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Abstract— The paper presents an approach for the design of
supervisors for disjunctive constraints in which the supervisors
are represented by labeled Petri nets. This approach extends
our previous results in two ways. First, the supervisors are
now guaranteed to be least restrictive. Second, the constraints
may now also include the firing vector. The approach is
illustrated on the readers/writers problem. While the results
are obtained in the fully controllable and observable setting,
issues arising when the system is partially controllable and
partially observable are also discussed. The approach is
developed under certain boundedness assumptions.

I. INTRODUCTION

The coordination of concurrent systems, that is, systems

in which several processes may operate at the same time,

has raised a number of challenges. These include the need

to ensure safety constraints (such as mutual exclusion), the

absence of deadlocks, and fair access to common resources

for all processes. These problems are especially difficult

when the systems can only be partially controlled and

observed. A theoretical framework for the study of these

problems is provided by the supervisory control of Petri

nets (PNs). PNs are computer science models of concurrent

systems.

Mutual exclusion is a well known type of requirement on

the operation of a concurrent system. In the context of PNs

it is described by simple inequalities in terms of the PN

state, called marking. This type of inequalities on the PN

state where applied to describe constraints on the operation

of AGVs in manufacturing systems [1] and also for batch

chemical processes [2]. However, for other purposes, such

as liveness enforcement [3], [4], a more general type of

constraints was needed, called general mutual exclusion

constraints (GMEC) [5]. GMECs involve linear inequalities

in terms of the marking µ of the PN and have the form

Lµ ≤ b (1)

where L is an integer matrix and b an integer vector.

GMECs constrain the operation of the PN to the states that

satisfy the inequalities.

GMECs can be seen as static constraints, as they only

constrain the state of the system. Dynamic constraints

that add explicit requirements on transition firings have

also been needed in the context of pipe/valve networks

in chemical process control [6] and railway networks [7].

They can also describe more complex requirements for
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AGV coordination problems [8]. They involve not only the

marking µ but also the firing vector q, where the firing

vector describes the transitions that are fired at a firing

instant. They have the form

Lµ + Hq ≤ b (2)

where H is an integer matrix. In this paper, this type of

constraints are called generalized linear constraints (GLCs).

An important property of the types of requirements

considered so far is that a supervisor enforcing them can

be represented by a PN. Thus, the closed-loop system of

the plant and the supervisor is still a PN. Therefore, the

closed-loop model does not require more advanced analysis

or design methods than the plant model. On one hand, it is

desirable to be able to describe more general requirements

for the supervision of PNs. On the other hand, it is desirable

that such requirements can be enforced by a supervisor

that is a PN. This paper shows that a general type of

requirements, called disjunctive constraints, admits also a

PN supervisor solution. Disjunctive constraints require that

at any time, at least one of a set of GLC subspecifications

is satisfied. They are formally expressed by

nd∨

k=1

[Lkµ + Hkq ≤ bk] (3)

Thus, at any time, at least one of Liµ + Hiq ≤ bi must be

satisfied.

In the literature, related work on disjunctive constraints

includes [9] and [10]. The first paper provides conditions

under which the least restrictive supervisor enforcing that

µ ∈ M1 ∪ M2 is obtained by combining the two least

restrictive supervisors enforcing µ ∈ M1 and µ ∈ M2,

respectively. The second paper provides a method to cal-

culate the maximal controlled invariant set for disjunctive

constraints involving the marking only, under certain as-

sumptions on the structure of the PN.

In this paper we will distinguish between two possi-

ble interpretations of constraint disjunctions, a dynamic

interpretation and a state-based interpretation. The state-

based interpretation has been considered in our previous

work [11] for the case in which Hk = 0 for all k. For

the same problem, we provide a least restrictive solution in

section III. The general form (3) is considered in section IV

under the dynamic interpretation. A least restrictive solution

is given there, based on the method introduced in section III.

An example is also included in section IV. We assume

the reader familiar with PNs. For an introduction to PNs

and their supervision we refer the reader to [12]. The PN

notation and preliminary results needed here are described

in section II.
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II. PRELIMINARIES

A PN will be denoted by N = (P, T, D−, D+), where

P is the set of places, T the set of transitions, D− the

input matrix, and D+ the output matrix. We will refer

both to the no concurrency and to concurrency settings

of operation of a PN. In the no concurrency setting, the

firing vector is a binary vector in which only one element

is nonzero. In a concurrency setting, the firing vector may be

any integer vector of nonnegative elements. In either case,

a firing vector is enabled at the marking µ when D−q ≤ µ.

A labeled PN will be denoted by N = (P, T, D−, D+, ρ),
where ρ : T → Σ is a labeling function, associating events

to transitions, and Σ is the set of events. Without loss of

generality we have assumed each transition is labeled by a

single event. We assume the reader familiar with the parallel

composition of labeled PNs [13], [12].

In specifications (2) we assume L ∈ Z
u×m, H ∈ Z

k×n,

and b ∈ Z
u, where m = |P |, n = |T |, k is the number

of constraints, and Z is the set of integers. The specifica-

tions (2) are interpreted as follows. A marking µ satisfies

(2) if Lµ ≤ b. Further, a transition t may fire at µ only

if its corresponding firing vector q satisfies Lµ + Hq ≤ b

and the next reached marking µ′ (that is, µ
t

−→ µ′) satisfies

Lµ′ ≤ b. As shown in [8], the least restrictive supervisor for

specifications (2) can be designed as a set of places (called

monitors or control places) added to the transitions of the

plant N according to the input and output matrices

D+
c = max(0,−LD, H − LD) (4)

D−
c = max(0, LD, H) (5)

where the marking of the supervisor places is µs = b−Lµ.

Note that the max operation is applied on the matrix

elements with the same indices: Z = max(X, Y ) ⇔
Zij = max(Xij , Yij) for all indices i and j. When the

supervisor is defined by (4–5), a firing vector q is supervisor

enabled when D−
c q ≤ µs, that is, when Lµ + D−

c q ≤ b.

Denoting Hd = D−
c , the concurrency interpretation of (2)

is as follows. A marking µ satisfies (2) if Lµ ≤ b. Further,

q may fire at µ only if it satisfies Lµ + Hdq ≤ b (which

implies Lµ′ ≤ b for µ′ such that µ
q

−→ µ′) [12].

III. STATE-BASED INTERPRETATION

Here we consider specifications

nd∨

k=1

[Lkµ ≤ bk] (6)

requiring that only markings satisfying (6) should be reach-

able. The following construction can be made for the

enforcement of (6). First, because each set of constraints

Lkµ ≤ bk is a conjunction of single constraints lµ ≤ c,

where l ∈ Z
1×n and c ∈ Z, the disjunction (6) can also be

written as
nc∧

j=1

∨

i∈Aj

liµ ≤ ci, (7)

where li ∈ Z
1×|P |, ci ∈ Z, nc is an integer, and Aj is a set

of integers. For each constraint liµ ≤ ci, let δi be a Boolean

variable such that

δi = [liµ ≤ ci] (8)

where [liµ ≤ ci] denotes the truth value of liµ ≤ ci.

Now, consider the markings reachable in the plant under

the supervision of a least restrictive supervisor enforcing

(7). Assuming that for all these reachable markings each

term liµ has some known finite lower and upper bounds

mi and Mi, (8) is equivalent to the system of inequalities

liµ + (Mi − ci)δi ≤ Mi, (9)

liµ + (ci + 1 − mi)δi ≥ ci + 1. (10)

Then, the disjunction
∨

i∈Aj
liµ ≤ ci can be replaced by

(9–10) and ∑

i∈Aj

δi ≥ 1. (11)

In our construction, the supervisor enforcing (7) is a PN N s

obtained by several operations, including a parallel compo-

sition of several components Ni, as described next. Now, the

construction assumes fully controllable and observable PNs.

Therefore, the transitions of the supervisor are individually

controllable and observable. However, in order to describe

how transitions are synchronized when the supervisor com-

ponents are composed and when the supervisor is composed

with the plant, we need to introduce labeling functions. Let

ρ : T → Σ be a labeling function associating a unique label

to each transition of the plant N . For each variable δi, we

define the PN Ni = (Pi, Ti, D
−
i , D+

i , ρi). Pi consists of a

single place di. Ti is defined as follows.

1) For each transition t such that liD(·, t) 6= 0, define

two transitions fi and xi of Ti having the labels

ρi(fi) = ρi(xi) = ρ(t).
2) If liD(·, t) > 0, connect xi to di by an arc of weight

D−(di, xi) = 1.

3) If liD(·, t) < 0, connect xi to di by an arc of weight

D+(di, xi) = 1.

In words, the role of this construction is as follows. The

marking of di will represent δi: µ(di) = δi. Further, when

the plant fires a transition t without changing the truth value

of the inequality liµ ≤ ci, Ni will fire fi. However, if the

truth value of liµ ≤ ci is changed by firing t, Ni will fire

xi. The supervisor N s is obtained as follows.

1) Let N c be the total parallel composition of the Ni

components and of the plant.

2) Let µc be the marking of N c. Substitute δi = µc(di)
and µ(p) = µc(p) ∀p ∈ P in (9–11). Then, let

Lµc ≤ b denote the constraints (9–10) for all i and

the constraints (11) for all j.

3) Let N t be the closed-loop of N c with the supervisor

(4–5) enforcing Lµc ≤ b, where H = 0.

4) Delete from N t all places of the plant N and then

all transitions t such that •t = t• = ∅. Let N s be the

result.
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5) Given the initial marking µ0 of the plant, the initial

marking µs
0 of the supervisor is as follows. The

marking µc
0 satisfies µc

0(p) = µ0(p) ∀p ∈ P and

µc
0(di) = [liµ0 ≤ ci] ∀i. The initial marking µs

0 is

defined by:

a) For all i, µs
0(di) = µc

0(di).
b) The marking vector of the places added at step 3

is b − Lµc
0.

In the algorithm above, note that N t is the closed-loop.

Remark 3.1 This construction is very intuitive in the no

concurrency setting. In this setting, the constraints (9–10)

never disable the firing of a transition of the plant. They only

ensure that the supervisor keeps track of which constraints

liµ ≤ ci are satisfied and which not. Thus, when a transition

is fired in the plant, (9–10) select one of the corresponding

xi and fi transitions that should be fired in the supervisor

component Ni, such that the marking of di equals the δi

of (8). The constraints (11) are used by the supervisor to

determine whether a plant transition should be enabled. 2

Note that in a concurrency setting, the supervisor may

not be least restrictive, since the constraints (9–10) disable

the firing vectors that require firing the transitions xi and

fi at the same time.

Theorem 3.1 For any initial marking µ0 satisfying (6),

(N s, µs
0) enforces (6). Moreover, under the no concurrency

assumption, the supervision is least restrictive.

Proof: By construction, (9–11) are enforced in the

closed-loop N t. Therefore, (6) is also enforced. To prove

that the supervision is least restrictive, we only need to

show that at any initial marking µ0 satisfying (6), if firing

some transition t does not break the specification (6), then

the supervisor enables also t. Let t be such that µ0

t
−→

µ1 and both µ0 and µ1 satisfy (6). Let µt
0 and µt

1 be the

corresponding closed-loop markings. Let U be the set of

indices i such that δi of (8) does not change its value by

firing t at µ0, and C the set of indices i such that δi changes

its value by firing t at µ0. Let te be the closed-loop transition

that is the synchronization of t with xi for all i ∈ C and

with fi for all i ∈ U . It can be easily verified that (9–10) do

not restrict the firing of te. Moreover, since (11) is satisfied

for all j by both µt
0 and µt

1, it follows that the constraints

(11) do not restrict the firing of te. Therefore, t is enabled

by the supervisor.

IV. DYNAMIC INTERPRETATION

Here we consider specifications of the form (3). They are

interpreted as follows. First, at every reachable marking µ,

there is some k = 1 . . . nd such that Lkµ ≤ bk; further, a fir-

ing vector q is enabled when there is some k = 1 . . . nd such

that Lkµ + Hd,kq ≤ bk, where Hd,k = max(0, LkD, Hk).
Note that the state-based interpretation of the previous

section is not a special case of the dynamic interpretation

of (3) when all Hk = 0. The dynamic interpretation is

tp
2

p
1

Fig. 1.

more restrictive. In the dynamic case, a firing vector q
is enabled when there is some k = 1 . . . nd such that

Lkµ + max(LkD, 0)q ≤ bk, which implies both Lkµ ≤ bk

and Lkµ′ ≤ bk, where µ
q

−→ µ′. On the other hand, in the

state-based interpretation, a transition t is to be enabled if

Lkµ ≤ bk and Lrµ
′ ≤ br for some k, r = 1 . . . nd, even if

k 6= r, where µ
t

−→ µ′. For instance, firing t in Figure 1

satisfies the specification [µ1 ≥ 1] ∨ [µ2 ≥ 1] according

to the state-based interpretation, but not according to the

dynamic interpretation.

The supervisor is constructed as follows. The specifica-

tion (3) is brought first to the form

nc∧

j=1

∨

i∈Aj

liµ + hiq ≤ ci, (12)

where li ∈ Z
1×|P |, hi ∈ Z

1×|T |, ci ∈ Z, nc is an integer,

and Aj is a set of integers. Let γ : T → N be a vector

of nonnegative integers and hd,i = max(0, liD, hi). For all

constraints liµ+hiq ≤ ci, let δi be a Boolean variable such

that

δi = [liµ + hd,iγ ≤ ci] (13)

Now, consider the markings reachable in the plant under

the supervision of a least restrictive supervisor enforcing

(12). Assuming that for all these reachable markings and

all enabled firing vectors q each term liµ + hd,iq has some

known finite lower and upper bounds mi and Mi, the

following constraints are defined:

liµ + hd,iγ + (Mi − ci)δi ≤ Mi, (14)

liµ + hd,iγ + (ci + 1 − mi)δi ≥ ci + 1. (15)

Let ρ be a labeling function associating a unique label

to every transition of the plant. Let Ts = {t ∈ T :
∃i, liD(·, t) 6= hd,i(t)}. Let Ng = (Pg, Tg, D

−
g , D+

g , ρg)
be a PN defined as follows.

1) For each transition t ∈ |Ts| define two transitions

t′, t′′ ∈ Tg such that ρg(t
′) = ρ(t) and t′′ has a label

that was not assigned to any other transition.

2) For each transition t ∈ |Ts| define one place gt such

that D−
g (gt, t

′′) = 1 and D+
g (gt, t

′) = 1

Let N ∗ be the parallel composition of the plant N and

the supervisor component Ng . Let µ∗ be the marking of

N ∗. Consider the term liµ+hd,iγ in the relations (13–15).

Note that in future considerations γ will be identified by

γ(t) = 0 for all t /∈ Ts and γ(t) = µ∗(gt) for all t ∈ Ts.

Let l∗i ∈ Z
1×|P∗| be defined as follows:

∀p ∈ P : l∗i (p) = li(p) (16)

∀t ∈ Ts : l∗i (gt) = hd,i(t) − liD(·, t). (17)

The next result reveals the significance of the vectors l∗.
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Proposition 4.1 Given is (N ∗, µ∗), the parallel composition

of (N , µ) and (Ng, µg). Assume µg = 0 and that for some

t ∈ T we have that µ
t
→ µ1 and µg

t′

→ µg0

t′′

→ µg1. Let µ∗,

µ∗
0, and µ∗

1 be the closed-loop markings representing the

pairs (µ, µg), (µ1, µg0), and (µ1, µg1), respectively. Then

l∗i µ∗ = liµ, l∗i µ
∗
0 = liµ + hd,iγ, and l∗i µ

∗
1 = liµ1.

From this point on the construction of the supervisor N s

is almost identical to that of the previous section except for

using N ∗ in the place of N and l∗ in the place of l. For

improved clarity, the construction is given again here.

Let N ∗
i be constructed just as Ni in the previous section,

but by using N ∗ instead of N , l∗ instead of l, and D∗

instead of D. The supervisor N s is obtained as follows.

1) Let N c be the total parallel composition of the N ∗
i

components and of N ∗.

2) Let µc be the marking of N c. Substitute δi = µc(di)
and µ∗(p) = µc(p) ∀p ∈ P ∗ in (11) and in

l∗i µ∗ + (Mi − ci)δi ≤ Mi, (18)

l∗i µ∗ + (ci + 1 − mi)δi ≥ ci + 1. (19)

Then, let Lµc ≤ b denote the constraints (11) for all

j and the constraints (18–19) for all i.
3) Let N t be the closed-loop of N c with the supervisor

(4–5) enforcing Lµc ≤ b, where H = 0.

4) Delete from N t all places of the plant N and then

all transitions t such that •t = t• = ∅. Let N s be the

result.

5) Given the initial marking µ0 of the plant, the initial

marking µs
0 of the supervisor is as follows. The mark-

ing µc
0 satisfies µc

0(p) = µ0(p) ∀p ∈ P , µc
0(gt) = 0

∀t ∈ Ts, and µc
0(di) = [liµ0 ≤ ci] ∀i. The initial

marking µs
0 is defined by:

a) For all i, µs
0(di) = µc

0(di).
b) For all t ∈ Ts, µs

0(gt) = µc
0(gt).

c) The marking vector of the places added at step 3

is b − Lµc
0.

In this algorithm, N t also represents the closed-loop of the

plant N and the supervisor N s.

Remark 4.1 By construction, N t is the closed-loop of N
and N s. However, N t is also the closed-loop of N ∗ with

the supervisor enforcing

nc∧

j=1

∨

i∈Aj

l∗i µ∗ ≤ ci (20)

according to the state-based interpretation of section III. 2

Remark 4.2 Not all transitions of the supervisor are

synchronized with the plant N . Indeed, recall that the

transitions t′′ of the Ng component were assigned a unique

label. It is assumed that the supervisor transitions not

synchronized with the plant are fired as soon as they are

enabled. This assumption is necessary in order to ensure

that the supervisor is not too restrictive. 2

Proposition 4.2 Consider the place gt and transition t′′ of

Ng associated with a transition t of N . If gt contains at

least one token, t′′ is enabled in the closed-loop N t.

Proof: By construction, t′′ does not have input places

from the plant N . Thus, •t′′, when taken with respect to N t,

contains gt and may contain also supervisor places added by

enforcing (18–19) and (11). It follows that t′′ is enabled in

N ∗. Therefore, to show that t′′ is enabled, we only need to

show that the supervisor enables t′′. Let µ∗
1 be the marking

of N ∗. Since in N ∗ we have that •t′′ = {gt}, if µ∗
1

t′′

−→ µ∗
2,

then for all i: l∗i µ∗
2 = l∗i µ∗

1 − l∗i (gt). However, in view of

(17) and hd,i = max(0, liD, hi), l∗i (gt) ≥ 0. Therefore,

l∗i µ∗
2 ≤ l∗i µ∗

1. So, if µ∗
1 satisfies (20), so does µ∗

2. Then,

the constraints (11) enable the firing of t′′. Moreover, as

mentioned in Remark 3.1, the constraints (18–19) do not

disable t′′. Therefore, t′′ is enabled in N t.

Theorem 4.1 For any initial marking µ0 satisfying (3),

(N s, µs
0) enforces (3). Moreover, under the no concurrency

assumption, the supervision is least restrictive.

Proof: Proving the fact that (3) is enforced does not

need the assumption of Remark 4.2, that the supervisor

fires the transitions t′′ as soon as enabled. To prove that

(3) is enforced, it is enough to show that if the supervisor

allows the plant to fire q at the marking µ (where µ satisfies

(3)) then µ and q satisfy (3). Since the assumption of

Remark 4.2 is not made, it may be that some of the places

gt of the closed-loop have tokens when q is enabled by the

supervisor. Thus, in terms of the marking µ∗ of N ∗, for all

i, l∗i µ∗ = liµ+
∑

t l∗i (gt)µ
∗(gt). By (17), for all gt we have

l∗i (gt) > 0. Therefore, l∗i µ∗ ≥ liµ. If firing q results in the

marking µ∗
2 of N ∗, then l∗i µ∗

2 = l∗i µ
∗ + hd,iq, in view of

(16–17). Thus, l∗i µ∗
2 ≥ liµ + hd,iq. By Theorem 3.1, (20)

is enforced on N ∗. Therefore, since (20) is satisfied at µ∗
2,

µ and q satisfy also (12). This concludes the proof of the

first part of the theorem.

For the second part of the proof, we will assume that

when the plant fires a transition t, the supervisor fires

immediately the corresponding transition t′′. By Proposi-

tion 4.2, this is always possible. Firing t′′ immediately after

t ensures that µ∗(gt) = 0 for all places gt. To prove that the

supervision is least restrictive, it is sufficient to show that

if firing t at a marking µ satisfies (3), then the supervisor

enables t. Let q be the firing vector associated with t. If

(3) is satisfied, so is (12). Then, for all indices j there is

i ∈ Aj such that liµ + hd,iq ≤ ci. If µ∗ is the marking

of N ∗ corresponding to µ and µ∗
2 is the marking reached

by firing q, then l∗i µ
∗ = liµ and l∗i µ

∗
2 = liµ + hd,iq. Thus,

(20) is satisfied at µ∗
2. By Theorem 3.1, the enforcement of

(20) on N ∗ is least restrictive, so t is enabled in N ∗ at µ∗.

Therefore, the supervisor enables t at the marking µ of the

plant N . This concludes our proof.

Example 4.1 The readers/writers problem is a classical

coordination problem found in operating systems textbooks.
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Fig. 2. Model of the reader/writer system. αd . . . αe denote the labels
associated with each transition.

In this problem, several reader processes (RPs) and several

writer processes (WPs) access a common segment of data.

When a process accesses the data, we say that it is in the

critical section (CS). When a WP is in the CS, no other

processes may enter the CS. However, any number of RPs

may be at the same time in the CS. Here we consider the

version of the problem in which WPs have priority: no RP

may enter the CS if a WP waits to access the CS.

A PN model of the reader/writer system is shown in

Figure 2. The number of tokens in pc is the number of

processes in the CS. The transition te is fired when a process

exits the CS, tr when a RP enters the CS, and tw when a

WP enters the CS. The number of tokens in pw represent

the number of WPs waiting to enter the CS. A WP enters

the pw state by the firing of td.

The specification can be written as [µw ≤ 0] ∨ ([qr ≤
0] ∧ [qw ≤ 0]) ∨ ([qr ≤ 0] ∧ [µc ≤ 0]). This expression has

the form (3) and can be brought to the form (12): ([qr ≤
0] ∨ [µw ≤ 0]) ∧ ([µw ≤ 0] ∨ [qw ≤ 0] ∨ [µc ≤ 0]). Note

that we have four constraints liµ + hiq ≤ ci. We identify

liµ + hiq ≤ ci for i = 1 . . . 4 with [µw ≤ 0], [qr ≤ 0],
[qw ≤ 0], and [µc ≤ 0], in this order. The set of transitions

Ts is Ts = {te, tr, tw}. The Ng PN is shown in Figure 3(a).

Thus, the constraints l∗i µ ≤ ci, for i = 1 . . . 4, are in this

order µw + µgw
≤ 0, µgr

≤ 0, µgw
≤ 0, and µc + µge

≤ 0.

For the upper bounds Mi and mi, all bounds mi will be

taken zero. We consider the no concurrency setting, thus all

firing vectors are bounded by one. Assuming no more than

two writers processes, we obtain M1 = 3. Further, M2 = 1
and M3 = 1. Assuming no more than ten RPs can ever be

in the CS at the same time, M4 = 11.

To keep our example simple, we will only illustrate the

enforcement of the subspecification [qr ≤ 0]∨[µw ≤ 0]. The

PN N c is shown in Figure 4(a). For the constraint qr ≤ 0
the inequalities (18–19) are µ∗

gr
+ δ2 ≤ 1 and µ∗

gr
+ δ2 ≥ 1.

For the constraint µw ≤ 0, the inequalities (18–19) are

µ∗
w + µ∗

gw
+ 3δ1 ≤ 3 and µ∗

w + µ∗
gw

+ δ1 ≥ 1. The only

constraint (11) is δ1+δ2 ≥ 1. The closed-loop N t is shown

in Figure 4(b) and the supervisor N s in Figure 5. 2
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Fig. 3. (a) Ng ; (b) N ∗.

V. FINAL REMARKS

The paper has considered fully controllable and observ-

able PNs. For the general case, it is necessary to ensure that

a supervisor is feasible, that is, it respects the uncontrolla-

bility and unobservability constraints of the plant. In the

case of the constraints (2), it is known that the supervisor

(4–5) is feasible if a simple structural test is satisfied [12].

Thus, given a PN labeled by ρ0 : T → Σ0 in which the set

of uncontrollable events is Σuc and the set of unobservable

events is Σuo, the supervisor (4–5) is feasible when

∀t ∈ T, ρ0(t) ∈ Σuc ⇒ D−
c (·, t) = 0, (21)

∀t ∈ T, ρ0(t) ∈ Σuo ⇒ Dc(·, t) = 0, (22)

∀t1, t2 ∈ T, ρ0(t1) = ρ0(t2) ⇒ Dc(·, t1) = Dc(·, t2), (23)

where Dc = D+
c − D−

c .

It is interesting to determine a structural test also for

disjunctive constraints. In the case of the constraints (7), a

possible solution is to require each of the constraints liµ ≤
ci to satisfy (21–23). Then, a supervisor constructed as in

section III is feasible. Indeed, the condition (23) ensures

that the change in the supervisor marking can be determined

only from the label of the transition that is fired. Further, the
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Fig. 4. N c (a) and N t (b) for the subspecification [qr ≤ 0] ∨ [µw ≤ 0].

condition (22) ensures that the supervisor marking will not

be affected by firing unobservable transitions. Finally, the

condition (21) ensures that the supervisor will never disable

a transition labeled by an uncontrollable event.

The problem of determining a structural test for (12) that

ensures the construction of section IV is feasible is more

involved. It is to be addressed in future work.

Concerning the complexity of the supervisor, the number

of places of the supervisor is upper bounded by nc +2ni +
|T |, where ni is the number of constraints liµ+hiq ≤ ci in

(12). However, in the worst case, the number of transitions

of the supervisor depends on 2ni . This is in contrast to the

linear complexity of the supervisors of [11]. This is due to

the fact that the approach of [11] is not least restrictive.
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