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Abstract— In this paper, the switching controller synthesis
problem for a class of discrete-time switched linear systems
is considered. In particular, a state dependent switching law is
designed to exponentially stabilize the switched systems, while a
finite l2 induced gain is achieved. Sufficient synthesis conditions
are proposed as bilinear matrix inequalities, which are derived
based on multiple Lyapunov functions.

I. INTRODUCTION

The stability issues of switched systems, especially
switched linear systems, have attracted a lot of attentions
recently and the literature on this topic is immense; see for
example the survey papers [15], [19], [7], [25], the recent
books [16], [26] and the references cited therein. Generally
speaking, the literature on switched systems’ stability can
be divided into two groups. One is on the stability analysis
of switched systems under given switching signals (maybe
arbitrary, slow switching etc.); the other is on the synthesis
of stabilizing switching signals for a given collection of
dynamical systems. The stability analysis for switched sys-
tems is usually based on Lyapunov’s second method, such as
the existence of a common Lyapunov function to guarantee
stability under arbitrary switching [6], or the existence of
multiple Lyapunov functions [2], [29], [19] for stability under
certain classes of switching signals. In general, the construc-
tion of multiple Lyapunov functions for switched systems is a
non-convex problem and very challenging. Usually, quadratic
or piecewise-quadratic Lyapunov functions are employed to
make the problem numerically tractable, see e.g. [13], [14],
[17], [12].

In the switching stabilization literature, early efforts were
focused on quadratic stabilization for certain classes of
systems. For example, a quadratic stabilization switching
law between two linear time invariant (LTI) systems was
considered in [28], in which it was shown that the existence
of a stable convex combination of the two subsystem matri-
ces implies the existence of a state-dependent switching rule
that stabilizes the switched system along with a quadratic
Lyapunov function. A generalization to more than two LTI
subsystems was suggested in [21] by using a “min-projection
strategy”. In [10], it was shown that the stable convex
combination condition is also necessary for the quadratic
stabilizability of two mode switched LTI system. However,
it is only sufficient for switched LTI systems with more
than two modes. A necessary and sufficient condition for
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quadratic stabilizability of switched controller systems was
derived in [24]. There are extensions of [28] to output-
dependent switching and discrete-time case [15], [31]. For
robust stabilization, a quadratic stabilizing switching law
was designed for polytopic uncertain switched linear sys-
tems based on linear matrix inequality (LMI) techniques in
[31]. All of these methods guarantee stability by using a
common quadratic Lyapunov function, which is conservative
in the sense that there are switched systems that can be
asymptotically (or exponentially) stabilized without using a
common quadratic Lyapunov function. In this paper, multiple
Lyapunov functions will be used for the synthesis purpose
instead.

There have been some results in the literature that pro-
pose constructive synthesis methods to switched systems
using multiple Lyapunov functions. For example, in [27],
piecewise quadratic Lyapunov functions was employed for
two mode switched LTI systems. Exponential stabilization
for continuous-time switched LTI systems was considered in
[22] also based on piecewise quadratic Lyapunov functions,
and the synthesis problem was formulated as a bilinear
matrix inequality (BMI) problem. In [12], a probabilistic
algorithm was proposed for the synthesis of an asymptot-
ically stabilizing switching law for switched LTI systems
along with a piecewise quadratic Lyapunov function. Sta-
bilization for switched nonlinear systems was considered in
[8] based on multiple Lyapunov functions. There are also
some interesting work on designing the state-feedback or
output feedback gains for each subsystem so as to stabilize
the switched system under arbitrary switching [5], [9], under
given switching signals (e.g. slow switching [3]), or under
autonomous switchings due to the partition of the state space
[20], [23]. Additionally, exponentially stabilizing switching
laws were designed based on solving extended LQR optimal
problems in [4].

This paper aims at addressing the switching control law
synthesis problem for discrete-time switched linear system
based on multiple Lyapunov functions. In particular, the
exponentially stabilization with bounded l2 induced gain
performance is investigated here. This paper is motivated
by [22], where BMI synthesis condition is developed for
exponential stabilization of continuous-time switched linear
systems. The first part of this current paper can be seen as an
extension of [22] to the discrete-time counterpart. However,
the extension is nontrivial due to some distinctive features of
discrete-time switched systems. First, to guarantee stability,
we need to require the piecewise quadratic Lyapunov func-
tion not to increase its value at the switching instants. For
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continuous-time case, the switching happens exactly when
the state trajectory hits the switching surface. Even without
knowledge of the direction that the state trajectories will
follow when crossing the switching surface, one still can
fulfil the above non-increasing requirement by simply forcing
the two quadratic Lyapunov functions’ values agree at the
switching surface [22]. However, the situation becomes com-
plicated in the discrete-time case. Unlike the continuous-time
case, discrete-time switched systems do not have the nice
property that the switching occurs exactly on the switching
surface. Instead, the switching happens in a region around the
switching surface. As a result, we can not simply capture the
switching instants for discrete-time switched systems as the
time instants when the state trajectories cross the switching
surfaces. Therefore, in order to guarantee the non-increasing
requirement at the switching instants for the discrete-time
case, we need to include more constraints involving state
transitions for the discrete-time switched systems around
the switching surfaces. This makes the switching stabi-
lization problem for discrete-time switched systems more
challenging. This may partially explain why most existing
results for the switching control law design are focused on
the continuous-time case. In addition, we also studied the
switching controller synthesis problem to guarantee that the
l2 induced gain is below certain bound. To the authors’
knowledge, most of the existing results on the robust perfor-
mances of switched systems are usually on the analysis part
[30], [11] or on the continuous feedback controllers design
[20], while conditions for switching controller synthesis to
guarantee robust performance are rare.

The rest of the paper is organized as follows. In Section II,
mathematical models for the discrete-time switched linear
system are described, and the switching controller synthe-
sis problem is formulated. In Section III, the stabilization
problem is investigated based on the MLF theorem. The l2
induced gain is studied in Section IV, which is based on
an extension of the MLF theorem. Sufficient conditions for
controller synthesis is proposed in the form of BMIs. Finally,
concluding remarks are presented.

Notation: The relation A > B (A < B) means that the
matrix A−B is positive (negative) definite, similar for A ≥
B. The superscript T stands for matrix transposition and the
notation M−1 denotes the inverse matrix of M . The matrix
I stands for identity matrix of proper dimension. l2 is the
Lebesgue space consisting of all discrete-time vector-valued
function that are square-summable over Z

+. ‖z‖2 denotes the
l2 norm of z, which is defined as ‖z‖2

2 =
∑+∞

0
zT (t)z(t).

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider a collection of discrete-time
linear systems described by the difference equations{

x(t + 1) = Aix(t) + Biw(t)
z(t) = Cix(t) + Diw(t)

(1)

where t ∈ Z
+, the state x ∈ R

n, disturbance w ∈ R
r, and

output z ∈ R
m. It is assumed that the disturbance w(t) is

with finite l2 norm. Denote the finite set IN = {1, · · · , N},

which stands for the collection of finite discrete modes. For
any subsystem i, the state matrices Ai, Bi, Ci, and Di are
constant matrices of appropriate dimensions.

The problem that we are interested in here is to design
a (static state feedback) switching control law, i.e., a map
i(x) : x �→ i, such that the switched system (1) is
exponentially stable with bounded l2 induced gain from w to
z. It is assumed that none of the subsystems is stable, since
otherwise the problem would be trivial.

First of all, we recall Finsler’s Lemma, which has been
used previously in the control literature mainly with the pur-
pose of eliminating design variables in matrix inequalities,
see e.g. [1].

Lemma 1 (Finsler’s Lemma): Let ζ ∈ R
n, P = PT ∈

R
n×n, and H ∈ R

m×n such that rank(H) = r < n. The
following statements are equivalent:

1) ζT Pζ < 0, for all ζ �= 0, Hζ = 0;
2) ∃X ∈ R

n×m such that P + XH + HT XT < 0.

�

In the Finsler’s Lemma, item 1) has a constrained
quadratic form in R

n while item 2) provides an uncon-
strained quadratic form, where the constraint is taken into
account by introducing multiplier X .

III. STABILIZATION

We first consider the stabilization issues for system (1),
and so we assume that w = 0, and consider

x(t + 1) = Aix(t) (2)

Our goal here is to design (state feedback) switching
control laws so that the closed-loop switched linear system
is exponentially stable to the origin. Notice that for all the
subsystems in the form of (2), the origin is the common
equilibrium.

To be precise, the exponential stability of the switched
system (2) is defined as follows

Definition 1: The origin of the system (2) is exponentially
stable if all trajectories satisfy

‖x(t)‖ ≤ κξt‖x0‖ (3)

for some κ > 0 and 0 < ξ < 1. Here ‖·‖ stands for standard
Euclidian norm in R

n. �

First of all, we recall a well-known approach in switched
systems literature to guarantee exponentially stability using
multiple Lyapunov functions.

A. Multiple Lyapunov Function Theorem

Since we assume that none of the subsystems, x(t + 1) =
Aix(t), is stable, there does not exist a Lyapunov function
for the subsystems in a classical sense. However, it is still
possible to restrict our concern in certain region of the state
space, say Ωi ⊂ R

n, and the abstracted energy of the
i-th subsystem could be decreasing along the trajectories
inside this region (there is no requirement outside the region
Ωi). This idea is captured by the concept of Lyapunov-like
function.
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Definition 2 (Lyapunov-like function): By saying that a
subsystem has an associated Lyapunov-like function Vi in
region Ωi, we mean that

1) There exist constant scalars βi ≥ αi > 0 such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

hold for any x(t) ∈ Ωi;
2) For all x(t) ∈ Ωi and x(t) �= 0,

∆Vi(x(t)) = Vi(x(t + 1)) − Vi(x(t)) < 0.

�

The first condition implies positiveness and radially un-
boundedness for Vi(x) when x ∈ Ωi, while the second
condition guarantees the decreasing of the abstracted energy,
value of function Vi(x), along trajectories of subsystem i
inside Ωi. Notice that it is possible that x(t) ∈ Ωi while
x(t + 1) /∈ Ωi.

Suppose that all the regions Ωi cover the whole state
space; Then we obtain a set of Lyapunov-like functions. To
study the global stability of the switched systems, one needs
to concatenate these Lyapunov-like functions together and
form a non-traditional Lyapunov function, called multiple
Lyapunov function (MLF). MLF is proved to be a powerful
tool for studying the stability of switched systems, see e.g.
[2], [19], [15], [7]. The basic idea of MLF method can
be described as follows. It is known that the MLF’s value
would decrease when every subsystem is active only in the its
corresponding region Ωi. If we can also restrict the switching
signals in such a way that, at every time we enter (switch
into) a certain subsystems, its corresponding Lyapunov func-
tion value is smaller than its value at the previous entering
time, then the switched system is asymptotically stable. In
other words, for each subsystem the corresponding Lyapunov
function value at every entering instant form a monotonically
decreasing sequence. Here, we adopt the idea in a more
conservative way to require that at every switching instant
the MLF’s value is also non-increasing. On one hand this
will simplify our controller design, and on the other, it
will deduce stronger property, i.e., exponential stability. In
summary, we could present this result as a theorem, which
is adopted from [7], [22].

Theorem 1: Suppose that each subsystem has an asso-
ciated Lyapunov-like function Vi in its active region Ωi,
each with equilibrium point x = 0. Also, suppose that⋃

i Ωi = R
n. Let s(t) be a class of switching sequences

such that s(t) can take value i only if x(t) ∈ Ωi, and in
addition

Vj(x(ti,j)) ≤ Vi(x(ti,j))

where ti,j denotes the time that the subsystems j is switched
in from subsystem i, i.e., x(ti,j−1) ∈ Ωi while x(ti,j) ∈ Ωj .
Then, the switched linear system (2) is exponentially stable
under the switching signals s(t). �

In the sequel, we will restrict our attention to
quadratic Lyapunov-like functions and corresponding mul-
tiple quadratic Lyapunov function. Before that, we need to
represent partitions of the state space.

B. Partition of the state space

The purpose to dividing the whole state space R
n into

pieces, denoted by Ωi, is to facilitate the identification of a
Lyapunov-like function for one of these subsystems. After
successfully obtaining these Lyapunov-like functions associ-
ated within each region Ωi, one may patch them together via
following the conditions in the above MLF theorem so as to
guarantee global stability.

For this purpose, it is necessary to require that all these
regions Ωi cover the whole state space, i.e.,

• Covering Property:

Ω1 ∪ · · · ∪ ΩN = R
n;

This condition merely says that there are no regions in the
state space where none of the subsystems is activated.

Since we will restrict our attention to quadratic Lyapunov-
like function for its merit of computational efficiency, we will
consider regions given (or approximated) by quadratic forms

Ωi = {x ∈ R
n| xT Qix ≥ 0},

where Qi ∈ R
n×n are symmetric matrices, and i ∈

{1, · · · , N}.
The following lemma gives a sufficient condition for the

covering property.
Lemma 2: [22] If for every x ∈ R

n

N∑
i=1

θix
T Qix ≥ 0 (4)

where θi ≥ 0, i ∈ IN , then
⋃N

i=1
Ωi = R

n. �

Consider the largest region function strategy, i.e.,

i(x) = arg

(
max
i∈IN

xT Qix

)
(5)

This is due to the selection of subsystems (at state x)
corresponding to the largest value of the region function
xT Qix. This switching strategy was previously introduced
in [22] for continuous-time switched linear systems.

C. Quadratic Lyapunov-like Functions

In this subsection, we aim to find conditions expressed as
LMIs for the existence of quadratic Lyapunov-like function
in the form of Vi(x) = xT Pix assigned to each region Ωi. Dy
definition, a Lyapunov-like function Vi(x) = xT Pix needs
to satisfy the following two conditions:

1) Condition 1: There exist constant scalars βi ≥ αi > 0
such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

holds for any x(t) ∈ Ωi.
Considering quadratic Lyapunov-like function candidate

Vi(x(t)) = x(t)T Pix(t), we obtain that

αix(t)T Ix(t) ≤ x(t)T Pix(t) ≤ βix(t)T Ix(t),

holds for x(t)T Qix(t) ≥ 0. That is{
x(t)T (αiI − Pi)x(t) ≤ 0
x(t)T (Pi − βiI)x(t) ≤ 0
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holds for x(t)T Qix(t) ≥ 0. Applying the S-procedure [1],
the above constrained inequalities follow from the LMIs{

αiI − Pi + ηiQi ≤ 0
Pi − βiI + ρiQi ≤ 0

where ηi ≥ 0 and ρi ≥ 0 are unknown scalars.
2) Condition 2: For all x(t) ∈ Ωi, x(t) �= 0,

∆Vi(x(t)) = Vi(x(t + 1)) − Vi(x(t)) < 0,

where x(t + 1) = Aix(t).
This is equivalent to

x(t)T [AT
i PiAi − Pi]x(t) < 0 (6)

for x(t) ∈ Ωi.
Applying Finsler’s Lemma, with

P =

[ −Pi 0
0 Pi

]
, ζ =

[
x(t)

x(t + 1)

]
,

X =

[
Fi

Gi

]
, and H =

[
Ai −I

]
, then (6) is equivalent

to

ζT

[
AT

i FT
i + FiAi − Pi AT

i GT
i − Fi

GiAi − FT
i Pi − Gi − GT

i

]
ζ < 0

for ζT

[
Qi 0
0 0

]
ζ ≥ 0. Here Fi, Gi ∈ R

n×n are unknown

matrices.
Applying the S-procedure, the above constrained stability

condition is implied by the following unconstrained con-
dition for unknown matrices Pi = PT

i , Qi = QT
i , Fi,

Gi ∈ R
n×n, and scalars µi ≥ 0,[

AT
i FT

i + FiAi − Pi + µiQi AT
i GT

i − Fi

GiAi − FT
i Pi − Gi − GT

i

]
< 0

Combining the above two conditions, we introduce meth-
ods to find quadratic Lyapunov-like functions for each
subsystem within certain regions in the state space, which
guarantee that the abstract energy of the subsystem is de-
creasing while staying within these regions. The next step
is to properly patch these quadratic Lyapunov-like functions
together, so as to obtain a global piecewise quadratic Lya-
punov function to guarantee the decreasing of the abstract
energy for the whole switched system. This is done in the
next subsection based on the MLF theorem.

D. Switching Condition

Following Theorem 1, in order to guarantee exponential
stability we also need to make sure that

1) Subsystem i is active only when x(t) ∈ Ωi,
2) When switching occurs, it is required to guarantee that

Lyapunov function value is not increasing.

To verify the first condition, suppose that the covering
condition (4) holds, i.e.,

∑N

i=1
θix

T Qix ≥ 0 for some θi ≥
0, i ∈ IN . Then, based on the largest region function strategy,
namely,

i(x) = arg

(
max
i∈IN

xT Qix

)
,

the state x with current active mode i satisfies xT Qix ≥ 0.
This implies x ∈ Ωi. So the first condition holds for the
largest region function strategy.

Secondly, assume that a switching, i → j, occurs at time
instant t, i.e., x(t) ∈ Ωj while x(t−1) ∈ Ωi for i �= j ∈ IN ,
it is required that Vj(x(t)) ≤ Vi(x(t)).

This means that

x(t − 1)T [AT
i PjAi − Pi]x(t − 1) ≤ 0 (8)

and x(t − 1) ∈ Ωi, x(t) = Aix(t − 1) ∈ Ωj .
Because the above inequality is non-strict, the Finsler’s

Lemma can not be directly applied. However, it is possible
to obtain a similar relation for non-strict case. In fact,

∃X : P + XH + HT XT ≤ 0

implies ζT Pζ ≤ 0, for all ζ �= 0, Hζ = 0. This can be seen
by left multiplying ζT and right multiplying ζ to P +XH +
HT XT ≤ 0 and using Hζ = 0.

Therefore, with

P =

[ −Pi 0
0 Pj

]
, ζ =

[
x(t − 1)

x(t)

]
,

X =

[
Fij

Gij

]
, and H =

[
Ai −I

]
, (8) is implied by

ζT

[
AT

i FT
ij + FijAi − Pi AT

i GT
ij − Fij

GijAi − FT
ij Pj − Gij − GT

ij

]
ζ ≤ 0

for ζT

[
Qi 0
0 Qj

]
ζ ≥ 0. Here Fij , Gij ∈ R

n×n are

unknown matrices.
Applying the S-procedure, the above constrained stability

condition is implied by the following: there exist unknown
matrices Pi = PT

i , Qi = QT
i , Fij , Gij ∈ R

n×n, and scalars
µij ≥ 0, such that the matrix[
AT

i FT
ij + FijAi − Pi + µijQi AT

i GT
ij − Fij

GijAi − FT
ij Pj − Gij − GT

ij + µijQj

]

is negative semi-definite.

E. Synthesis Condition

In summary, the above discussion can be presented as
the following sufficient condition for the discrete-time linear
system (2) to be exponentially stabilized.

Theorem 2: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), Fi, Gi, Fij , Qij , and scalars ν > 0, αi > 0,

βi > 0, ηi ≥ 0, ρi ≥ 0, µi ≥ 0, µij ≥ 0, θi ≥ 0, solving the
optimization problem (9) for all i, j ∈ {1, · · · , N}, i �= j,
then the largest region function strategy implies that the
origin of the switched linear system (2) is exponentially
stable with decay rate ξ =

√
1 − ν. �

Some remarks are in order. First, similar to its continuous-
time counterpart, the optimization problem above is a Bilin-
ear Matrix Inequality (BMI) problem, due to the product
of unknown scalars and matrices. BMI problems are NP-
hard, and not computationally efficient. However, practi-
cal algorithms for optimization problems over BMIs exist
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max ν

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αiI + ηiQi ≤ Pi ≤ βiI − ρiQi[
AT

i FT
i + FiAi − Pi + µiQi + νI AT

i GT
i − Fi

GiAi − FT
i Pi − Gi − GT

i

]
≤ 0,[

AT
i FT

ij + FijAi − Pi + µijQi AT
i GT

ij − Fij

GijAi − FT
ij Pj − Gij − GT

ij + µijQj

]
≤ 0

θ1Q1 + · · · + θNQN ≥ 0

(9)

and typically involve approximations, heuristics, branch-and-
bound, or local search. As suggested in [22] for continuous-
time case, one possible way to compute the BMI problem is
to grid up the unknown scalars, and then solve a set of LMIs
for fixed values of these parameters. It is argued that the
gridding of the unknown scalars can be made quite sparsely
[22].

It can be shown that the introduction of multiplier ma-
trices, like Fi, Gi etc., gives a lot of flexility, and many
known stability conditions in the literature can be reduced
to a special selection of these multiplier matrices, see e.g.
[9]. In addition, these multiplier matrices would make the
co-design of continuous feedback controllers and switching
laws possible, which will be explored in future work.

IV. PERFORMANCE

Consider the discrete-time systems (1) with l2-norm
bounded disturbance w. The goal of this section is to
guarantee the l2 induced gain from disturbance w to output
z is below certain desirable bound.

Here the l2 induced gain is defined in a standard way, i.e.,
the l2 gain of the system is the quantity,

sup
‖w‖2 �=0

‖z‖2

‖w‖2

,

where the sup is taken over all nonzero trajectories of the
system. To consider l2 gain performance, we first extend
Theorem 1.

Proposition 1: Suppose each subsystem has an associated
Lyapunov-like function Vi in its active region Ωi with finite
l2 gain performance, each with equilibrium point x = 0. This
means that

1) There exist constant scalars βi ≥ αi > 0 such that

αi‖x(t)‖2 ≤ Vi(x(t)) ≤ βi‖x(t)‖2

hold for any x(t) ∈ Ωi;
2) For all x(t) ∈ Ωi and x(t) �= 0,

∆Vi(x(t)) + z(t)T z(t) − γ2
i w(t)T w(t) < 0.

Also, suppose that
⋃

i Ωi = R
n. Let s(t) be a class of

piecewise-constant switching sequences such that s(t) can
take value i only if x(t) ∈ Ωi, and in addition

Vj(x(ti,j)) ≤ Vi(x(ti,j))

where ti,j denotes the time that the subsystems j is switched
from subsystem i, i.e., x(ti,j − 1) ∈ Ωi while x(ti,j) ∈ Ωj .

Then, the switched linear system (2) is exponentially stable
under the switching signals s(t), and has l2 induced gain less
than γ, where γ = maxi γi. �

In a parallel development to Section III, we consider piece-
wise quadratic Lyapunov functions and derive corresponding
matrix inequalities.

The condition that for all x(t) ∈ Ωi and x(t) �= 0,

∆Vi(x(t)) + z(t)T z(t) − γ2
i w(t)T w(t) < 0,

means that

xT (t)[AT
i PiAi − Pi]x(t) + z(t)T z(t) − γ2

i w(t)T w(t) < 0,

for x(t) ∈ Ωi, and z(t) = Cix(t) + Diw(t), x(t + 1) =
Aix(t) + Biw(t). This can be transformed into a matrix
inequality based on Finsler’s Lemma, with

P =

⎡
⎢⎢⎣

−Pi 0 0 0
0 Pi 0 0
0 0 I 0
0 0 0 −γ2I

⎤
⎥⎥⎦ , ζ =

⎡
⎢⎢⎣

x(t)
x(t + 1)

z(t)
w(t)

⎤
⎥⎥⎦ ,

X =

⎡
⎢⎢⎣

F1i F2i

G1i G2i

H1i H2i

J1i J2i

⎤
⎥⎥⎦ , H =

[
Ai −I 0 Bi

Ci 0 −I Di

]
.

Analogously, we can obtain the following sufficient con-
ditions for the discrete-time switched linear system (1) to be
stabilized exponentially with l2 gain less than γ.

Theorem 3: If there exist matrices Pi (Pi = PT
i ), Qi

(Qi = QT
i ), F1i, G1i, H1i, J1i, F2i, G2i, H2i, J2i, Fij ,

Qij , and scalars αi > 0, βi > 0, ηi ≥ 0, ρi ≥ 0, ν > 0,
µi ≥ 0, µij ≥ 0, θi ≥ 0, solving the optimization problem
(10) for all i, j ∈ {1, · · · , N} i �= j, then the linear system
(1) can be exponentially stabilized with l2 gain less than γ
by the largest region function strategy. �

V. CONCLUDING REMARKS

In this paper, a switching control law, based on static state
feedback, is synthesized for a class of discrete-time switched
linear systems. The exponential stability and l2 induced gain
performance are investigated based on multiple quadratic
Lyapunov-like functions. Sufficient synthesis conditions are
proposed as an optimization problem with bilinear matrix
inequality constraints, which can be dealt with as LMIs
provided that certain associated parameters are selected in
advance.
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min γ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αiI + ηiQi ≤ Pi ≤ βiI − ρiQi

Λi + Ui + UT
i < 0[

AT
i FT

ij + FijAi − Pi + µijQi AT
i GT

ij − Fij

GijAi − FT
ij Pj − Gij − GT

ij + µijQj

]
≤ 0

θ1Q1 + · · · + θNQN ≥ 0

(10)

where Λi =

⎡
⎢⎢⎣

−Pi + µiQi 0 0 0
0 Pi 0 0
0 0 I 0
0 0 0 −γ2I

⎤
⎥⎥⎦ , Ui =

⎡
⎢⎢⎣

F1iAi + F2iCi −F1i −F2i F1iBi + F2iDi

G1iAi + G2iCi −G1i −G2i G1iBi + G2iDi

H1iAi + H2iCi −H1i −H2i H1iBi + H2iDi

J1iAi + J2iCi −J1i −J2i J1iBi + J2iDi

⎤
⎥⎥⎦ .

The contributions of the paper are twofold. First, switch-
ing control law synthesis methods based on multiple Lya-
punov functions were extended to discrete-time switched
systems. These method have distinct features different from
the continuous-time case. Secondly, the MLF theorem was
extended to guarantee l2 induced gain performance, and this
result was applied for switching control law synthesis as well.
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