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Technical Notes and Correspondence

Asynchronous Consensus Protocols Using
Nonlinear Paracontractions Theory

Lei Fang and Panos J. Antsaklis, Fellow, IEEE

Abstract—Several consensus protocols have been proposed in the liter-
ature and their convergence properties studied via a variety of methods.
In all these methods, the communication topologies play a key role in the
convergence of consensus processes. In this note, based on asynchronous
iteration methods for nonlinear paracontractions, we establish a new re-
sult which shows that consensus is reachable under directional and time-
varying topologies by using asynchronous nonlinear protocols. Our result
makes use of the confluent iteration graph which unifies various commu-
nication assumptions and contributes to a fundamental understanding of
convergent consensus processes. This result extends existing ones in the lit-
erature and has many potential applications. As an illustration, we consider
a special case of our model and discuss the robot rendezvous problem via a
center-of-gravity algorithm.

Index Terms—Asynchronous iterations, consensus, nonlinear paracon-
tractions.

I. INTRODUCTION

In recent years, there has been growing interest in the coordinated
control of multiagent systems. Coordination normally implies synchro-
nizing agent actions and exchanging information among the agents.
Consensus seeking among agents therefore becomes one of the fun-
damental problems in control theory, namely to reach an agreement
regarding a certain quantity of interest that depends on the state of all
agents [1]–[5]. This need stems from the fact that in order for agents
to coordinate their behaviors, they need to use some shared knowledge
about variables such as direction, speed, time-to-target etc.

Recent research reveals two trends beyond the fundamental conver-
gence analyses of consensus algorithms. One trend concerns the perfor-
mance issues of such algorithms. Xiao and Boyd showed that the con-
vergence speed of a consensus process can be increased by changing
the weights on communication links [6]. For large or random networks,
rewiring only a small portions of existing links would result in a fast con-
sensus seeking [7]. A multihop relay protocol was designed to achieve a
better convergence performance without changing the network topology
[8]. Another trend is to study the problem in the presence of unreliable
(e.g., delay, dropout, and noise effects) and/or dynamically changing
communication topologies. Such setups render the problem under con-
sideration more realistic. The effect of communication delays was ad-
dressed in [2], [9], [10] for fixed topologies and in [11], [12] for time-
varying topologies. Consensus in the presence of noise was considered
in [13], [14]. Instead of addressing various communication imperfec-
tions separately, the asynchronous framework [4], [15]–[19] provides
another way to solve the problem where a number of agents update their
states asynchronously by using (possibly outdated) information from
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their neighbors. Under asynchronous communications, heterogeneous
agents, time-varying communication delays and packet dropout can all
be taken into account in the same framework.

In this note, we study the consensus problem from a nonlinear
paracontracting operator point of view [20]. Specifically, we show that
consensus is reachable under directional and time-varying topologies
with asynchronous nonlinear protocols. The confluent iteration graph
is introduced to incorporate various communication assumptions
and it proves to be fundamental in understanding the convergence of
consensus processes.

The general convergence result on asynchronous nonlinear protocols
is new and has not been presented before. This result is more general
compared to asynchronous linear cases considered in [4], [19] and syn-
chronous nonlinear cases in [21]. Another side contribution is that we
formulate and address the consensus problem in a geometric frame-
work, where the problem is typically addressed using matrix theory
[12], [22], Lyapunov functions [11], [21], or graph theory [19]. In this
framework, the convergence of asynchronous consensus protocols is
studied with respect to the properties of a pool of paracontracting op-
erators from which a common fixed point is extracted.

II. PROBLEM FORMULATION

A. Synchronous vs. Asynchronous Consensus Protocols

We consider a set � � ��� �� � � � ��� of agents embedded, at each
discrete time �, in a directed graph ���� � �� � �����. The directed
graph ���� is used to model the interaction topology among a group
of agents, where every graph node corresponds to an agent and a di-
rected edge ��� represents a unidirectional information exchange link
from agent � to agent �. That is, agent � can receive information from
agent �. The interaction graph represents the communication pattern at
a particular time and it is time-dependent.

Each agent � starts with a initial state ����� � �. The (linear) con-
sensus protocol updates ����� according to

����� �� �

�

���

	���������� (1)

where 	����� � � and �

���
	����� � �, for all �� �. Whenever 	����� 


�, agent � communicates its current state ����� to agent � (the directed
edge ��� �� � ����). Each agent � updates its own state, by forming
a weighted average of its own state and the states it has just received
from other agents. Notice that each agent has access to its own state,
i.e., ��� �� � ���� for all �. We say that consensus (or agreement) is
reached if ������� ������ 	 � as � 	 
 for all �� �.

The consensus protocol (1) is synchronous in the sense that all the
agents update their states at the same time using the latest state values
from their neighbors. From a practical point of view, since a central
synchronizing clock may not exist and communication links are cre-
ated and fail dynamically, it is of interest to consider asynchronous
consensus protocols.

In the asynchronous setting the order in which states of agents are
updated is not fixed and the selection of previous values of the states
used in the updates is also not fixed. Now let �� � �� � � � � � �� � � � �
be the time instants when the state of the multiagent system undergoes
change. Let ����� denote the state of agent � at time �� . The index �
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is often called the event-based discrete time index. The dynamics of
asynchronous systems can be written as

���� � �� �
� ������

������ � � � � ���������� if � � ����

����� if � �� ����
(2)

where �����, � � �� �� � � �, � � �� � � � �	, are sequences from �,
with ����� � �� ��� �, and ����� � � �� �� � � � is a sequence from
��� � � � � 
�. Here, 
 is the total number of possible interaction topolo-
gies observed during the consensus process. By properly arranging the
index �, we can assume ���� is a singleton without loss of generality.
We refer to � � ����� as iteration delays and ���� as updating sets.
Notice that � � can be any (possible nonlinear) paracontracting opera-
tors (see Def. 2 in Section III). In particular, linear consensus protocols
take the following form:

�
������

������ � � � � ���������� �

�

���

����������
������

We shall see below how, at least in some specific set-ups, the same
global behavior of the multiagent system in terms of convergence to
a common equilibrium takes place also in the asynchronous case. To
develop conditions under which all agents reach consensus requires the
analysis of the asymptotic behavior of the asynchronous process (2). In
spite of the complexity of this process, it is possible to capture its salient
features using the theory of paracontractions and confluence developed
in [20] and this is done in the next section.

III. THEORY OF PARACONTRACTIONS AND CONFLUENCE

A. Asynchronous Iteration

The consensus problem can be regarded as a special case of finding
common fixed points (not necessarily unique) of a finite set of paracon-
tracting multiple point operators. That is, all the operators are defined
on (different) products of �. To avoid divergent phenomena, asyn-
chronous iterations which fulfill certain coupling assumptions called
confluence are considered.

We next summarize some results from the theory of paracontractions
and confluence which are useful in deriving sufficient conditions for
consensus.

Definition 1: Let be a set of indices, 	 � a fixed number, and
� � �� �	� � � be a pool of operators � � � � 
 �� � ,
where 	� � ��� � � � �	�, �� � , and  
 � is closed. Furthermore,
let �� � ������ � � � � ������ 
  be a given set of vectors (� is
the number of initial conditions). Then, for sequences  � ���� �� �
�� �� � � �� of elements in , � � ������� � � � � �� ����, � � �� �� � � �,
of	�-tuple from ������ � � � ����with ����� � � for all � � �,
� � �� � � � �	����, we study the asynchronous iteration given by

��� � �� � �
����

��������� � � � � ���� ���� � ���� �� � � � � (3)

An asynchronous iteration corresponding to� , starting with�� and
defined by  and � can be denoted by �� ���� ���. A fixed point �
of a multiple point operator � � �� � � is a vector � � � which
satisfies � ��� � � � � �� � �, and a common fixed point of a pool is a fixed
point of all its operators in this sense.

In the remainder of this section, we introduce some conditions for the
elements of an asynchronous iteration to study its convergence prop-
erty.

B. Paracontracting Operators

We first introduce criteria of contraction for the pool � , where a
common fixed point is to be found.

Definition 2: Let � be a pool of operators as in Definition 1.
(i) If for all � � , ��� � � and a norm ���

�
����� �

��� � � 	
�
�

�
� � �

� �

�
����� �

��� � ��
� � �

�
� �� � ��� � � � �	���

then � is called strictly nonexpansive on .
(ii) If for all � � , � � � and a norm ���, � � is continuous

on � , then � is paracontracting on , if for any fixed point
� � � of � �,

�
����� � � 	
�

�
�
� � � �

� ���� � � � � �� 
�� � �� 
 ���� ����� �� �
�
�

It is easy to see that every strictly non-expansive pool is paracon-
tracting. For concrete paracontracting operators examples, the authors
refer readers to [20], [23].

Next we investigate  and � .

C. Regularity Assumptions

Definition 3: Let �� ���� ��� be an asynchronous iteration. Then
(i) � is called regulated, if

� �� 	
�
���

� � �
���� (4)

exists.
(ii)  is an index-regulated sequence, if for all � � there is a number

�� � � such that for all � � �

� � ������ � ���� � ��� � � � � � ���� � ����� (5)

(iii)  is called regulated, if there is a number � � �, such that for
all � � �

������ � ���� � ��� � � � � � ���� � ��� � � (6)

D. Iteration Graph and Confluence

The communication assumptions define the coupling among agents
or, more generally, the coupling of an iteration process. The existing
assumptions often rely on interaction graphs to describe the “spatial”
coupling among agents. However, ambiguity arises when asynchro-
nism (e.g., delays) is allowed since the “temporal” coupling cannot be
described directly by interaction graphs. In the asynchronous setting,
there is a need to differentiate the states of the same agent at different
time instants.

To this end, we associate an iteration graph with the asynchronous
iteration �� ���� ���. Every iteration, including initial vectors, gets
a vertex, so the set of vertices is � � � � ���� � � � ����. A pair
���� ��� is an element of the set of edges � in the iteration graph
�����, if and only if the ��-th iteration vector is used for the com-
putation of the ��-th iteration vector.

Below we illustrate the concept of iteration graph through an ex-
ample. The interaction topologies of a three-agent system at different
time instants are shown in Fig. 1(a). The edge ���� ��� at time � � �
describes that agent 2 communicates its state information to agent 3.
From the interaction topology, it is not clear whether the latest state in-
formation of agent 2 or the delayed version was transmitted to agent 3.
This ambiguity entails the introduction of iteration graph.

As shown in Fig. 1(b), the iteration graph uses event-based
index � rather than �. Vertices ��, ��, �� denote the initial
conditions of agent ��, ��, ��, respectively. At time � � �, ��
updates its state using ��’s state (but not its own state), that is
����� � � ���������

������ � � ������������, � ���� � � . By
construction, we add to the iteration graph a vertex 0 and an edge from
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Fig. 1. Interaction topologies of an asynchronous system and its associated
iteration graph. Nodes ��, ��, �� denote initial conditions of agents � , � ,
� , respectively.

vertex �� to vertex 0. Also assume that only �� can access its own
state and �� and �� cannot. Therefore, we did not see an edge from
vertex �� to vertex 0 in the iteration graph. At time instant � � �, ��
iterates using its own state and ��’s state, corresponding to two edges,
���� �� and ���� ��, in the iteration graph. The updating equation is
����� �� ���������

����� ����
��������� ������������ �������. The

bidirectional link at time � � � can be treated as two events which
lead to two nodes (5 and 6) in the iteration graph. Remind that the
above updating equations have the form of (2) but can be cast to the
more general form of (3) via variable transformations, to be shown in
the next section.

Remark 1: The delay graph in [19] is close in spirit to the iteration
graph. The procedure to construct iteration graphs also reminds us the
net unfolding method for Petri nets [24].

The confluent condition imposed upon an iteration graph means that
every operator is sufficiently involved in the iteration process.

Definition 4: Let �� ���� ���� be an synchronous iteration. The
iteration graph of �� ���� ���� is the digraph ���	�, whose vertices
� are � � ���� � � � ��
�, and whose edges 	 are given by

��� ��� 	 	� 	
 ��� 	� �� � 
 � 
 ���� ���

���� ���� ����� � �� � �

�� ���� ���� is called confluent, if there are numbers �� 	 , � 	
and a sequence �� �� � ��� ����� � � �� in , such that for all � � ��

the following is true:
i) For every vertex �� � � there is a directed path from �� to �� in

���	�;
ii) � � �� 
 �;

iii) � is regulated;
iv) for every � 	 there is a �� 	 so that for all � � �� there is a

vertex ��

� in � , which is a successor of �� and a predecessor of
���� , and for which is ����

� � �� � �.

E. A Convergence Theorem

A simplified version of the main result in [20] is now given.
Theorem 1: Let � be a paracontracting pool on � � �, and as-

sume that � has a common fixed point � 	 �. Then any confluent
asynchronous iterations �� ���� ���� converges to a common fixed
point of � .

IV. NONLINEAR ASYNCHRONOUS CONSENSUS PROTOCOLS

The application of Theorem 1 involves three steps:

1 Formulate the original problem as an asynchronous iteration
problem;

2 Verify the paracontracting property of the pool of operators;
3 Verify that the coupling among operators is confluent;

In the following, we show step by step how to cast asynchronous
consensus problems into asynchronous iterations of form (3) so that
Theorem 1 can be applied to obtain convergence results.

A. An Equivalent Formulation for Asynchronous Consensus Problems

In (3), the whole vector � 	 � � � is updated at every iteration
step. All components of � have the same delay. The asynchronous con-
sensus updating (2) does not have the above characteristics. In order to
convert (2) into a form of (3), we introduce an auxiliary system with
new states ����.

Lemma 1: The asynchronous consensus problems defined in (2) can
be formulated as asynchronous iterations.

Proof: Assume without loss of generality that the numbering of
�����, � � �� �� � � �, is chosen in such a manner that all components
����

����� in (2) themselves are updated at time �����, i.e.,

�� ����� � �� � 	 � � 	 ��� � � � � �� �	�� �
���� � �� (7)

where �� is a shorthand notation for ����. Also assume all initial vec-
tors are multiples of 1 (without loss of generality), that is

����� �� ������� � � �� � � � � ��

and renumber in this way the elements of the sequences of �����, � �
�� �� � � �, � � �� � � � ��, for which ����� � �.

Consider the asynchronous iteration �� ���� ����

��� � �� �� �
�

���������� � � � � ����� ���� � � � �� �� � � � (8)

where � � �� � �� � �� �� � � �� as in (2), � � �� , � � �� �� � � �,
� � ��������� � �� �� � � � � � � �� � � � ��� � is given by

������ �� �
� ������� � 	 �� � � �� � � � � �� � (9)

and �	 by ����� �� ������, � � �� � � � � �.
Using induction on �, the asynchronous iteration (8) generates

��� � �� � �� �� � ��� � 	 � (10)

Remark 2: The asynchronous iteration (8)–(9) is equivalent to the
asynchronous consensus formulation (2) in the sense of (10). However,
their convergence speeds could be different if two or more agents up-
date their states exactly at the same time �, therefore resulting in a series
of events at different event-index �.

B. Verification of the Paracontracting Property

The second step in the convergence analysis of asynchronous con-
sensus (2) is to verify the paracontracting property of the pool of op-
erators � �� � 	 . To test such a property against an arbitrary pool
of operators is often not straight-forward because it is non-trivial to
choose an appropriate norm in Definition 2 with respect to which � �’s
are paracontracting.

Here, we show that the widely used convex combination operator
(e.g., in [21]) is strictly nonexpansive (therefore also paracontracting)
with respect to the infinity norm.

Lemma 2 (Convex Combination Operators): Given an asyn-
chronous iteration (8), the operator� � is defined such that ������ is in
the relative interior of the convex hull of ���������� � � � � ����� ����,
� � ��� � � �� �� � � �.

Then the pool of operators � � are strictly nonexpansive with respect
to infinity norm.

Proof: Since ������ is in the convex hull, it can be represented
as a convex combination of ���������� � � � � ����� ����, � � �� , i.e.,
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������ � �

��� ����������
����� where ��� are nonnegative numbers

such that �

��� ������ � �.
Let � denote the cardinality of � , which is finite for a multiagent

systems with a finite number of agents. Then the pool � � �� ��� �
�� � � � � �� defined by � � � �� � �,

�
����� � � � � �� � ��

�

���

����
�
� � � �� � � � � � (11)

is strictly non-expansive on all closed sets 	 � �. This follows from
the fact, for all � � ��� � � � � ��, 
� � � �� ,

�
��
�� �

���� 	

�

���

��� 

� � �

� 	 	
�
�����



� � �

� (12)

and equality holds if and only if 
� � �� � � � � ��
 � ��, 
� �
�� � � � ��, for some � � �.

C. Verification of Confluence

Confluent conditions in Definition 4 describe coupling of an itera-
tion process, needed to avoid divergence. Before specifying sufficient
conditions for iteration graphs to be confluent, we shall first introduce
the notion of “graph composition” used in [19].

Let � be the set of all directed graphs with vertex set � �
��� �� � � � ��. The composition ��  �� of graphs �� � � and
�� � � is the directed graph with vertex set � and edge set defined
in such a way so that ��� �� is an edge of the composition just in case
there is a vertex � such that ��� �� is an edge of �� and ��� �� is
an edge of ��.

A vertex � is a root of a directed graph � if for each other vertex �

of �, there is a directed path from � to �. By a rooted graph � � �
is meant a graph which possesses at least one root. We say that a finite
of sequence of directed graphs �� � �� � � � � � �� from � is jointly
rooted if the composition �� ��  � � � �� is a rooted graph.
An infinite sequence of graphs �� � �� � � � �, in � is repeatedly jointly
rooted if there is a positive integer � for which each finite sequence
�� � � � � � �� , � � � is jointly rooted.

Lemma 3: For any trajectory of the system determined by (8) along
which the sequence of interaction graphs ���� ����� � � � is repeatedly
jointly rooted. In addition, we assume

Assumption 1:
(a) Agent �� always uses its own latest state to update its current

state. That is, �� ��� � 	
���� 	 ���� �� � ��� for all
� � 	����� � ���� � ��� with �� � ��.

(b) � � �� , � � � �� � � �, is regulated.
(c) � � ����� 	 �� 
� � �, � � �� � � � �, for an � � �.

Then, (� � ��� �� �) of (8) is confluent.
Proof: Due to Assumption 1(a), in the iteration graphs of

�� � ��� �� �� all vertices � � � with ���� � �� are connected by
a directed path. Since the sequence of interaction graphs is repeatedly
jointly rooted, there is an �� � , such that all vertices � � �� are
successors of vertices �� , for which �� �� � ��. Due to Assumptions
1(b)&(c), we can see that � � �� , � � ��� �� � �� � � � is bounded by
some � � . Hence, there is an �� � , such that for all � � ��

�� �� 	
� �
� � ���� 	 � � �� � �� �� � �� (13)

exists. Then, for all �� � �, �� is a successor of �� and the sequence
� � �� , � � ��� �� � �� � � � is bounded by some � � .

Following the same argument, by the repeatedly jointly rooted con-
dition and the regularity of � , � , there is a � � , independent of �� �
so that for all � � ��, � � ��� � � � � ��, there is a path from �� to ���	
containing a vertex ��

� with �
 � � � �. This concludes the proof.

D. A Nonlinear Consensus Protocol

We are now ready to claim a new consensus result where � � is al-
lowed to be nonlinear.

Theorem 2: Consider the asynchronous consensus problem of the
form


��� � �� � �
����


���
����� 
���

������ � � � � 
������� � (14)

The pool of operators � � � � � � � �� � ��� � � � � �� is of
the convex combination type and has a common fixed point at � � �.

Then, under Assumptions 1(a), (b), (c) (in Lemma 3) and the repeat-
edly jointly rooted condition, the nonlinear protocol (14) or, equiva-
lently, (8) guarantees asymptotic consensus.

Proof: Follows from Theorem 1 and Lemmas 1, 2 and 3.
Remark 3: From Fig. 1, we can intuitively understand why the ex-

istence of of agent �� is necessary. Suppose that no agents use their
past values during the process (thus no dashed edges). After removing
the dashed edges from Fig. 1(b), the iteration graph is no longer con-
fluent since there is no directed path from an odd-numbered vertex to
an even-numbered vertex, and vice versa. This shows the necessity of
existence of �� in Theorem 2.

The convex combination type of operators can be relaxed to the less
restrictive type of paracontracting as stated in Theorem 1. Therefore,
Theorem 2 can be used to study multiagent systems with nonlinear
couplings, applicable to a wider range of applications than those of
its linear counterparts in [4], [19]. Potential applications include dis-
tributed time synchronization, rendezvous and formation tracking of
multirobot systems.

V. AN APPLICATION: ROBOT RENDEZVOUS VIA CENTER-OF-GRAVITY

ALGORITHMS

One basic coordination task in multirobot systems is rendezvous
[25], [26]. The rendezvous task requires the robots to converge to a
single point. A common approach to this task relies on the robots calcu-
lating the center of gravity of the group and moving towards it. In this
section, we prove the convergence of asynchronous center-of-gravity
algorithm in [27] by using Theorem 2.

A. The Sudden-Stop Model

Each robot � in a group of  robots operates individually, repeatedly
going through simple cycles consisting of three steps:

1 Look: Identify the locations of all robots and obtain
(instantaneously) a multiset of points � � ������ � � � � �����
defining the current configuration. The robots are
indistinguishable, so � knows its own location ���� but does
not know the identity of the robots at each of the other points.
When two or more robots reside at the same point, all robots
will detect this fact.

2 Compute: Execute the algorithm Go_to_COG, resulting in a
goal point ����.

3 Move: Move on a straight line towards the point ����. The robot
might stop before reaching its goal point ���� but is guaranteed
to traverse a distance of at least � (unless it has reached the
goal). The value of � is not assumed to be known to the robots,
and they cannot use it in their calculations.

This model, which allows the robot to suddenly stop short of
reaching its goal point, is henceforth referred to as the sudden-stop
model [27].
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Algorithm Go_to_COG and Its Convergent Property

Denote by ������ the location of robot � at time �.

Algorithm Go_to_COG

1 Calculate the center of gravity, ������ � �����
�
������.

2 Move to the point ������.

As mentioned earlier, the move may terminate before the robot �
actually reaches the point ������. The point at which the robot does stop
its movement is thus referred to as its destination point. More formally,
define the destination point ������ of robot � to be the final point of the
movement made by � following the last Look performed by � before or
at time �.

In this subsection, we prove that the Algorithm Go_to_COG guar-
antees the convergence of � robots for any � � � in the case of the
asynchronous model. In order to use Theorem 2, we need the following
fact from [27].

Lemma 4: If for some time ��, ������ and ������ for all � reside in the
interior of a closed convex curve, �, then for every time � � ��, �����
and ����� also reside in the interior of � for every � � � � �.

Theorem 3: In the full (sudden-stop) asynchronous model for any
� � �, in 	 dimensional Euclidean space, � robots performing Algo-
rithm Go_to_COG will converge provided that each robot is activated
infinitely often in an infinite execution (the “fairness” assumption).

Proof: By introducing the event time index 
, we can regard �� as
a delayed version of ��. Then the updating equation for �� has a form of

����
 � �� � � ����������
��
�� � � �  �������
��� (15)

where the operator � ���� is of convex combination type due to Lemma
4.

Due to the physical nature of updating process, a simple cycle of
look, compute, and move takes a finite amount of time bounded from
below. This observation plus the fairness assumption lead to Assump-
tion 1(a), (b), (c) (in Lemma 3) fulfilled.

From Algorithm Go_to_COG, we can see that every robot always
uses all ���’s (� � � � �) in the updating equation. The confluence
condition is henceforth satisfied from the fact that the composition of
interaction graphs is a complete graph across a finite time interval.

Theorem 3 follows from Theorem 2.

VI. CONCLUSION

In this note, a novel asynchronous consensus result was introduced
and shown using nonlinear paracontracitons and confluence. This result
is more general than existing ones and provides a powerful tool to study
a wider range of applications. In particular, we applied our results to
the robot rendezvous problem. For future research, it will be interesting
to get an estimate of the convergence speed in the nonlinear case; cf.
[19], [28].
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