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Abstract

For the one-dimensional spatially invariant array, a neces-
sary and sufficient stability condition in terms of the Schur
stability of a matrix over spatial frequency is obtained in
this paper. Then based on the theorem on nonnegative
pseudo-polynomial matrices, the frequency-dependent sta-
bility condition is converted to a finite dimensional linear
matrix inequality (LMI) problem, the solution of which is
easy to compute.

1. Introduction

Spatially invariant systems have been an active topic of
research in recent years [1], [2], [3], [4], [5], [10], [11],
[14]. Such systems are composed by similar units which di-
rectly interact with their neighbors. These systems arise in
many applications, such as the control of vehicle platoons
[8], airplane formation flight control [7], cross-directional
control in paper processing applications [6], and recent dis-
tributed control applications at a microscopic scale based
on advances in micro electro-mechanical systems (MEMS)
[9].

An important aspect of many of these systems is that
sensing and actuation capabilities exist at each node. Al-
though each node may be simple, their interdependence
makes the resulting system display complex behavior. This
brings new challenges to control theory, since standard
methods can not handle systems of such high dimension.
Besides, it is not feasible to control such systems with cen-
tralized schemes since the centralized controller will need
all the nodes’ state information, which makes such con-
troller impractical.

Since the spatially invariant systems can be diagonal-
ized by a Fourier transform over the spatial domain, by
the Plancherel’s theorem, the control design problem with
quadratic criteria can be decoupled over spatial frequency,
i.e, standard finite dimensional theorems may be applied
at each spatial frequency [10]. It is further shown in [10]
that the optimal controller has an inherent degree of de-
centralization, which weighs the information coming from
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neighbors using a gain exponentially decaying with dis-
tance. Based on these properties, [11] presented a conser-
vative method to impose localization in controller design
for such systems, together with some sufficient condition
for the H2 problem which takes the form of Linear Ma-
trix Inequalities (LMI) over each spatial frequency is ob-
tained. In the one-dimensional case, by the means of the
Kalman-Yakubovich-Popov(KYP) Lemma [13], these con-
ditions can be further expressed as some LMIs independent
of spatial frequency.

In another related line of work [1], analysis and syn-
thesis results are developed for this class of systems us-
ing thel2-induced norm as the performance criterion. With
the introduction of a shift operator, a KYP-like lemma is
obtained for the analysis and synthesis of controllers with
rational spatial frequency dependence andH∞ norm guar-
antees. Methods of structured uncertainty analysis are ex-
tended toward systems with dynamical and noncausal spa-
tial coordinates in [3], and design techniques of robust spa-
tially distributed controllers for paper machines are consid-
ered in [6]. The notion of loopshaping is extended to two-
dimensional systems in [5]. In [15] the effect of structured
uncertainty in terms of data dropouts for spatially invariant
sensor-actuator networks is considered.

This paper considers the discrete time decentralized
control of one-dimensional spatially invariant systems per-
turbed by white noise and it is motivated by [11]. Note that
examples of one dimensional spatially invariant system in-
cludes platoons [8] and Cross Directional (CD) control in
the chemical process industry [5]. Previous work ([1], [10]
and [11]) has been more concerned with the induced gain
for the overall system with the assumption that at fixed time
the signal (noise, state) is square summable (l2) in the spa-
tial domain. We take a stochastic approach here with the
assumption that the noise at each node is a white noise.
A necessary and sufficient condition is obtained from the
boundedness of the solution to a discrete-time Lyapunov
equation across spatial frequency, which corresponds to
the continuous-time stability condition in [10]. We fur-
ther show how to convert those frequency-dependent sta-
bility conditions to finite dimensional LMIs using a result
on non-negative pseudo-polynomial matricesfrom [12] .

This paper is organized as follows. Some preliminary
concepts and the system model are introduced in section 2.
In section 3, spatial frequency dependent stability condi-

Hui Fang, Panos Antsaklis, “Stability of One-Dimensional Spatially Invariant Arrays Perturbed by White 
Noise,” 14th Mediterranean Conference on Control and Automation (MED’06), Università Politecnica delle 
Marche, Ancona, Italy, June 28-30, 2006.



tions are derived and later converted to finite dimensional
LMIs. Stability of decentralized controller are also pre-
sented. Concluding remarks and future research are de-
scribed in section 4.

2. Background

Let Z denote the set of integer andN denote the non-
negative integers. The space ofn by m real and complex
matrices are denotedRn×m, Cn×m respectively, andIn de-
notes then by n identity matrix. For a matrixM, its trans-
pose and complex conjugate transpose are denoted byMT

andM∗. For a Hermitian matrix(M = M∗), M > (≥)0 and
M < (≤)0 denote (semi-)positive definiteness and (semi-
)negative definiteness.

We consider a linear time-invariant dynamical systems
in an array formation. We assume that the continuous states
of the dynamics have been discretized in time. Letxt,s, t ∈
N,s∈ Z denote the state of thes-th node at time instantt.
Consider the following state-space representation for the
plant (see [14], [15]):

xt+1,s = Axt,s+A−1xt,s−1+A1xt,s+1+B1wt,s+B2ut,s (1)

zt,s = Cxt,s (2)

where the state variablext,s ∈ Rn,wt,s ∈ Rp,ut,s ∈ Rm,zt,s ∈
Rq, and A,A−1,A1,B1,B2,C are real valued matrices of
apropriate dimension.

The state of the plant is x(t) =
{. . . ,xs−1,t ,xs,t ,xs+1,t , . . .}, which is of infinite dimen-
sion. And zt,s is an output signal that can be used to
characterize the overall system performance. The input
disturbance{wt,s} is a two-index field of independent,
identically distributed random vectors, of zero mean and
unit covariance. i.e.

E
{

wt,sw
T
t,s

}

= I (3)

With the above model for such spatially invariant sys-
tems, each node’s dynamics directly depends on its neigh-
bor’s state information. We assume that the nodes are syn-
chronized in time and that the control inputu(t,s) for each
node is a state-feedback control based only on all the state
information about itself and its direct neighbors, that is:

ut,s = Kxt,s+K−1xt,s−1+K1xt,s+1 (4)

With this restriction on the decentralized controllers, we
are searching a subset of all possible feedback controllers
which stabilize the above systems. Thus the best perfor-
mance achieved by the above decentralized controllers may
be only suboptimal compared to the centralized controller.
However, selecting the decentralized controllers (4) greatly
decreases the complexity and the computation burden for

each node, which makes such controller practical and reli-
able.

We want to analyze the stability of the above system and
minimize the induced power gain from the disturbancewt,s

to the statezt,s. [1], [11] have considered the setting in
which for fixedt, wt,·,xt,· ∈ l2, which are square summable
for all spatial indexs, the performance is evaluated in terms
of the induced gain of the input signal to the output sig-
nal for the overall systemxt,·. In this paper, we are more
concerned with the signal power distributed at each node.
The power of the output signalzt,s is the output energy
distributed in the system averaged both in time and space,
which can be written as

‖z(t,s)‖p = E
{

zt,sz
T
t,s

}

= Trace
{

CPt
0C

T}

(5)

wherePt
0 is the covariance matrixxt,s for nodesat timet.

Pt
s,0 = E

{

xt,sx
T
t,s

}

(6)

Similarly, we definePt
s,d:

Pt
s,d = E

{

xt,sx
T
t,s−d

}

(7)

Pt
s,d is simply denoted asPt

d because of its property of spa-
tial invariance, and it has the following property.

Pt
−d = Pt

d
T (8)

In view of the above, we will present our main result in the
next section.

3. Stability Analysis of Spatially invariant sys-
tem

Definition 1 Let Pt
d,d ∈ Z defined as the above, the spatial

power spectral density (spsd) Pt(ω) is the spatial Fourier
transform of Ptd, defined as

Pt(ω) =
∞

∑
d=−∞

Pt
de− jωd (9)

Proposition 1 Consider the difference state equation (1)
with ut,s = 0, and wt,s i.i.d random vectors with zero mean
and unit covariance in t,s, and B1BT

1 = R. Then Pt(ω)
satisfies the following difference equation:

Pt+1(ω) = A(ω)Pt(ω)A∗(ω)+R (10)

where

A(ω) = A+A1ejω +A−1e− jω (11)
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Proof:

Pt+1
0 = E

{

xt+1,sx
T
t+1,s

}

= E{(Axt,s+A1x(t,s+1)+A−1x(t,s−1)+d(t,s))

·(Axt,s+A1x(t,s+1)+A−1x(t,s−1)+dt,s)
T}

= APt
0AT +A1Pt

1AT +A−1Pt
−1AT +0+

APt
−1AT

1 +A1Pt
0AT

1 +A−1Pt
−2AT

1 +0+

APt
1AT

−1 +A1Pt
2AT

−1 +A−1Pt
0AT

−1 +0+

0+0+0+R (12)

And for Pt
k,k 6= 0,k∈ Z.

Pt+1
k = E

{

xt+1,sx
T
t+1,s−k

}

= E{(Axt,s+A1x(t,s+1)+A−1x(t,s−1)+dt,s)

·(Axt,s−k+A1x(t,s−k+1)+

A−1x(t,s−k−1)+dt,s−k)
T}

= APt
kAT +A1Pt

k+1AT +A−1Pt
k−1AT +

APt
k−1AT

1 +A1Pt
kAT

1 +A−2Pt
k−2AT

1 +

APt
k+1AT

−1 +A1Pt
k+2AT

−1 +A−1Pt
kAT

−1 (13)

From (12),(13) and our definition, we can prove(10) by di-
rect computation. Q.E.D.

With the above definition,Pt(ω) represents the spatial
power spectral density of signalxt,s at time t. Difference
matrix equation (10) describes how the spatial power spec-
tral density evolves with time. Note that a stable state for
thePt(ω) ast goes to infinity can be reached if and only if
all the eigenvalues ofA(ω) lie inside the unit circle which
is obtained in terms of the boundedness of the solution of
the above difference Lyapunov matrix equation.

Proposition 2 For the spatially invariant system described
by (1) with ut,s = 0, and wt,s i.i.d random vectors with zero
mean and unit covariance in t,s, and B1BT

1 = R, the sys-
tem is stable if and only if all the eigenvalues of A(ω) are
inside the unit circle. Furthermore, the stable state spatial
power spectrum density P(ω) satisfies the following alge-
braic Lyapunov matrix equation.

P(ω) = A(ω)P(ω)A∗(ω)+R (14)

Remark 1 According to the discrete Lyapunov theorem
[17], A(ω) is Schur stable if and only if∀ω ∈ [−π,π],∃
a positive definite Hermitian matrix X(ω), such that

A(ω)X(ω)A∗(ω)−X(ω) < 0 (15)

Remark 2 If we make X(ω) to be a constant matrix over
the spatial frequencyω, we can get a sufficient condition
for X(ω) to be Schur stable. The solution of (14) can be
obtained by a simple recursion [16], which leads to the

closed formula when all the eigenvalues of P(ω) are inside
the unit circle.

P(ω) =
∞

∑
i=0

A(ω)iR(A∗(ω))i (16)

Remark 3 Proposition 2 gives us a sufficient and neces-
sary condition for the system to reach a steady state, at
which the energy distributed at each spatial frequency is
bounded. Note that Stability condition for the continuous
time case in terms of the boundedness of the solution of
matrix Lyapunov equations were obtained in [10]. In view
of the inverse Fourier transform, the above proposition pro-
vides a way to compute the steady state power at each node
by the following integral:

‖x(t,s)‖p = Trace{P0}

= Trace

{

1
2π

∫ π

−π
P(ω)dω

}

(17)

Before we convert the above stability condition to aω
independent one, we shall introduce a result on the char-
acterization of non-negative pseudo-polynomial matrix on
the unit circle [12].

Lemma 1 A pseudo-polynomial matrix:

ϒ(z) =
k

∑
i=−k

Piz
i (18)

whose coefficient matrices satisfy P−k = P∗
k , Pk ∈Cm×m is

nonnegative definite on the unit circle(z= ejθ ,θ ∈ [0,2π])
if and only if there exists a nonnegative definite matrix Y ,
such that

Y = Y0 +X−ZTXZ (19)

where X,Y0,Z are defined as follows:

Y0 =













P0 P1 · · · Pk

P∗
1 0

... 0
...

...
...

P∗
n 0 · · · 0













(20)

Z =













0 Im

0
. . .
. . . Im

0













(21)

and X is of the following form

X =

[

Xh 0
0 0

]

(22)

where Xh is an mk×mk Hermitian matrix, i.e. Xh = X∗
h .
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Generally speaking, it is difficult to find a positive def-
inite Hermitian matrixX(ω) for (15) to prove the Schur
stability of A(ω). However, if we restrictX(ω) to be a
symmetric positive matrixX0 > 0 which satisfies (15), we
can obtain a sufficient condition and later use the above
lemma to convert this condition to its equivalent finite di-
mension LMI condition. The KYP lemma has been used to
get finite dimensional LMIs independent of the spatial fre-
quencyω in [11]. However, the application of KYP lemma
in the discrete-time case is not that straightforward, espe-
cially when the degree of the state dependence is more than
one. With Lemma 1, we obtain the following sufficient fi-
nite dimensional LMI condition for stability.

Proposition 3 A(ω) is Schur stable if there exist a sym-
metric positive definite matrix X0 ∈ Rn×n, and a Hamilton
matrix X, such that

YX +X−ZTXZ < 0 (23)

where YX,X,Z are defined as follows:

YX =





AX0AT +A1X0AT
1 +A−1X0AT

−1−X0 (•)∗ (•)∗

A−1X0AT +AX0AT
1 0 0

A1X0AT
−1 0 0





(24)

Z =





0 In 0
0 0 In
0 0 0



 (25)

X =





X11 X12 0
X∗

12 X22 0
0 0 0



 (26)

Note that(•)∗ here denotes the transpose ofTX ’s corre-
sponding symmetric part, which is clear from context.

Proof: A(ω) is Schur stable if there exists a symmetric
positive definite matrixX0 such that

Γ(ω) = A(ω)X0A( jω)∗−X0 < 0 (27)

Notice thatA(ω) = A0+A1ejω +A−1e− jω , and letejω = z.
Then from (27), we obtain

Γ(ω) = (A+A1z+A−1z−1)X0(A+A1z+A−1z−1)∗

−X0

= (A+A1z+A−1z−1)X0(A
T +AT

1 z−1 +AT
−1z)

−X0

= AX0AT +A1X0AT
1 +A−1X0AT

−1−X0

+(A−1X0AT +AX0AT
1 )z−1

+(AX0AT
−1 +A1X0AT)z

+(A1X0AT
−1)z

−2

+(A−1X0AT
1 )z2 (28)

Now, according to Lemma 1,Γ(ω) ≥ 0 if and only if (23)
holds, which guarantees thatA(ω) is Schur stable. Q.E.D.

In addition to the analysis of the spatially invariant
systems, we consider the synthesis problem of the decen-
tralized controller as defined in (4), and from proposition
2, we derive the following proposition:

Proposition 4 System (1) is stabilizable by a local con-
troller defined by (4), if and only if there exist a positive def-
inite Hermitian matrix X(ω),ω ∈ [−π,π], and K,K1,K2,
such that

(A(ω)+B2K(ω))X(ω)(A(ω)+B2K(ω))∗−X(ω) < 0
(29)

where
K(ω) = K +K1ejω +K−1e− jω (30)

From proposition 3, by the same argument, if we choose
X(ω) to be independent ofω, we obtain sufficient condi-
tion for stability of the closed loop system, i.e, the closed
loop system is stable if there exist a symmetric positive def-
inite matrixX0, such that

(A(ω)+B2K(ω))X0(A(ω)+B2K(ω))∗−X0 < 0 (31)

4. Conclusion

In this paper, we considered stability conditions for one
dimensional discrete-time spatially invariant systems. With
the assumption that the system admits a decentralized Lya-
punov matrix, this leads us to convex conditions for anal-
ysis and synthesis in the spatial frequency domain. Based
on a result on nonnegative pseudo-polynomial matrices, we
have shown that the stability condition can be converted
to an easy to compute computable finite-dimensional LMI.
Future work will continue in the controller synthesis part to
guarantee global performance.
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