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Abstract- In this paper we apply the concept of Intermittent a car, when approaching a curve or hilly terrain, we pay
Feedback to a class of networked control systems known as attention to the road for a longer time, which is equivalent
Model-Based Networked Control Systems (MB-NCS). MB-NCS to staying in closed-loop mode, and we only reduce our
use an explicit model of the plant in order to reduce the network .. '
traffic while attempting to prevent performance degradation. In attention -switch to open loop control- when the roadiS once
the previous body of work regarding MB-NCS, updates of the again straight. While intermittent control is a very intuitive
plant were given instantaneously; however, in this paper we notion, its combination with the MB-NCS architecture allows
consider the case where the loop remains closed for a finite for obtaining important results and opening new paths in
length fixed interval before the control system returns to open- controlling NCSs effectively.
loop. We provide a full description of the output, as well as a With the finite bit-rate constraints, quantization has to be
necessary and sufficient condition for stability of the system. ta to cideration s.Th, quantzat ion
We also provide examples in order to illustrate the behavior taken into consideration in NCSs. Therefore, quantization
indicated by the theory, and we show the advantages of the and limited bit rate issues have attracted many researchers'
approach. Finally, we conclude the paper with discussions on attention with the aim to identify the minimum bit rate
possible future extensions. required to stabilize a NCS, see for example [7], [6], [8],

I. INTRODUCTION [21], [18]. In [7] it is shown that asymptotic stability cannot
be achieved by (static) quantization. In [6] Brockett and
Liberzon proposed a dynamic quantization scheme, so called

in which a data network is used as feedback media. NCS "zoom-in, zoom-out" approach, to asymptotically stabilize
is an important area in control, see for example [19], [17], linear systems. The idea behind the "zoom-in, zoom-out"
[20], and [22]. The use of networks as media to interconnect scheme is to provide more detailed information when the
the different components of an industrial system is rapidly states come closer to the origin through finer quantization
increasing. However, the use of NCSs poses some challenges. (zoom-in), while only coarser quantization (zoom-out) is
One of the main problems to be addressed when considering sufficient for states farther away from the origin. As an inter-
an NCS is the size of the bandwidth required by each esting observation of a person's response in face of changing
subsystem. Clearly, the bandwidth required by the commu- environment, one usually tends to pay longer attention to
nication network is a major concern. Recently, modeling, objects of concern, instead of paying closer attention. This
analysis and control of networked control systems with motivates us to use intermittent feedback in NCSs.
limited communication capability has emerged as a topic of The rest of the paper is organized as follows. In Section II,
significant interest to control community, see for example we describe the problem formulation in detail. In Section III,
[23], [6], [8], [24], [10], [2], and recent special issue [3]. An' ' ' '' ' ~~~~~~~~wederive the complete description of the output of such a
efficient way to address this is reducing the rate at which system. In Section IV, we present a necessary and sufficient
packets are transmitted. condition for the stability of the system. An example is
A particular class of NCSs is model-based networked

control systems (MB-NCS), introduced by Montestruque and provide in S onk.
Antsaklis [13]. The MB-NCS architecture makes explicit p f
use of the knowledge of the plant dynamics to enhance II. PROBLEM FORMULATION
the performance of the system, and it is an efficient way The basic setup for MB-NCS with intermittent feedback is
to address the issue of reducing packet rate. In this paper quite similar to that proposed in the literature for traditional
we extend the work done in MB-NCS by taking advantage MB-NCS. Please see references [11] through [16] for more
of intermittent feedback. In the previous work done in MB- results on MB-NCS.
NCS, the state updates given to the model of the plant were Consider the control of a continuous linear plant where
for a time instant only, but with intermittent feedback the the state sensor is connected to a linear controller/actuator
system remains in closed loop control for more extended via a network. In this case, the controller uses an explicit
intervals. This notion makes sense as it is motivated by hu- model of the plant that approximates the plant dynamics and
man motor control observations. For example, while driving mae .osil th stablzto of th plnvnudrso

T. Estrada and P.J. Antsaklis are with the the Department of Electrical network conditions.
Engineering, University of Notre Dame, Notre Dame, IN 46556, USA The main idea here is to perform the feedback by updating
{testrada, antsaklis.l1}@nd. edu the model's state using the actual state of the plant that is

H. Lin is with the Department of Electrical & Computer
Engineering, National University of Singapore, Singapore 117576 provided by the sensor. The rest of the time the control
hlin28@gmail.corn actions is based on a plant model that is incorporated in

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:16 from IEEE Xplore.  Restrictions apply. 

Tomas Estrada, Hai Lin, Panos Antsaklis, “Model-Based Control with Intermittent Feedback,” 14th 
Mediterranean Conference on Control and Automation (MED’06), Università Politecnica delle Marche, Ancona, 
Italy, June 28-30, 2006.



In the next section we will derive a complete description
u x of the response of the system.

p X=AX+BU
III. STATE RESPONSE OF THE SYSTEM

We will now proceed to derive the response in a direct
, / way. To this effect, let us separately investigate what happens

| ''h,T 3 when the system is operating under closed and open loop
-__ _- conditions.

During the open loop case, that is, when t C [tk + ,tk+±),
pX = AX + BU < we have that

U = KX (1)A
so

l0X ] = [ A+BK x(t) ] (2)

with initial conditions x(tk + r) = x (tk + r)-
Fig. 1. Basic MB-NCS architecture. Rewriting in terms of x and e, that is, of the vector z:

)[ (t)] [A+BK -BK ][ (t)
z(t) A+B-K A-BK e(t)

the controller/actuator and is running open loop for a period
of h seconds. (t + i) X(tk+ Tu) 1 X(tk + Tr) 1
As mentioned before, the main difference between model- Z k + e(tk + v) 0[ °

based networked control systems as have been studied previ- for all t e [tk + r, tk±i)
ously, and the case with intermittent feedback, which we are for

have

introducing here, is that in the literature, the loop is closed Thus, we have
instantaneously, and the rest of the time the system is running A +BK -BK
open loop. Here, we start with the same basic idea, but the z= AOz, where A,= A+BK A-BK 3

loop remains closed for intervals of time which are different
from zero. Intuitively, we should be able to achieve much for all t e [tk + , tk+l±)
better results the longer the loop is closed, since the level of For the closed loop case, that is for t E [tk, tk + r), similarly
degradation of performance increases the longer the system we obtain
is running open loop. So intermittent feedback should yield A+BK -BK
better results than those for traditional MB-NCS. Az, where A, [L ° (4)

In dealing with intermittent feedback, we have two key
time parameters: how frequently we want to close the loop, E [tk,tk+e)pr Thisin thesame errorbefore.which we shall denote by h, and how long we wish the loop the state progresses in the same way as before.
to remain closed, which we shall denote by r. Naturally, in From this, it should be quite clear that given an initial
the more general cases both h and T can be time-varying. conditionz(tr 0) -zo, then at time t E [0,T),the solution
For the purposes of this paper, however, we will deal only of the trajectory of the vector is given by
with the case where both h and T are fixed. z(t) = eA'(t)zo t E [0, )- (5)
We consider then a system such that the loop is closed

periodically, every h seconds, and where each time the loop In particular, at time r, z(r) - eAc(T)zo.
is closed, it remains so for a time of < h seconds. The Once the loop is opened, the open loop behavior takes
loop is closed at times tk, for k= 1,2, . Thus, there are over, so that
two very clear modes of operation: closed loop and open
loop. The system will be operating in closed loop mode for z(t) - eAo(t )zQv) - eAo(t )eA(T)zo, t C [',ti). (6)
the intervals [tk, tk + r) and in open loop for the intervals In particular, when the time comes to close the loop again,
[tk + V,tk+ ). When the loop is closed, the control decision that is, after time h, then z (r-) = eA,(h )eA'(c)ZO.
is based directly on the information of the state of the plant, NNotice, however, that at this instant when we close the loopbut we will keep track of the error nonetheless.

The pant sgien b ~ A + Bu theplan modl by again, we are also resetting the error to zero, so that we must

X=AX + BU, and the controller by u =KX. The state error pre-multiply by [ O O ] before we analyze the closed loop
is defined as e xX-X and represents the difference between trajectory for the next cycle. Because we wish to always start
plant state and the model state. The modeling error matrices with an error that is set to zero, we should actually multiply
A = A-A and B =B-B represent the plant and the model. FI 01
Welsdfie he ecorz xeT. by 0 ojat the beginning of each cycle.
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So after k cycles, this analysis yields the solution Theorem 3: The system described by Equation (3)-(4) is

(FI, 0 I 0 k globally exponentially stable around the origin if and only if
Z(tk) eAO (hO) e [Ac j) zo the eigenvalues of [ 0 0 ] [ I 0 ] are strictly inside

= kzo the unit circle, where = eAo(h-)eAC(Q).
F 1 I 1 Proof: Sufficiency. Taking the norm of the solution

where L [L I ] eAo(h- )eAc (T) [ ° ° ] described in Proposition 1:

The final step is to consider the last (partial) cycle that llz(t)
the system goes through, that is, the time t C [tk,tk±+). If 0(t tk) I ° I O k
the system is in closed loop, that is, t C [tk,tk + '), then the e ° ° 2 0 0 ° °
solution can be achieved merely by pre-multiplying z (tk) by I k
eAc(tt-k) In the case of the system being in open loop, that < eI'A(t-tk) 1([I 0 0 ,jI0] ZO° (8)
is, t e [tk + ', tk+j), then clearly we must pre-multiply by
eAo (t-(tk+')) eACQV)
The results can thus be summarized in the following Notice we are only doing this part for the case when t C

proposition. [tk, tk + u), but the process is exactly the same for the intervals
Proposition 1: The system described by (3) and (4) with where t e [tk + 'r, tk + 1). Analyzing the first term on the right

Fx (ta 1 hand side:
initial conditions z (to) 0(to) zo has the following (t-ts2
response: eAc(t tk) < + (t-tk)&- (Ac) + 2!

[eAc(t tk)([ I 0 I 0 k
-

ed(Ac)(t-tk) < ed(Ac)(r) = K1 (9)

for t C [tk, tk + r) where & (Ac) is the largest singular value of Ac. In general
z(t) this term can always be bounded as the time difference t -tk

(F/ 1 F ~ 1 \ k is always smaller than u. That is, even when Ac has eigen-
eAo(t (tk±+)eACQ) y L 0 0 ] £ [ ° ° ] )zo values with positive real parts, eAc(ttk) can only grow a

foIr t C [tk + ,,tk±1) certain amount. This growth is completely independent of k.
We now study the term

where
Ao (h -) I 1 eA (h)eAc() kI o

A [A+BK -BK 1 0lk ] [00])°°JA° L A+BK A-BK ] It is clear that this term will be bounded if and only if the

, [ A+BK -BK 1: eigenvalues of [ 0 0 ] eAo(hT)eAcQT) [ o o ] lie inside
the unit circle:

In the next section we will present a necessary and I0 eAA(ho)eAc() [ 0 I .K2e0k (10)
sufficient condition for the stability of the system. °\[0 Oj [ ° j

IV. STABILITY CONDITION with K2, a1 >0.
We now present a necessary and sufficient condition for Since k is a function of time we can bound the right term

the stability of the model-based networked control system of the previous inequality in terms of tI
with intermittent feedback. We use the following definition K2e-(x1k < K2e-(a1 hl K2e h' e- hJt =K3et (11)
for global exponential stability. [1]

Definition 2: The equilibrium z = 0 of a system described with K3, as > 0.
by (t,cz)with initial condition z(to) zo is exponentially So from (8), using (9) and (h1) we conclude that:
stable at large (or globally) if there exists as > 0 and for any ltz(t)cl
B>n0, there exists k (/B) >0 such that the solutionesar (h-It)KAFc (r)

0 I< K a 20|

whenever |zo ||<p,B. . KiK3e7Ut lzo |
With this definition of stability, we state the following

theorem characterizing the necessary and sufficient condi- Necessity. We will now provide the necessity part of
tions for the system described in the previous section to have the theorem. We will do this by contradiction. Assume the
globally exponential stability around the solution z = 0. The FI 02 e ea [ I 01
norm used here is the 2-norm, but any other consistent norm system is stable and that [ 0 0 [ 0 0
can also be used. has at least one eigenvalue outside the unit circle. Let us
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define Z (h) =eAo(h)eAcQT). Since the system is stable, a
periodic sample of the response should converge to zero with
time. We will take the samples at times tk+j, that is, just ;
before the loop is closed again. We will concentrate on a
specific term: the state of the plant x (tkil) which is the
first element of z (t,>). We will call x 4 (k).
Now assume E(77) has the following form: E

[ y(7) Z( ) ] E I

Then we can express the solution z(t) as:

eAc(t tk) ([I 0 [h o Dk) (12).

r - 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.82

W(t-tk) X(t-tk) (W(h))k 0 updatetimesh

Y(t-tk) Z(t-tk) 0 0 zo

[|W(t-tk) (W(h))k 0 1 Fig. 2. Maximum eigenvalue for traditional MB-NCS.
WY(t-tk) (W(h))

Now, the values of the solution at times t7+1, that is, just
before the loop is closed again, are curve takes a maximum eigenvalue of 1, we are actually

Fk 1 determining the range of h for stability.
z( t) W(h) (W(h)) 0 zo The following figures illustrate the previous point. In every

L Y(h)(W(h)) case, we tookA F ? ,K~ [-1,-1.5].
[(W(h))i 0 1 U

Y(h) (W(h))k 0 Z For our model we used A [0 0 5] LO]

We also know that Figure 2 shows the behavior of the test matrix under
F I O 1 [(h T)eAC(T) | I 0 1 traditional instantaneous feedback model-based control, and

I eA, (h-,r)eAc( I 0 j Figures 3-7 plot the same data for the case of of intermittent
feedback.

has at least eigenvalue outside the unit circle, which means Figure 3 shows the case where r 0. Ih. As we can see,
that those unstable eigenvalues must be in W('). This means the use of intermittent feedback is already extending the
that the first element of z (tj+I), which we call 4 (k), will in maximum h for stability from approximately 1.15 sec to 1.35
general grow with k, if one select the initial condition z(0) sec, in spite of the still relatively small '.
along the direction of the eigenvector of the corresponding
unstable eigenvalue. In other words we cannot ensure 4 (k) As we increased the perentageofhe time that the loop
will converge to zero for general initial condition xo remains closed, the benefits become more obvious and dra-

matic. Figures 4 and 5 illustrate the cases where = 0.2h and

|x (k) (W (h))k+l Xo (13) = 0.3h, respectively. In the latter case, the maximum h has
been extended to 2.1 seconds, which represents an increase

as k -> oo, which clearly means the system cannot be stable. of over 80%.
Thus, we have a contradiction. Figure 6 depicts the case where = 0.5h, that is, the time

V. EXAMPLE the system runs open loop is equal to the time it runs closed

We ran simulations to verify the results suggested by the loop. At this stage, the benefits are incremented considerably,
.. ~~~~with the maximum h being extended to 5.0 seconds, which

theory, which, in itself, is highly intuitive. Naturally, one
would think that by using intermittent feedback as opposed to corresponds to a 334% percent increase.
instantaneous closed loop control, there will be many things Finally, in Figure 7, we can see what happens for = 0.7h.
that will be gained in controlling the system. The maximum h for stability in this case is of about 9.4

Indeed, one way to look at this, focusing in particular seconds, which corresponds to an increase of over 700%
on the stability conditions derived above, is the following, when compared to the traditional setup.
Consider a control system with a certain plant model, then As we can see, using intermittent feedback provides valu-
calculate the eigenvalues of the test matrix as h varies. This able benefits, by dramatically increasing the sampling time
curve is very useful in that the stability of the system is h required for the system to remain stable. This naturally
determined by the maximum eigenvalue of its corresponding coincides with what our intuition suggested, as well as with
test matrix. So, by observing at which value of h the the theoretical results developed in this paper.
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_1!

..E 4. .0.

-~ 0.4

0 0.2 0A4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0. 1 1.5 2 2.53
updatetimes h updatetimes h

Fig. 3. Maximum eigenvalue MB-NCS with Intermittent Feedback, Tr Fig. 5. Maximum eigenvalue MB-NCS with Intermittent Feedback, T
o. h. 0.3h.

1.6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

...... ... .. .......~ ~~~~~~~~~~~~~~o.

. .. ...._- 1.4... 1.8.2...__- ____-

0 0. 0.4 0.6 0. 1 1.2 1A 16 18 20 0. 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
update times h update timesh

Fig. 4. Maximum eigenvalue MB-NCS with Intermittent Feedback, Tr Fig. 6. Maximum eigenvalue MB-NCS with Intermittent Feedback, T
0.2h. 0.5h.

VI. CONCLUSIONS AND FUTURE WORKS B. Future Works

A. Conclusions For purposes of the current paper, we have begun the
study of the case of non-instantaneous closed-loop times by

We have introduced the concept of intermittent feedback restricting ourselves to fixed intervals 'r and h. However, it
for model-based networked control systems, provided the full would be very useful to extend the results for the cases
description of the output of the system, as well as a necessary where these values are not constant, that is, where the
and sufficient condition for global exponential stability. We loop is closed at irregular intervals and remains closed for
have also confirmed through examples the intuitive idea irregular intervals as well. Developing results for these cases
that intermittent feedback provides natural advantages over would be especially important for practical applications,
traditional model-based control in terms of stability, in which the attention the system must give to a certain
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