
4th World Conference on Structural Control and Monitoring 4WCSCM-183 

Kijewski-Correa, Su, Abittan, Antsaklis     1 

ON THE USE OF HETEROGENEOUS, WIRELESS SENSOR NETWORKS FOR DAMAGE 
ASSESSMENT IN BRIDGES UNDER UNKNOWN EXCITATIONS

T. Kijewski-Correa, S. Su, E. Abittan, P.J. Antsaklis 
University of Notre Dame, Notre Dame, IN 46556 USA 

tkijewsk@nd.edu, ssu@nd.edu, abittan.1@nd.edu, antsaklis.1@nd.edu    

  

Abstract 

A multi-scale wireless sensor network was previously introduced by the authors and their collaborators, integrating data from a 
heterogeneous sensor array for a more robust and effective approach to damage detection. This multi-scale network concept was 
developed to improve power efficiency, minimize packet loss and latency, and eliminate synchronization issues through the use 
of decentralized analysis schemes and the activation of sub-networks only in the vicinity of suspected damage. Specific focus is 
given here to the vibration-based damage detection algorithms operating in the lower tier or micro-network, which do not require 
knowledge of the system input. Two approaches for decentralized system identification are evaluated: Method 1 is a transfer 
function-based approach, while Method 2 derives its damage sensitive feature directly from regressive model coefficients. Both 
use heterogeneous sensor measurements in lieu of measured inputs to the system. The utility of data fusion, spatially and 
temporally, within the upper tier or meso-network is also demonstrated as a means of reducing both false positives and false 
negatives. 

Introduction 

Given the burdens associated with inspection and maintenance of Civil Infrastructure, the development of 
effective, automated damage diagnosis techniques, including the sensor technologies that support them, 
has become a major research need. While advances in wireless sensor networks have demonstrated their 
potential to provide continuous structural response data to assess health (e.g., Straser and Kiremidjian, 
1998; Lynch et al., 2003), issues including network lifetime and stability, damage detection reliability, 
and overall effectiveness when using low-cost sensors must be realistically addressed. This prompted the 
authors and their collaborators to introduce a multi-scale wireless sensor network for bridges that utilizes 
a heterogeneous sensor array (Kijewski-Correa et al., 2005).   

Both the network architecture and hardware details were reported previously (Kijewski-Correa et al., 
2005; 2006) and are excluded here for brevity, as this study now focuses on the damage detection 
algorithms embedded in the network; however, some pertinent details of the network concept are briefly 
summarized in Table 1. As shown in Figure 1, the network is multi-tiered in nature, beginning first with 
the micro-net of Mica motes equipped with accelerometers and wired to a series of strain gauges. All 
damage detection is conducted in a decentralized framework using the mote’s available computational 
resources. These interface with surrounding motes to form a meso-net, where local data fusion of binary 
damage reports is performed to enhance detection capability. The use of local processing and 
transmission of limited information to the upper tiers of the network eliminates synchronization issues 
and conserves power.  

Meso-net 

Micro-net 

:Sensor 

:Mote 

Figure 1. Two-tiered architecture of multi-scale wireless sensor network.
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It is assumed that the excitation source is not measured. This fact and the reliance on the embedded 
processing of the wireless network constrain the algorithms employed. However, the network’s event-
synchronization via the Restricted Input Network Activation Scheme (RINAS) helps to somewhat 
constrain the inputs to the system (Kijewski-Correa et al., 2006). The network is essentially dormant until 
vehicle passage and environmental conditions match the user’s specifications, at which time RINAS 
triggers the network from the macro-node (or Stargate). This approach helps to significantly reduce the 
reference pool for damage detection. It will be further demonstrated in this study that such signal-based, 
time-series methods, operating within the micro-net’s heterogeneous sensor arrays, can work within these 
constraints to deliver a reliable detection algorithm. Two approaches for decentralized system 
identification are evaluated: Method 1 is a transfer function-based approach, while Method 2 derives its 
damage sensitive feature from the coefficients of a regressive model. This paper will now introduce and 
demonstrate the performance of each method, as well as the merits of data fusion in the meso-nets.  

FEATURE SELECTION ADVANTAGE 

Sensors Acceleration, Strain 
 

More sensitive to damage when 
combined 

Excitation Ambient, Event Triggering No disruption of operation, 
maximize lifetime 

Network Architecture Two-tiered, wireless globally, 
wired locally Low power, low latency, scalable 

Damage Detection Decentralized, low order, time-
series, local fusion 

Easily embedded, event 
synchronized, more reliable 

Variability (Operational, 
Environmental) 

Statistical Significance, Restrict 
Network Activation 

Reduce false positives, reduce 
reference pool size 

Power Consumption 
Decentralized identification, 
event triggering, exploit sub-

networks 
Maximize battery life 

 
Table 1. Overview of key features of proposed multi-scale wireless sensor network. 

Overview of Signal-Based Detection Schemes 

Damage estimation methods based on the vibration data can be classified into two groups, based on 
whether an explicit structural model is involved: model-based methods and signal-based methods (Zou et 
al., 2000). Most usual techniques to this problem belong to the first group, building upon traditional 
system identification approaches (Doebling and Farrar, 1999) by relating changes in modal parameters to 
changes in the physical properties of the structure. This study focuses on signal-based methods adapted to 
a heterogeneous format suitable for decentralized system identification. As this does not impose a 
structural model on the system, it is very simple and attractive for automated monitoring. One of the most 
recognized signal-based detection schemes is the two-stage AR-ARX method developed at Los Alamos 
National Laboratory (LANL) (Sohn and Farrar, 2001). In this study, similar signal-based detection 
schemes will be explored; however, exploiting heterogeneous sensor arrays within the micro-net, as it has 
been shown that the combination of strain and acceleration is superior for damage detection in 
comparison with the use of either alone (Law et al., 2005).  

First, the case for a heterogeneous approach to damage detection is established. Consider a bridge 
represented by Y = G U, where the system transfer function matrix G under input U, yields output Y, 
comprised of two types of measurements: Y1 and Y2. A noted change in the outputs could be the result of a 
change in the system or the inputs to it. As changes in the system may not be associated with damage but 
rather the result of sensor/model error and environmental variabilities, a probabilistic framework is 
necessary, as discussed previously (see Table 1). However, the more pressing concern is the fact that 
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inputs to the system, e.g., traffic, wind, earthquake, generally are not measured, though they can be 
restricted by RINAS or other means. Therefore, the traditional input-output model cannot be used to 
monitor changes in the system. It is proposed here to circumvent this issue by exploiting the 
heterogeneous sensor array and using one of the measured system outputs as a “surrogate input” to the 
damage detection model. Two proposed heterogeneous modeling schemes building on this premise are 
now introduced, each with its own damage sensitive feature (DSF). 

Method 1: DSF by Residuals 

The first method builds on this transfer function concept through residual monitoring Abittan (2006), as 
shown in Figure 2. The form of the model is rather inconsequential and can be simply viewed as an 
empirical transfer function relating the two system outputs, executed in the time domain to reduce the 
number of operations and avoid signal processing issues associated with the Fourier transform. As such, a 
discrete autoregressive moving averages (ARMA) time-domain model is given by:  
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However, in the examples which follow, a simplified 4th order autoregressive (AR) model is introduced 
(βk = 0, k=1:Nb) retaining acceleration as the input (Y1) and strain as the output (Y2). Note the model 
order is kept intentionally low for easy embedment in the wireless platform. Deviations between the 
actual measured strain (Y2) and the predicted strain ( 2

~Y ) based on simultaneously acquired acceleration 
data (Y1), all N points long, are described by the residual, whose average value is given by  
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R is retained as the damage sensitive feature and is referenced to a dynamic threshold, h, that is a linear 
function of the system input (acceleration) to account for the variable amplitude of response.   

 ( )[ ]nYavgh 1⋅= λ  (3)   

The scaling parameter λ can be derived empirically from an undamaged reference pool according to the 
allowable false positive rate set by the user. Damage is identified locally at a node if hR > .  
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Figure 2. Surrogate input concept operating in the micro-net. 
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Method 2: DSF by Regressive Model Coefficients 

In Method 2, the outputs Y1 and Y2 (Fig. 2) are respectively assigned to the acceleration and strain, the 
reverse of the convention adopted in Method 1. To avoid the need for a dynamic threshold, all 
simultaneously acquired acceleration and strain signals are demeaned and normalized by their standard 
deviation (Sohn and Farrar, 2001). Each resulting strain and acceleration data pair (Y1, Y2) is then fit by 
the following model using the simultaneously measured strain (Y1) and acceleration (Y2) data: 
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Note, in contrast with Equation 1, past observations of the output Y2 are used, as opposed to past 
predictions, and model orders are selected using the Akaike Information Criterion (AIC). Interestingly, at 
locations where strain levels are very small and engulfed in noise, the method essentially reduces to an 
ARX model, akin to that adopted by Sohn and Farrar (2001). The advantages of the model in Equation 4 
were demonstrated previously in Kijewski-Correa et al. (2006), using the DSF of Sohn and Farrar (2001). 

A new DSF is now proposed to better exploit the most prominent regressive model coefficients, as 
opposed to using a specific coefficient (Nair et al., 2006). The DSF depends on a reference pool of 
acceleration/strain pairs from the bridge in its initial, preferably undamaged, condition. This pool should 
encompass all envisioned operational and environmental conditions for the bridge. Each of these 
reference signal pairs are fit by the model in Equation 4 and stored in the reference database (ref). The 
DSF is defined as model coefficient that is largest relative to the values stored in the reference database: 
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Subsequent DSF values are then compared to DSF values generated from the reference pool itself and 
statistically significant differences are attributed to damage of the system. As demonstrated later in this 
paper, a Gaussian model can generally be applied to represent the DSF values of the reference pool, 
allowing the user to specify a desired percentile, e.g., 95%, for the statistical significance test. Therefore, 
let DSFP represent the DSF from the reference pool at percentile P. Then damage is indicated with P-
percent certainty whenever a future DSF value satisfies the following inequality: PDSFDSF > .  

Performance Verification 

To demonstrate the performance of these two signal-based methods, a finite element model (FEM) was 
used to generate a suite of undamaged and damaged cantilever beams under various inputs. Each FEM 
node is assumed to have only two degrees-of-freedom (DOFs): transverse displacement and rotation. 
Outputs of strain and acceleration are simulated at four locations along the beam length, as shown in 
Figure 3. Inputs are imparted at the free-end (Point D). Damage is introduced to the beam at a location LD 
from the fixed end by a transverse cut of width WD, symmetrically imparted so that the damage can be 
specified by the percentage (p) of the beam’s width (W) that is compromised. 
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Method 1: DSF by Residuals 

The first example examines the performance of the residual-based approach using the aforementioned 
thin beam model with WD of 1 cm and LD of 24 cm (approximate midspan). An impulsive loading is 
applied at point D, randomized in amplitude and duration for 100 independent trials. Figure 4 

WD 

(1-p)W LD 

12.5 cm 

W= 2.5 
cm 12.5 cm 12.5 cm 12.5 cm 

A B C D 

0.5
 cm

 

Figure 3. Rendering of simulated beam model (not to scale). 
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Figure 5. Comparison of model coefficients at Location B before ( ) and after ( ) 
damage: first coefficient (left) vs. most prominent coefficient. 
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Figure 4. Fault detection rate for Method 1 without and with noise (right). 
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demonstrates the performance of the proposed method in a noise-free environment using acceleration and 
strain data recorded at point D. Note that very low levels of damage can be detected with 100% 
repeatability and there is no incidence of a false positive. As expected, in the presence of noise (SNR = 
100:1), both the incidence of false positives increases as does the damage level required before 100% 
detection rate can be achieved. Note that performance degradation in the presence of noise is more 
pronounced at locations such as D due to the relatively lower amplitude of the strain response at this 
location. Performance improves in regions of higher strain. 

Method 2: DSF by Regressive Model Coefficients 

To demonstrate the performance of Method 2, 100 acceleration and surface strain time history pairs are 
generated at each measurement point by driving the model with independent Gaussian white noise 
excitations. These records form the reference data pool that will be used to determine a threshold value on 
the DSF. A Gaussian model is generally adopted to represent the empirical distribution on the DSF, since 
any deviations in the tails are less pronounced for the upper values of the DSF actually used for damage 
detection, Thus, a 97.5% one-sided Gaussian confidence interval is adopted as the damage threshold. 

Various degrees of damage are now explored for cuts introduced at LB  = 18.75 cm, midway between 
points A and B of the beam. The width of the cut is (WD) is 5% of the total length of the beam (2.5 cm). 
Each damaged simulation is repeated 10 times to explore the detection rate over repeated trials. Damage 
detection results are shown in Table 2, where bold faced values indicate that damage was detected. 
Results are compared to a comparable approach by Nair et al. (2006). A number of important 
observations can be made regarding Method 2: 

1. Damage levels of 30% or more can be identified reliably at all measurement locations, and all 
damage levels can be detected reliably at locations A and B. This can be explained by the fact 
that slight damages are more difficult to detect further from the damage origin and this strain-
driven approach performs best in regions of high strain, typical of actual damage locations.  

2. DSF values increase with damage level and proximity to the damage location. As expected, the 
DSF takes on its largest values at points A and B, demonstrating the localization capability. 

3. Damage detection capability within the heterogeneous framework is improved in comparison to 
homogeneous methods such as Nair et al. (2006), as shown here, and Sohn and Farrar (2001), as 
discussed in Kijewski-Correa et al. (2006). This demonstrates the enhanced detection capabilities 
of a heterogeneous approach for minor levels of damage. This improved performance is also 
attributed to the choice of DSF. Recall the DSF in Equation 5 exploits the most prominent model 
coefficient, whether it is associated with acceleration or strain, in contrast to using the first model 
coefficient (Nair et al., 2006). As shown by the simulation result in Figure 5 (p=10%). the first 
coefficient is not always most sensitive to damage.  

4. Incidence of false positives for this approach is negligible in comparison to the detection rate. 
5. Improved signal reconstruction: residuals associated with Equation 4 are smaller than those 

generated by a homogeneous autoregressive model (acceleration only) of the same order 
6. Reduced computational burden/memory requirements: since only model coefficients are retained 

for the DSF, the size of the reference pool and the number of computations are minimized, an 
issue that has proved problematic in other applications (Lynch et al., 2004).  

Data Fusion at the Meso-Net 

One of the major advantages of the multi-scale network concept is the ability to fuse data locally to 
enhance detection capabilities and reduce the probability of false positives. At each mote, either of the 
aforementioned detection schemes can generate a local binary report B, (0 = no damage, 1 = damage).  
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  POINT A POINT B 
  Nair et al. (2006) Method 2 Nair et al. (2006) Method 2 

Threshold  (-0.49, -0.3) DSFP =1.49 (-1.17, -0.42) DSFP =1.53 
P 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 

Test 1 -0.42 -0.41 -0.39 1.91 32.44 136.29 -0.94 -0.97 -0.65 1.27 2.68 5.78 
Test 2 -0.41 -0.40 -0.40 1.34 31.76 137.10 -0.91 -0.93 -0.86 0.62 3.52 4.88 
Test 3 -0.34 -0.34 -0.34 1.22 33.12 139.32 -0.56 -0.47 -0.19 1.14 2.62 4.71 
Test 4 -0.35 -0.35 -0.36 0.69 32.47 136.04 -0.99 -0.99 -0.89 0.53 3.54 4.93 
Test 5 -0.37 -0.37 -0.38 0.41 32.70 136.51 -0.88 -0.84 -0.81 0.31 2.53 4.62 
Test 6 -0.41 -0.40 -0.39 0.80 33.66 139.28 -0.69 -0.60 0.06 0.82 2.52 4.93 
Test 7 -0.39 -0.39 -0.36 0.68 32.77 137.29 -0.91 -0.94 -0.78 0.97 3.18 4.69 
Test 8 -0.36 -0.36 -0.37 0.61 32.22 136.28 -0.92 -0.87 -0.70 0.69 3.55 5.04 
Test 9 -0.37 -0.39 -0.40 1.15 32.40 137.05 -0.68 -0.63 -0.77 1.02 2.48 4.70 
Test 10 -0.43 -0.44 -0.45 1.25 31.63 134.34 -0.93 -0.67 -0.48 1.00 3.01 4.70 

Det Rate 0% 0% 0% 10% 100% 100% 0% 0% 20% 0% 100% 100% 
  POINT C POINT D 
  Nair et al. (2006) Method 2 Nair et al. (2006) Method 2 

Threshold  (-0.16, 1.43) DSFP =1.47 (-1.73, 1.37) DSFP =1.53 
P 0% 10% 30% 0% 10% 30% 0% 10% 30% 0% 10% 30% 

Test 1 0.05 -0.08 -0.31 1.27 1.39 1.92 -0.98 -0.96 -0.91 1.27 1.63 2.69 
Test 2 0.92 0.92 0.68 0.62 0.93 1.69 -0.98 0.63 -0.67 0.62 0.88 1.51 
Test 3 0.91 0.91 0.72 1.14 1.16 2.22 0.05 0.15 -0.41 1.14 1.17 2.07 
Test 4 0.79 0.84 0.94 0.53 0.89 1.78 -0.99 -0.98 0.98 0.53 1.25 2.03 
Test 5 0.84 0.87 0.83 0.31 0.59 1.82 0.35 0.22 -0.50 0.31 1.33 2.33 
Test 6 0.82 0.87 0.88 0.82 1.15 1.89 0.23 -0.01 -0.51 0.82 1.28 2.72 
Test 7 0.85 0.60 -0.03 0.97 1.30 2.12 -0.95 -0.94 -0.90 0.97 0.55 1.74 
Test 8 0.96 0.97 0.84 0.69 0.75 1.68 -0.96 -0.95 -0.87 0.69 1.12 2.04 
Test 9 0.85 0.80 0.54 1.02 1.00 1.72 0.97 0.97 0.97 1.02 1.31 2.33 
Test 10 0.31 0.13 -0.27 1.00 0.98 1.84 -0.98 -0.98 -0.90 1.00 1.38 1.92 

Det Rate 0% 0% 20% 0% 0% 100% 0% 0% 0% 0% 10% 90% 
 

Table 2. Results of damage detection for Method 2. 
 

Data fusion can be achieved through a number of approaches, the most basic would be a local voting 
process involving the m nearest neighbors, signaling damage only when indicated by majority, i.e.,  

 1
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Thus far, the examples presented for Method 1 (Figure 4) demonstrated over 35% false positive rate 
associated with an isolated sensor node at point D in the presence of noise. To demonstrate the merits of 
data fusion within the meso-net, this example is repeated with two additional micro-nets introduced in the 
vicinity of point D: one at 44.1 cm and the other at 46.55 cm from the fixed end. Again all simulated 
sensor outputs were corrupted by noise (SNR=100:1). Following the application of Method 1, the binary 
damage report from each mote is fused in the binary voting scheme in Equation 6. As demonstrated in 
Figure 6, this fusion reduces the false positive rate to some extent, though damage levels must be quite 
significant before damage is reliably detected. However, by fusing data not only spatially but also 
temporally, using a repeated series of measurements, false positive rates can be reduced to 10%, 
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accompanied by a commensurate increase in the detection rate at lower levels of damage. Such temporal 
averaging can easily be integrated into the proposed network scheme to improve overall performance. 

Conclusions 

This study overviewed the computational schemes 
operating within a multi-scale wireless sensor 
network for structural health monitoring (SHM). 
The decentralized system identification 
approaches, both signal-based and time-domain in 
nature, exploit the heterogeneous sensor array to 
generate “surrogate inputs” to the damage 
detection model. The heterogeneous approach was 
shown to improve detection capabilities at lesser 
levels of damage, while still operating within the 
constraints of the wireless platform. In particular, 
a number of practical advantages over other 
available techniques were noted for Method 2. 
Occurrences of false positives and overall 
detection reliability were further enhanced through 
the use of data fusion at upper tiers in the network 
that employ both spatial and temporal averaging. 
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