT
q

stands for the transpose of matrix Aq . In fact, the square
of the state’s Euclidian norm serves as a common quadratic
Lyapunov function for both discrete- and continuous-time
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switched symmetric systems. To verify this, note that the
identity matrix satisfies all the subsystems Lyapunov equa-
tions.

A less well known case is a switched normal system.
A switched normal system is a switched LTI system whose
subsystems are normal, i.e., AqA

T
q = AT

q Aq for every mode
q. It can be shown that the square of the state’s Euclidian
norm also serves as a common quadratic Lyapunov function
for switched normal systems. In summary, we have the
following result.

Proposition 1: The necessary and sufficient condition for
a switched commutative (symmetric, or normal) LTI system
being asymptotically stable is that all its subsystems are
asymptotically stable.

3) A Necessary and Sufficient Condition: So far, we have
only obtained sufficient test criteria for stability of arbitrary
switching systems, except in certain special cases. In the
sequel, we will provide a necessary and sufficient condition
for the asymptotic stability of switched linear systems
with arbitrary switching signals [22]. This is a relatively
new result which provide a solution for this long standing
problem. It shows that the asymptotic stability for switched
linear systems with arbitrary switching is equivalent to the
robust asymptotic stability for polytopic uncertain linear
time-variant systems.

Let us first introduce a technical lemma [2] for the
robust stability of linear time variant systems with polytopic
uncertainty

x[k + 1] = A(k)x[k] (3)

where A(k) ∈ A=̂Conv{A1, A2, · · · , AN}. Here,
Conv{·} stands for convex combination.

Lemma 1: The linear time-variant system (3) is globally
asymptotically stable if and only if there exists a finite
integer n such that ‖Ai1Ai2 · · ·Ain‖ < 1, for all n-tuple
Aij ∈ vert{A} = {A1, A2, · · · , AN}, where j = 1, · · · ,n.

Here the norm ‖ · ‖ stands for either 1 norm or ∞ norm
of a matrix. The asymptotic stability of the switched system
can be expressed as the following proposition.

Proposition 2: A switched linear system x[k + 1] =
Aσ(k)x[k], where Aσ(k) ∈ {A1, A2, · · · , AN}, is globally
asymptotically stable under arbitrary switchings if and only
if there exists a finite integer n such that

‖Ai1Ai2 · · ·Ain‖ < 1,

for all n-tuple Aij ∈ {A1, A2, · · · , AN}, where j =
1, · · · ,n.

The sufficiency of the above condition is implied by
Lemma 1, and the necessity can be easily shown by
contradiction. Notice that this condition coincides with the
necessary and sufficient condition for the robust asymptotic
stability for polytopic uncertain linear time-variant systems
(3). Therefore, we derive the equivalence relationship be-
tween these two problems. It is quite interesting that the
study of robust stability of a polytopic uncertain linear
time-variant system, which has infinite number of possible

dynamics (modes), is equivalent to only considering a finite
number of its vertex dynamics as an arbitrary switching
system. In fact, it is not a surprising result since this fact has
already been implied by the finite vertex stability criteria for
robust stability in the literature, e.g., [26], [5]. By explicitly
exploring this equivalence relationship, we may obtain some
“new” stability criteria for switched linear systems using the
existing robust stability results.

Although we only discuss here the discrete-time case,
this result is also true in the continuous-time case. This fact
bridges two distinct research fields. Therefore, existing re-
sults in the robust stability area, which has been extensively
studied for over two decades, can be directly introduced to
study the arbitrarily switching systems and vice versa. In
the next subsection, we will present a converse Lyapunov
function for arbitrary switching systems, which is known
in the literature of absolute stability for linear time varying
systems.

4) Converse Lyapunov Theorem: In [8], a converse Lya-
punov theorem was derived for the globally uniformly
asymptotically stable and locally uniformly exponentially
stable continuous-time switched systems with arbitrary
switching signals. It was shown that such arbitrary switch-
ing system admits a common Lyapunov function. The con-
verse Lyapunov theorem was extended in [23] to switched
nonlinear systems that are globally uniformly asymptoti-
cally stable with respect to a compact forward invariant
set. These converse Lyapunov theorems justify the com-
mon Lyapunov method being pursued. However, they also
suggest that the common Lyapunov function may not nec-
essarily be quadratic, although most of the available results
pertain to the existence of common quadratic Lyapunov
functions. Therefore, the study of non-quadratic Lyapunov
function, especially polyhedral Lyapunov function, has been
attracting more and more attention.

Below we present a converse Lyapunov theorem, where
the Lyapunov function is non-quadratic, in particular poly-
hedral Lyapunov function (also known as piecewise linear
Lyapunov function). This is a simple implementation of the
equivalence between the asymptotic stability of arbitrary
switching linear systems and the robust stability of poly-
topic uncertain linear time varying systems.

Proposition 3: If a switched LTI system system is
asymptotically stable under arbitrary switching signals,
then there exists a polyhedral Lyapunov function, which
is monotonically decreasing along the switched system’s
trajectories.

This converse Lyapunov theorem holds for both discrete-
time and continuous-time cases. In addition, for switched
linear systems under arbitrary switching signals, the follow-
ing stability concepts are equivalent: asymptotic stability,
global asymptotic stability, and (global) exponential stabil-
ity.
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B. Stability Under Restricted Switchings

Switched systems may fail to preserve stability under
arbitrary switchings. By studying the example in [17], [9]
where divergent trajectories are generated through switch-
ing between two stable systems, one may notice that the
unboundedness is caused by the failure to absorb the energy
increase caused by the switching. In addition, when there
is an unstable subsystem (e.g., controller failure or sensor
fault), it may cost stability if one either stays too long
at or switches too frequently to the unstable subsystem.
Therefore, a natural question is what if we restrict the
switching signal to some constrained subclass of switchings.
Intuitively, if one stays at stable subsystems long enough
and switches less frequently, i.e., slow switching, one may
trade off the energy increase caused by switching or unsta-
ble modes, and it is possible to attain stability. These ideas
are proved to be reasonable and are captured by concepts
like dwell time and average dwell time switching in the
literature, see for example [12], [13].

In this subsection, it is assumed that the switching signals
are restricted, and our problem is to study the stability
of the switched systems under these restricted switching
signals. With this problem being solved, one could provide
an answer to the question regarding what restrictions should
be put on the switching signals in order to guarantee the
stability of switched systems. The restrictions on switch-
ing signals may be either time domain restrictions (e.g.,
dwell-time, average dwell-time switchings) or state space
restrictions (e.g. abstractions from partitions of the state
space). Notice that the distinction between time-controlled
switching signals (trajectory independent) and trajectory de-
pendent switching signals is significant. In [13], Hespanha
showed that when the class of switching signals is time-
controlled, i.e., trajectory independent, uniform asymptotic
stability of switched linear systems is equivalent to expo-
nential stability. However, this equivalence does not hold for
trajectory dependent switching signals. A counter example
is given in [13].

The stability analysis with constrained switchings has
been usually pursued in the framework of multiple Lya-
punov functions (MLF). The basic idea is using multiple
Lyapunov or Lyapunov-like functions, which may corre-
spond to each single subsystem or certain region in the state
space, concatenated together to produce a non-traditional
Lyapunov function. The non-traditionality is in the sense
that the MLF may not be monotonically decreasing along
the state trajectories, may have discontinuities and be
piecewise differentiable. The reason for considering non-
traditional Lyapunov functions is that traditional Lyapunov
function may not exist for switched systems with restricted
switching signals. In other words, the converse Lyapunov
theorems discussed before for switched systems under
arbitrary switching, i.e., without restriction on switching
signals, may fail to hold for switched systems with restricted
switching.

MLF is proved to be a powerful tool for studying the
stability of switched systems, see for example [6]. The
basic idea of MLF method can be described as follows.
If we assume that all subsystems are stable, then each
subsystem can be associated with a Lyapunov function.
It is known that the Lyapunov function’s value would
decrease when the corresponding subsystem is active. If
we restrict the switching signals in such a way that, at
every time when we enter (switch into) a certain subsystem,
its corresponding Lyapunov function value is smaller than
its value at the previous entering time, then the switched
system is asymptotically stable. In other words, for each
subsystem the corresponding Lyapunov function value at
every entering instant form a monotonically decreasing
sequence.

If not all the subsystems are asymptotically stable, then
there may not exist a Lyapunov function in the traditional
sense for these subsystems. For such cases, one may con-
struct a Lyapunov-like function, which only requires non-
positive Lie-derivative in a certain region of the state space
instead of negative globally. By patching these Lyapunov-
like functions together, similar MLF results can be derived
for the switched systems. Furthermore, the Lyapunov-like
function may increase its value during a time interval, only
if the increment is bounded by certain kind of continuous
functions [39]. There are various extensions of MLF results;
interested readers may refer to survey papers [9], [17] and
their references.

Implicitly, the above MLF results provide methodologies
for switching between vector fields to achieve a stable
trajectory. In the next section, we will focus on this topic.

III. SWITCHING STABILIZATION

In the previous section, we discussed stability properties
of a switched systems under given switching signals, which
may be restricted or arbitrary (without restriction). The
problem studied was under what conditions, either on the
subsystems’ dynamics or on the switching signals, the
switched system is stable, which is basically a stability
analysis problem. Another basic problem for switched sys-
tems is the synthesis of stabilizing switching laws for a
given collection of dynamical systems, which is called the
switching stabilization problem.

A. Quadratic Switching Stabilization

In the switching stabilization literature, most of the work
has focused on quadratic stabilization for certain classes of
systems. For example, a quadratic stabilization switching
law between two LTI systems was considered in [31], in
which it was shown that the existence of a stable convex
combination of the two subsystem matrices implies the
existence of a state-dependent switching rule that stabilizes
the switched system along with a quadratic Lyapunov
function. A generalization to more than two LTI subsystems
was suggested in [28] by using a “min-projection strategy”.
In [10], it was shown that the stable convex combination
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condition is also necessary for the quadratic stabilizability
of two mode switched LTI system. However, it is only
sufficient for switched LTI systems with more than two
modes.

Unfortunately, finding the stable convex combination of
state matrices is an NP-hard problem [34]. Moreover, there
is a large class of systems for which no stable convex
combination state matrix exists, yet there exists a stabilizing
switching law. A necessary and sufficient condition for
quadratic stabilizability of switched controller systems was
derived in [34]. There are extensions of [31] to output-
dependent switching and discrete-time case [17], [41].
For robust stabilization, a quadratic stabilizing switching
law was designed for polytopic uncertain switched linear
systems based on LMI techniques in [41]. All of these
methods guarantee stability by using a common quadratic
Lyapunov function, which is conservative in the sense that
there are switched systems that can be asymptotically (or
exponentially) stabilized without using a common quadratic
Lyapunov function.

B. Based on Multiple Lyapunov Functions

There have been some results in the literature that pro-
pose constructive synthesis methods using multiple Lya-
punov functions. The first stabilizing switching law design
based on multiple Lyapunov functions was proposed in
[30], where piecewise quadratic Lyapunov functions was
employed for two mode switched LTI systems. An LMI
based method was proposed in [25] for the stabilizing state-
feedback control design of discrete-time piecewise affine
systems. Exponential stabilization for switched LTI systems
was considered in [29] also based on piecewise quadratic
Lyapunov functions, and the synthesis problem was formu-
lated as a bilinear matrix inequality (BMI) problem. In [14],
a probabilistic algorithm was proposed for the synthesis of
an asymptotically stabilizing switching law for switched
LTI systems along with a piecewise quadratic Lyapunov
function. Notice that these stabilizability conditions, which
may be expressed as the feasibility of certain LMIs or BMIs,
in the existing literature are basically sufficient only, except
for certain cases of quadratic stabilization.

C. Switching Stabilizability

One of the most elusive problems in the switched systems
literature has been the switching stabilizability problem, that
is under what condition it is possible to stabilize a switched
system by properly designing switching control laws.

In [36], Sun proved the following necessary condition for
switching stabilizability.

Proposition 4: If there exist an asymptotically stabilizing
switching signal among a finite number of LTI systems

ẋ(t) = Aix(t),

where i = 1, 2, · · · , N , then there exists a subsystem, say
Ak, such that at least one of the eigenvalues of Ak + AT

k

is a negative real number.

This condition can be easily checked, but it is necessary
only. A necessary and sufficient condition for asymptotic
stabilizability of second-order switched LTI systems was
derived in [38] by detailed vector field analysis. However,
it was not apparent how to extend the method to either
higher dimensions or to the parametric uncertainty case.

Recently, Lin and Antsaklis proposed a necessary
and sufficient condition for switching stabilizability for
continuous-time switched linear systems in [21].

For each unstable subsystem,

ẋ(t) = Aqx(t) (4)

it is assumed that there exists a full row rank matrix Lq ∈
R

mq×n, where mq < n, such that the auxiliary system for
the q-th subsystem

ξ̇(t) = LqAqRqξ(t), t ∈ R
+ (5)

is asymptotically stable. Here Rq ∈ R
n×mq is the right

inverse of Lq .
Intuitively, the above assumption can be interpreted as

considering a linear combination of the states of the original
system (4) that evolves in an asymptotically stable manner.
The auxiliary system evolves in the lower dimensional
subspace to which the original system can be projected for
stability. In fact, it can be shown that there always exist
L and R satisfying the above assumption, except for the
case when all the eigenvalues of A are the same positive
real number λ > 0 and the geometric multiplicity of the
eigenvalue λ equals to n. The proof of this claim explores
the structure of the Jordan canonical form of A and uses
straight-forward computations.

For the case when there does not exist an L to satisfy the
above assumption for a particular subsystem, we simply set
L as the null row vector, which implies that the correspond-
ing subsystem makes no contribution to the stabilization
of the switched system. To justify this, note that in this
case the matrix A is similar to the matrix λI for some
positive real number λ > 0. Here I stands for the identity
matrix. If we look at the phase plane of the LTI system,
ẋ(t) = λIx(t), all the field vectors point to infinity along
the radial directions. Intuitively speaking, the dynamics are
explosive and do nothing but drag all the states to infinity,
which we would like to avoid.

The basic idea is that a polyhedral Lyapunov-like func-
tion can be constructed for each subsystem by transforming
the polyhedral Lyapunov function from its corresponding
auxiliary system. Notice that every auxiliary system is
asymptotically stable, so such polyhedral Lyapunov func-
tions always exist [26]. An important observation is that
for each subsystem the polyhedral Lyapunov-like function
is decreasing for all the state x in the range space of Rq .

If for all the subsystems, the matrix
[

LT
1 LT

2 . . . LT
N

]T ∈ R

∑
q mq×n, (6)

has full row rank and the union of the range space of Rqs’
is the whole state space, then an asymptotically stabilizing
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switching law can be constructed. This shows the suffi-
ciency of the above condition. In addition, it is shown that
the condition is also necessary for switching stabilizability.
The necessity proof is based on the lemma that a switched
linear system can be asymptotically stabilized if there exists
a conic partition based switching law. Interested readers
may find technique details in [21].

IV. CONCLUDING REMARKS

In this paper, we gave a brief overview of the most recent
developments in the field of stability and stabilizability of
switched linear systems. Some new results were reported
in this paper. This short survey is far from a complete
review of stability and stabilizability of switched systems.
Unavoidably, there are papers that are not mentioned here
either due to space limit or due to the authors’ knowledge
limit. We apologize for these omissions.
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