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so that from (2.5)  and (3.7) 

S2 < tr v * U ’ C 2 L J )  tr (n-2) (3.8a) 

with  equality if and only  if 

n=u’cu= XI (3.8b) 

where from  (3.8b) 

X - ’ = S - ’  tr ( n - 2 ) .  (3.8~) 

Now from (3.3), (3.8a)  is  equivalent to 

(3.9) 

Inequality  (3.4)  follows  since  the RHS in (3.9)  is  minimized by 

tr  ( I - 2 ) = y - ’ S .  (3.10) 

Condition  (3.6)  follows  from (3 .8~)  and (3.10). Condition  (3.5)  then 
follows  from (2.4) and (3.2). v v v  

The following  corollary  demonstrates  that for y = 1, the internally 
balanced structure minimizes J in (3.4) while for y = SIN the  optimal 
low  noise  structures [ 11, [2]  minimize J .  Both  these  structures are optimal 
for y = 1  and S = N. 

Corollary: 
i) y = 1  implies KT = W,in (3.5). For U = V = Zin (3.2a), the 

optimal T = X-’/* which  implies 

K T =  W T = C .  (3.1 1) 

ii)  For y = S/Nand U = I ,  the  optimal T = (S/N)’j*C-’/2V’ which 
implies 

in  which case 

tr [ W,] =- 
S* 
N (3.13) 

Furthermore, there exists  a  transformation T such  that  in  addition 

(KT) , j=  1  for a l l  j .  (3.14) 

iii)  If S = N, then  both  the  internally  balanced  structure (3.11) and  the 
optimal  low-noise  structure of Mullis  and  Roberts [l] defined by (3.13) 
and  (3.14)  minimize tr [KT + W,]. 

Proofi Part i) follows  directly  from  (3.5)  and (3.6).  whle part  iii)  is 
obvious once ii) is  established.  Now  from (3.6) y = S/N and (I = I 
implies l T 2  = (N/S)C. Hence, (3.12) follows  from  (2.4)  and (3.1). 
Also since tr (n-*) = N there exists 121 a unitary  matrix V such  that 

( V W 2  V‘) ,=  1  for dl j .  v v v  
Under  the  action  of  the  bilinear  transformation,  the discrete system (2.1) 
is transformed to 

x=Ax+Bu 

y =  C X  (3.15) 

where 

C = & C ( I + A ) - ~ ;  ~ = D - c ( I + A ) - ~ B .  

Since this transformation  preserves  both the controllability  and  observ- 

ability  Grammians from discrete to continuous  time, the theorem and 
corollary  apply  equally to system  (3.15). 
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Proper Stable Transfer  Matrix Factorizations and 
Internal System Descriptions 

P. J. ANTSAKLJS 

Absfmucf-The exact  relations  between  coprime  proper  stable  factoriza- 
tions  of P ( s )  and  coprime  polynomial  matrix  factorizations  are  derived, 
and  they  directly  lead to relations with internal  descriptions  of the  plant  in 
differential  operator  or  state-space  form.  It  is  shown  that  obtaining  any 
right  or  left  proper  stable  coprime  factorization is equivalent to state- 
feedback  stabilization  or  to  designing  a  full-order  fall-state  observer, 
respectively.  Solving  the  Diophantine  equation is shown to  be  equivalent 
to designing  a  full or reduced-order  observer  of a linear  functional  of  the 
state  and to designing  a  stable  inverse  system;  and  this suggests new 
computational  methods to solve  the  Diophantine. 

I. INTRODUCTION 

Proper stable  factorizations  of  a transfer matrix P = N‘D’ - I  were 
introduced  in [ 11 and [2], extending the polynomial  factorizations P = 
ND - [3], [4] to factorizations  over more general  rings  and  in  recent 
years, they  have  gained  popularity  in the control  literature. 

The polynomial  matrix  factorization P = ND-I corresponds to the 
controllable  internal  description  of the plant Dz = u, y = Nz (in 
differential operator form) which  is  related,  via  equivalence, to state- 
space  internal  descriptions. The ability to work  with N, D which are so 
closely  related to the transfer matrix P ,  while in fact  working  with  internal 
descriptions, is one of the most  important  advantages of the  polynomial 
matrix approach to control  and the main reason  for  its  acceptance as an 
analysis  and  synthesis  tool.  When  working  with  proper  and  stable 
factorizations N’ , D I ,  this  advantage  appears to be lost  since the relation 
between N‘ , D’ , and N, D, or other  internal  descriptions  has  not  been 
adequately  explained  in the Literature.  Recent  work  on  computing the 
solutions to the Diophantine  equation  in the state-space  (see  [5],  [6])  has 
not  shed  adequate  light  into the problem since the  main  thrust there is to 
show,  via transfer matrix  identities,  that  certain  state-space  expressions 
are solutions of the Diophantine  equation; no attempt is being made to 
examine the generality of these  solutions or to clarify the underlying 
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relations. The purpose of this paper is  to establish the exact relations 
between proper stable factorizations and internal descriptions, thus 
bridging the obvious gap in the literature. 

The relations between proper stable factorizations and polynomial 
matrix factorizations of P are first established (Theorem 1).  It is then 
shown that deriving any right coprime proper stable factorization is 
equivalent to solving a state-feedback stabilization problem (Theorem 2). 
Similarly,  it  is shown that deriving any  left factorization is equivalent to 
designing a  full-order full-state observer. The results are then used to 
study  the Diophantine equation and it  is shown that obtaining a solution  is 
equivalent to designing a full or reduced-order observer of a linear 
functional of the state (Theorem 3); it  is also equivalent to determining 
proper stable inverses of a  stable system. This shows that the  vast 
literature on observers and inverse systems can be tapped to derive 
efficient computational methods to solve the Diophantine equation and 
derive low order solutions. 

The fact that such relations,  as described here, do exist has been long 
suspected by researchers in the area and implied in  a number of  published 
works. For example, similar results to Theorem 2, but for strictly proper 
plants, can be seen by combining results in [7, Theorems 4.2 and 5.41; 
also in [3, Chapter 71, observers  are determined by solving a polynomial 
Diophantine equation. It  is the first  time, however, that the important 
problem of determining the exact relations between proper stable 
factorizations and internal descriptions is fully and directly addressed and 
explained; additional insight is also gained here by using constructive 
proofs. 

II. RELATION TO POLYNOMIAL  FACTORIZATIONS 

Consider linear, lumped, time-invariant multivariable systems and let 
P(s) be the ( p  x m) transfer matrix of an m-input, poutput plant.  Assume 
P to be proper,  i.e., I i m s - -  P(s) < 03. 

Write 

P = ND- ' (1) 

where N, D are right coprime (r.c.) polynomial matrices, that is (N,  D) 
E M ( a [ s ] )  and r.c. in R [ s ] .  Also Let 

p=N'D'- l  (2) 

where N ' ,  D' are proper and stable rational matrices, denoted here  as 
(N' ,  D')  E M(S) ,  that is matrices with elements in S, the  set  of all 
proper and stable rational functions. 

Let (N' ,   D ' )  be right coprime (r.c.) in S; that is,  there exists (x,', x ; )  
E M ( S )  such that the Diophantine equation (or Bezout identity) 

x;D'+x;N'=I  (3) 

is satisfied [ l ] .  Coprimeness of (N' , D ' )  in (2) implies that D' is 
proper, that is, D' is  biproper, and that D'-I cannot have unstable poles 
other than the unstable poles of the plant P. This can be  seen by writing 
(3) as x ;  + x;P = D ' - l ;  notice that the left-hand side is proper and that 
the only possible unstable poles are poles  of P.  

Theorem I :  The pair (N' ,  D')  E M ( S )  defines a right coprime 
factorization (2) of P in S if and only  if 

[::]=[:In 

where II and I I - l  E M(Zi(s)) with II and I I - l  stable and DII biproper. 
Proof: Consider (2) with (N' , D ') E M(S)  and  let [D ' T ,  N' ] T =  

[D:,  NTITfi;', an  r.c. polynomial factorization. Notice that P = 
N'D'-' = NID;' = ND-I. Since (N,   D) r.c. and (Nl ,   Dl )  are not 
necessarily coprime polynomial matrices, Dl = ONl and Nl = NI'?~ 
where Nl is a greatest common right divisor (grd)  of (Nl ,   D l )  [3]. 
Therefore 

n=N1D;1 ( 5 )  

with (Nl, dl) r.c.. Since INl\ # 0, l3 and I I - l  E M(R(s)); also in  view 
of a;l stable and D' proper, II is stable and Dl3 is proper. If  now (N', 

D')  are  r.c. in S, (3)  is satisfied and D' - I  is also  proper; that is, DII is 
biproper.  Furthermore, (3) can be written as x,'D + x;N = n-l; that is, 
II - I  is  stable.  Conversely, assume that l3 satisfies the conditions of the 
theorem and define N ' ,  D' from (4). Then NIDI-' = (NIT)(DIT)-I = 
Pand D' = DII, N' = N n  = (DII)P; that is, ( N ' ,   D ' )  E M(S).  To 
show that (N' ,   D ' )  are  r.c. in S ,  it suffices to show that [D'(s)', 
N ' ( s ) ~ ]  has  full  column rank wherever Res 2 0 and at s = w [6] ,  [ 8 ] ;  
and this is true in  view  of (4) and the fact that I I - l  is stable and DII is 
biproper.  Q.E.D. 

Corollary: The pair (N' ,   D ' )  E M(S) defines a right factorization (2) 
of P if  and  only  if (4) is satisfied where II and n-l E M(R(s)) with II 
stable and DII proper. 

Remarks: 1) The corollary characterizes all proper stable factoriza- 
tions P = N'D' - I  which are not necessarily r.c. If (N' ,   D ' )  E M(S)  
are  also r.c., then two additional conditions must  added  to obtain the 
conditions of the theorem; namely ll - I  stable and (DIT) - I proper. 

2) In view  of D' = DII = D(Nlbl - I )  biproper 6[D' N' '1 = 
6 D ;  I (  = 6II) = 6P + deg lNll where 6( .) denotes the McMillan degree 
or  order of the transfer matrix; to migmize the McMillan degree of the 
coprim_e proper stable factorizations, Nl must  be chosen to  be unimodular 
(deg INl[ = 0). In this case l3 = D;l with Dl,   Nl  rx . ,  which  is the case 
in a) of the example below. 

Example: Let P = (s - l)/(s - 2)(s + 1) where N = s - 1, D = 

a) If II = N l D ; I  = l/(s + 1)2 then N' = NII,  D' = DII, and 
(s - 2)(s + 1). 

x ; D ' + x ~ N ' = - - + ~ - -  
s - 5 s - 2  s-1  
S f  1 s+  1 (s+ 1)2- l .  

b)  If l3 = RID;' = (s + 2 ) / ( ~  + 1)*(s + 3),  x;D' + x;N' = 

(s-5)(s+3) (s-2)(s+2) 9(s+3) (s- l)(s+2) 
( s+l ) ( s+2)(s+l ) ( s+3)  (s+2) ( ~ + l ) ~ ( s + 3 ) = ~ .  

+- 

Notice that II, II - I stable and DII biproper in both a) and b). 

similar (dual) results exist for left factorizations. To illustrate, let 
AU of the above results involve right factorizations of P .  It is clear that 

p , d - l N  (6) 

be a left coprime  (1 .c.) polynomial matrix factorization and 

p = y  - 1 p  (7) 

where the pair (I?', D') E M(S) defines an  1.c. factorization of P in S; 
that is,  there exist (Z;, 2;) E M ( S )  such that 

LYn; + P a ;  = I .  (8) 

Theorem I (Dual): The pair (I?', D') E M(S) defines a left coprime 
factorization (7) of P in S if  and  only  if 

[N,, D ' ]  =ii[N, 81 

where li and f i - l  E M(El(s)) with fi and f i - I  stable and biproper. 
The relations shown in this section are, in effect, the relations between 

coprime proper, stable factorizations, and internal descriptions since Dz 
= u, y = Nz and DZ = Nu, y = fa re  internal descriptions of the plant 
in differential operator form. This fact will  be  used  in  the following to 
establish the relation between the right, left proper and stable factoriza- 
tions and the control, filtering problems, respectively. 

m. RIGHT FACTORIZATIONS AND CONTROL 

Let P = N'D' with (N' ,   D' )  E M(S)  r.c. in S. Consider Dl E 
M@[s])  (see proof of Theorem 1)  and assume without loss of generality 
that Dl is column reduced (column proper). Note  that since N',  D' are 
r.c., D' = D I D ; [  is biproper; that is, 

lim D'=lim  D,d;I=L, ILlfO. (10) 

Write LDID;l = Z - FD; I where FD;' is strictly proper; notice that F 

5-m s-Oi 
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E M(l[s]) is unique and col degi ( F )  < col  degi (Dl) for i = 1 ,  . . - , m. 
Let 

and write 

Note  that Dlz = u, y = N,z is a  controllable  realization  of P, it  is  also 
detectable  since HI, a grd of D l ,   N l ,  satisfies f i ; I  stable  [see Theorem 1 
and ( 5 ) ] .  Linear state feedback (lsf) control  is  defined  for  such  system 
description by u = Fz + Lr where c o l  degi (F) < col  deg, (Dl)  i = 1,  
* * a ,  m [3]; consider L real  satisfying ILI # 0. If  Isf is  applied  to {Dl ,  Z, 
N,, 0}, the compensated  system  is  described by DFz = Lr,  y = Nlz and 
the transfer matices between y and r, u and r a re  given by 

y=TFr=NID;'Lr, u=MFr=[FD;'+I]Lr=DID;ILr. 

Consequently, for any proper stable r.c. factorization P = N'D' - I  

[ ;] = [ r= [E:] r= [ :] D;ILr; (13) 

that  is D' ,  N' are equal to the transfer matrices MF, TF obtained  when  a 
stabilizing  Isf  control is applied to a  controllable  and  detectable  realization 
{Dl ,  Z, N,, 0 )  of P. Conversely, if  a  stabilizing Isf is  applied to any 
controllable and detectable  realization { D l ,  I ,  N l  , 0 )  of P ,  then (MF, TF) 
wilI be  a proper, stable  r.c.  factorization ( D ' ,   N ' )  of P since: MF = 
DIDiIL = DfiIDF'L = DII, TF = N1D;'L = NfilD;'L = NII  
where II = f i l  D; IL, II - I are stable  and DII biproper (see Theorem 1). 
The following theorem has therefore been  proved. 

Theorem 2: All proper  stable r.c. factorizations P = N'D' - I  of y = 
Pu are obtained by applying  stabilizing  lsf to controllable  and  detectable 
realizations  of P. 

Remarks: 
1) The r.c.  factorizations D' = DII, N' = NII derived  using 

Theorem 2 have ll = f i lD;  'L; the poles of n (poles of D; I )  are 
determined  by  the  lsf  control law, while  its  zeros  (poles  of fi; I ) ,  are the 
uncontrollable  but  stable  modes of the chosen  realization {Dl ,  I ,  Nl , 0 )  of 
P .  

2)  The factorization D',   N'  of P can be  written  in  terms of its  state- 
space realization. In particular, if {Ac ,  B,, C,, E,} is an equivalent 
description to {Dl ,  Z, N,, 0} in  controllable  companion form, then  using 
the structure theorem [3], it can be  easily  shown  that D',   N'  are the 
transfer matrices  of { A ,  + B,Fc, B,L, F,, L } ,  { A ,  + B,F,, B,L, C, + 
E,F,, E,L}, respectively,  where F, satisfies u = Fz + Lr = F,x, + Lr. 
If {A, B, D ,   E}  is  a  description  equivalent to {A,,  B,, C,, E,} and u = 
Fx + Lr is the Isf in this case,  then 

D'=[F[sI-(A+BF)]-~B+Z]L 

and 

N'=[(C+EF)[SZ-(A+BF)]-'B+E]L. (14) 

Equation (14) was also given in [5] (with L = I )  where { A ,  B, C, E }  is 
any  stabilizable and detectable  realization of P. Here (A,  B) is 
controllable; observe that  if there are any  uncontrollable  modes,  they will  
never appear in either D' or N' since they  will  cancel  between [SI - (A 
+ BF)] and B. It  is therefore clear  that as long as F assigns, to the 
controllable  modes,  values  in the LHP, any  uncontrollable  and  detectable 
realization can be used. These results  strengthen the results  in [5] and [6];  
note  that  in [5] particular  state-space  expressions  for D ' ,   N ' ,  x,', x; are 
given and it is shown,  using matrix identities,  that  they  satisfy  the 
Diophantine (3) (dual  results are also given  in [6]). 

The contribution  of this section is the  relation  between r.c. factoriza- 
tions P = N'D' - I  and lsf  maps and mainly the fact  that alI such 
factorizations  can be derived in  this  way.  It  is  perhaps of interest to notice 
at this point  that the N' of factorizations ( N ' ,   D ' )  can be chosen  to  have 

certain  desirable  properties.  In particular, N' can be  taken to be Hp, the 
Hermite canonical form of P under dynamic compensation. This can be 
easily  seen  in  view  of Theorem 2 and [lo]. 

Iv. LEFT FACTORIZATIONS AND FILTERING 

Consider  proper  stable 1.c. factorizations P = d' -IN'. It is  clear  that 
results  dual to the ones  derived for P = N'D' - I  can  be  obtained. In 
particular,  consider PT and apply  stabilizing  feedback (pr, L r )  to  any 
controllable and detectable  realizations  of PT,  to obtain  results  involving 
stabilizable  and  observable  realizations of P and observers. In the 
following,  these  results  will  be  shown  directly,  using  direct  constructive 
proofs  instead  of  duality.  In this way additional  insight  will be gained. 

Theorem 2 (Dual): All proper stable I.c. factorizations P = df -Ifif 
are obtained by using  full-order  observers to estimate  the  full  state  in 
stabilizable and observable  realizations of P. 

Proof: Consider P = d' -IN' where (N', D') E M ( S )  I.c. in S. 
In  a  manner  analogous to Section HI, write 

[N', D']=li[N,  d]=LD;'[N1, D,] (15) 

where L = limS+- D', ILI # 0, and 6, in  row  reduced form; d F  : = 6, 
- E with  row  degj (F) < row degj (Dl). Note  that b12 = Nlu,  y = 2 is  a 
stabiiizable  and  observable  realization  of P .  Using the structure theorem 
[3], state-space  descriptions  equivalent to {DF, Nl, L, 0) and {BF, B1, L, 
0 )  in  observable  canonical form can  be derived; switching  to { A ,  B, C,  
E } ,  an equivalent to {Dl, N,, I ,  0} realization  of P,  the transfer  matrices 
in (19) can  be  written as 

N ' = ~ [ C [ s I - ( A + ~ C ) ] - 1 ( B + ~ E ) + E ]  

d'=L[[C[sZ-(A+EC)]-1P+I]  (16) 

which are similar to expressions  in [5]  and [6] (when t = I ) .  Note  that 
(16) satisfies 6.'y - H'u = 0; it  is  now  shown  that  they  can be obtained 
by applying  a  full-order  full-state observer to { A ,  B, C, E } .  

L e t i = A f + B u + F [ j - y ] , w h e r e j : = C t + E u , b e s u c h a n  
observer (F is such  that  all  the  eigenvalues  of A + i'C  are in the LHP). 
Consider  the error e = L ( j  - y )  where It( # 0. Working  in the s- 
domain,  it  can  be  shown  that 

e=L((E-y)= ~~-M~+~C[~I-(A+~C)I-'P(O) (17) 

where T : = H', h? : = d ' of (1  6) .  Note  that for initial  conditions 4 0 )  
and %O), (17) implies Tu - A h  = 0 or t = h?P, since  it  is true for all 
u, as expected;  this can also be  seen if_x(O) = 3 0 )  = 0 in (17), since  in 
this case P(t) = y(t). Consequently, D' and Iii' can  be  obtained  using  a 
full-order  full-state observer and  considering  the  signal e = L ( j  - y) ;  
D' and N' are then  the transfer matrices A? and 2= between y ,  e and u ,  e, 
respectively.  Finally  note  that N ' ,  D' are  1.c.; this  can be shown by 
observing  that [#'(s), d ' ( s ) ]  has  full  row rank whenever Res 2 0 and  at 
s = 03. Q.E.D. 

Remarks: 
1) It is  now  quite  straightforward to establish  the  relation  between I.c. 

factorizations P = B' -IN' and filters of the plant  output.  Note  that y = 
Pu + C(sZ - A)-I x(0) from whichy:= d r y  = N ' u  + LC[sZ - (A 
+ FC)] - I 4 0 ) .  That  is, d ' can be seen as filtering  the  output y to obtain 
a  new  signal 7 .  N' is  such  that  when  it filters u one  obtains  the same 
signal 7 (assuming the initial conditLons  to  be zero). In  view of (15), 
internal  descriptions_ of the systems D' and Nf are: dFzl  = dl y ,  7 = 
Lzl and DFil  = Nlu,  7 = L i l ,  respectively.  In  state-space terms an 
appropriate  equivalent  description for B' is: XI = (A + FC)xl + 4 ,  j 
= &xl + Ly which, in cascade  with  the  plant f = Ax + Bu, y = Cx 
+ Eu, gives an overall transfer matrix  equal to fl' in (16). 

2 )  Notice  that  if { A ,  B, C, E }  is  unobservable. no unobservable  modes 
will  appear  in N', d' of (16) as they  will  cancel  between C and [sZ - (A  
+ I?)] [similar  observations were made  for D',   N'  in (14)]. One could 
therefore start with  any  stabilizable and detectable  realization { A ,  B, C, 
E }  and  use (14) and (16) to derive both  right  and  left  factorizations of P. 

In the following  the  solutions of the Diophantine  equation are studied. 
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v. SOLUTIONS OF THE DIOPHANTINE 

Consider the Diophantine equation (Bezout identity): 

x;D'+x;N'=Z (3) 

where ( N ' ,   D ' )  E M(S) are given; P = N'D'-'  is a proper stable r.c. 
factorization. AU solutions [x ; ,   x ; ]  E M(S) of (3 )  can be determined 
from observers (full or reduced-order) of the linear functional of the  state 
Fz. To show this, assume that (3) is satisfied. Consider the controllable 
and detectable realization of P D,z = u, y = Nlz and the Isf controller u 
= Fz + Lr [see (10)-(12)]; write (3) as x ; D l  + x;Nl = L-'DF = 
L - ] (D ,  - F )  or as [I - Lx,']DI + [ -Lx;]Nl = F. Postmultiply by 
the (partial) state z to obtain 

[I-Lx,',  -Lx;] [ : ]  =Fz (18) 

which shows that [I - Lx,' , -LxJ is an observer of the linear functional 
of the state F(D)z(t)( = F,x,(t) = Fx(t)) where D : = d/dt. Conversely, 
given D' ,  N' notice that L (1L1 # 0) and Fz, F E M(2[s]) ,  are uniquely 
determined (10)-(12). Assume that an observer of Fz, [RI ,  R2] E M(S) 
hasbeenfound;thatis, R l u  + R2y = Fz.Letx;  = L - ' [ I  - Rl] ,x;  = 
- L  - ]Rz  which implies that (18) is satisfied. In view of u = Dlz ,  and y 
= Nlz (satisfied for all z) ( 3 )  is true. The following result has therefore 
been  shown. 

Let P = N'D' - I  a proper  stable r.c. factorization; use (10)-(12) to 
determine (F(D), L). Then the following is true. 

Theorem 3: (x,',   x;) E M(S) are solutions of the Diophantine 
equation (3) if  and  only  if [I Lx;  , - LxJ is an observer of the linear 
functional of the state Fz. 

Remarks: 
1 )  If a full-order  observer  is  used, the order of [x; ,   x ; ]  will be the 

order of the plant P (see 2) below). Low order solutions [x,', x ; ]  can be 
obtained by using reduced-order observers  for  the linear functional of  the 
state Fz; such  methods  do exist in the literature [3] ,  [ l  1 1 ,  [12] and they 
will not be discussed here. 

2) A direct state-space method to construct a full-order observer of Fz 
is as follows. The process involves two steps (see also Remark 2) of 
Theorem 2). First a description {A,, B,, C,, E,} equivalent to { D l ,  Z, N l ,  
0) is used  with u = Fz + Lr = F,x, + Lr and H, the observer gain and 
then the transfer matrices are written in terms of  an equivalent description 
{ A ,  B,  C, E }  with u = Fx + Lr and H the observer gain; the 
intermediate step is omitted here for brevity. Consider the full-order full- 
state observer B = (A  + HC)2 + (B  + HE)# - Hy; write it as x = B 
= [SI - (A + H C ) ]  - I  [(B + HE)u - Hy] (assume zero initial 
conditions). Premultiply by F to obtain 

F[s l - (A+HC)]- ' [B+HE,  -HI [ :] =Fx (19) 

which describes an observer  for Fx. In view  of Theorem 3 

X,' = L - ' [ I - F [ s I - ( A  +HC)]-'(B+HE)] 

X ;  =L-'[F[sZ-(A+HC)]-'H].  (20) 

These are the expressions (with L = I )  used in [5]; note that the gains F 
and H can be found  by  using  methods from LQG control theory. Notice 
that lower order [x,',   x;] could have been derived if a reduced-order 
observer for Fx had  been  used. 

3) It is known that the controller u = - Cy where C = x,' -'x; with 
[x, ' ,  x;]  a solution of the Diophantine (3) stabilizes the plant y = Pu [ 11.  
Notice that if P is strictly proper, then x ;  is always biproper and therefore 
Cis proper. If P is not strictly  proper,  care should be exercised to choose 
x ;  biproper. If (20) is used, x,' is  biproper, C i s  proper; note that in this 
case the closed loop eigenvalues will be at the zeros of IsZ - ( A  + BF)I 
and of lsZ - (A + HC)l. An explicit description for Ccan be derived in 
this case as follows. Substitute u = F2 in the observer B = (A + HC)B 
+ (B + HE)u - Hy [see (19)]; then 9 = (A + HC + BF + HEF)9 
- Hy = AB - HyfromwhichB = -(SI - A)- 'Hyandu = - F @ Z  

- A)-l~y. Therefore 

C= F[sZ- ( A  + HC+ BF+ HEF)]-'H. (21) 

Inverses: It is clear that the solutions [x; ,   x ; ]  of (3) are the proper and 
stable left inverses of [D'=, NIT]  which, in  view  of (13 ) ,  is a stable 
system with input r and output [uT, yTIT.  Notice that l i m S + -  [D'T, 
N'=] is of full column rank which  implies that proper left inverses do 
exist;  furthermore, this system has no multivariable zeros which implies 
that stable inverses exist [12]-[14]. In view  of these observations it  is 
rather obvious that solutions to ( 3 )  can be derived via  any  method  which 
constructs proper and stable left inverses: to derive minimum order such 
inverses one could use the method suggested in [12 ] .  If working in the 
state-space is desirable, observe that in view of (13),  (14) 

x=(A+BF)x+BLr 

is  an internal description of [D ' =, N' and all proper inverses can be 
characterized using [13]; for  proper and stable inverses the method 
described in [14] can also be used. 

Dual R w l b :  Consider the Diophantine 

B'a; + P a ;  = I .  (8) 

Similar results to  the  ones developed for x,', x; are  true here. In particular 
[f; =, 2; are now proper and stable right inverses of [D', i? ] ;  and 
methds dual to the ones described above can be used to obtain solutions. 
Futhermore, in view  of the discussion of  left factorizations and filtering, 
(f , X;) can be seen as a filter driven by the  error e = L ( j  - y )  to give y 
and u; in particular, in view of (17) 

r - l r -  

It is clear that one could also work with P T  and use Theorem 3 .  
Expressions analogous to (20) can be derived in this way; namely: 

f ;  = [ I -  (C+ E m [ s I - ( A  + Bm]-'F]L-' 

P ; = [ E 7 [ s I - ( A + B ~ ) ] - ' P ~ - ' .  (24) 

Here ( A ,  B,  C, E }  is a stabilizable and observable (or detectable) 
realization of P; F, t are determined from D' , Iif' as in (15) and (16), 
while A is so that A + BA has eigenvalues in the LHP. 

A-Approach: In [9] the transfonnation X = 1 /(s + a) where - a. real 
in the LHP is used; this transformation maps the stable region in the s- 
plane into a "stable" region in the X-plane  and s = Q, to X = 0. This 
approach corresponds to working with proper stable factorizations N ,  
D' with all the poles of N' ,  D' at -a (here ll = ( l / ( s  + a)")I) and it 
requires only polynomial matrix manipulations. Note that all the poles  of 
the solutions of the corresponding proper and stable Diophantine will also 
be at - (Y in this case, and stabilizing controllers obtained via this method 
will tend to assign multiple closed loop eigenvalues at -a. As an 
illustration, consider P = (s - l ) / ( s  - 2)(s + 1) (see example above) 
and let X = l / ( s  + 1); then m) = ( 1  - 2X)x/(1 - 3X). The 
polynomial Diophantine, in X, is solved to obtain 

.?ld+f2m=(-6h+1)(1-3X)+9(1-2h)X=l. 

The corresponding Diophantine (3) is obtained if we  let X = l/(s + 1 )  in 
B,, D , g * ,  and M, then x ; ,   D ' ,  x;,and N' of case a) of the example are 
derived. If the  controller C(s)( = C(A) = B;IB2 with X = l / (s  + 1 ) )  = 
9(s + l)/(s - 5 )  is used, all three closed loop eigenvalues will be at - 1. 

w. CONCLUDING REMARKS 

The relations between proper  stable factorizations and polynomial 
factorizations of a proper  transfer matrix P were established; and they 
directly  led to relations with internal descriptions in differential operator 
or state-space forms. This result connects the proper and stable 
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factorizations to the standard  system  theory  approach.  Right  factorizations 
are identified  with  control  problems and left  with  filtering. The solutions 
to the Diophantine are identified  with full or reduced-order observers of  a 
linear functional of the state; this immediately  suggests  a  variety  of 
computational  methods to solve the Diophantine  drawn  from  the observer 
literature. Similarly, the relation to the inverse problem  is  shown. The 
results  developed  in this work lead to better  utilization  of  proper  stable 
factorizations in control; they also clearly  establish  the  fact  that  this 
approach is an extension of the accepted  system  and  control  theory  rather 
than an independent  methodology. 

REFERENCES 

C. A. Desoer, R. W. Liu, J. Murray, and  R. Saeks,  “Feedback system design: 
The  fractional  approach to analysis and synthesis,” IEEE Trans. Automat. 
Contr., vol.  AC-25.  pp. 399412, June 1980. 
M. Vidyasagar, “On the use of right-coprime factorizations in distributed 
feedback systems  containing unstable subsystems,” IEEE Trans.  Circuits Syst., 

W. A. Wolovicb, Linear MuItivariable Systems. New York:  Springer-Verlag, 
1974. 
H. H. Rosenbrock, State-Space  and  Multivariable  Theory. London,  England: 
Nelson, 1970. 
C. N. Nett, C. A. Jacobson, and M. J. Balas, “A  connection be twen  state-space 
and  doubly coprime  fractional  representations,” IEEE Trans. Automat.  Contr., 

M. Vidyasagar,  “The ,mph metric for unstable  plants  and  robustness estimates  for 
vol. AC-29,  pp.  831-832,  Sept.  1984. 

feedback stablity,” IEEE Trans. Automat.  Contr., vol.  AC-29,  pp. 403418. 
May 1984. 
P. P.  Khargonekar  and E. D. Sontag, “On the  relation  between stable matrix 
fraction  factorizations and  regulable  realizations  of linear  systems  over  rings,” 

M. Vidyasagar, Control  System  Synthesis: A Factorization Approach. 
IEEE Trans. Automat.  Contr., vol.  AC-27, p p .  627-638, June  1982. 

Cambridge, MA: M.I.T. Press, 1985. 
L. Pernebo, “An algebraic theory for the design of controllers for linear 
multivariable  systems,” IEEE Trans. Automat.  Contr.. vol.  AC-26, pp. 171- 
194, Feb. 1981. 
P. I. Antsaklis, “Canonical forms under  dynamic compensation  and zero  structure 
at  infinity,” in Proc. 22nd Conf. Decision and Contr., San Antonio, TX, Dec. 
1983,  pp. 1365-1366. 
1. O’Reilly, Observersfor Linear  Systems. New York:  Academic.  1983. 
W. A. Wolovicb,  P. J .  Antsaklis,  and  H.  Elliott, “On the stability of  solutions  to 
minimal  and nominimal design problems,” IEEE Trans. Automat.  Contr., vol. 

B. C. Moore and L. M. Silverman, “A  new characterization of feedfonvard  delay- 
AC-22,  pp.  88-94, Feb. 1977. 

free  inverses,” IEEE Trans.  Inform.  Theory. vol. IT-19,  pp. 126-129, Jan. 
1973. 
P. J. Antsaklis, “Stable  proper  nth-order  inverses,” IEEE Trans. Automat. 
Contr., vol. AC-23, pp. 1104-1106, Dec. 1978. 

VOI. CAS-25,  pp. 916-921, NOV. 1978. 

A Further Simplification in the Proof of the  Structural 
Controllability Theorem 

ARNO LINNEMANN 

Abstract-The structural controllability  theorem  characterizes  generic 
controllability  of parameter-dependent systems. A further simplification 
of its proof is presented. 

I. INTRODUCTION 

Consider  a  linear  time-invariant  system 

X=Ax+ Bu 
where A and B are structured matrices of dimensions n x n and n x m, 
respectively. The structural controllability theorem asserts equivalence of 
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xn i 

Fig. 1. How to obtain  a cacti  from C ‘ .  The arcs to be  deleted are  indicated.  The final 
stem is bold. 

the following  statements: 
i) (A,  B) is  structurally  controllable; 
ii) the structured  matrix ( A ,  B)  is irreducible and has generic rank n; 
iii) the graph G(A,  B) induced by (A,  B) is spanned  by  a cacti. 
Since the result has first been  presented [1]-[3], there has been much 

effort in  simplifying  the  rather  complicated  original  proofs  [4]-[SI. The 
implications i) * ii) and ii) * iii) are relatively  easy to prove, and we 
refer to [7] for this part. In all the  above references, the proof of the 
missing  implication  [either  ii) =) i) or iii) = i)]  is  rather  involved. This 
note  presents  a  simple  proof  of  the  implication iii) * i). 

n. THE PROOF 

The proof is by  induction on n. Every structured  system  with n = I 
whose graph contains  a  cacti is certainly  structurally  controllable.  Now 
assume  that this is also true for every (n - l)-dimensional  system. Also, 
let (A, B) be a  n-dimensional  system  such  that G(A, B) contains  a  cacti 
C. Note  that C contains  a  vertex (the top of  any  stem)  which  has no 
outgoing arc. Without loss of generality one can assume  that x, (the  vertex 
corresponding to the “last” state component)  has this property.  Delete x, 
in C and its adjacent arc, say (xj, x”). The resulting  graph C‘ with n - 1 
state vertices  contains  a cacti. Indeed, it  is a  cacti  except  that the “new 
top” xi might  have  outgoing arcs. In this case, there exists  a  bud  which  is 
attached to x,. This bud can be  included  into  the  stem by deleting an 
appropriate arc. If the “new stem” still has a top with  outgoing arcs, one 
can further increase the stem  by  including  a  bud.  Since there are only 
finitely  many  buds,  this  process  has to stop, and one  obtains  a  cacti  in C ’, 
c.f. Fig. 1. 

The previous  argument  together  with the induction  hypothesis  shows 
that the structured  system (A  ‘, B ‘ ) corresponding to C ’ is  structurally 
controllable.  Now  assign  values to the parameters  of (A, B) such  that  for 
the resulting  system ( A ,  B )  

every parameter value  corresponding to an arc not in C is zero, 
the system ( A  ‘, B ’) corresponding to C ‘ is  controllable, 
the rank of ( A ,  B )  is n [this  is  possible  because  of  the  equivalence  ii) 

iii)]. 
Then 

and the rank of [SI - A,  B ]  is n for all complex  numbers s. 

III. CONCLUSION 

A significant  simplification  of the proof of the structural  controllability 
theorem  has been presented. The author believes  that the proof is now  in  a 
form  which  makes  it  understandable also for nonspecialists.  One  might 
even  consider  including  it  in an advanced  textbook on linear  control 
systems. 
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