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Abstract— This paper provides a framework to synthesize l
2-

stable networks in which the controller and plant can be subject
to delays and data dropouts. This framework can be applied to
control systems which use “soft-real-time” cooperative sched-
ulers as well as those which use wired and wireless network
feedback. The approach applies to passive plants and controllers
that can be either linear, nonlinear, and (or) time-varying.
This framework is based on fundamental results presented
here related to passive control and scattering theory which
are used to design passive force-feedback telemanipulation
systems. Theorem 3 states how a (non)linear (strictly input or
strictly output) passive plant can be transformed to a discrete
(strictly input) passive plant using a particular digital sampling
and hold scheme. Furthermore, Theorem 4(5) provide new
sufficient conditions for l

2 (and L
2)-stability in which a strictly-

output passive controller and plant are interconnected with only
wave-variables. Lemma 2 shows it is sufficient to use discrete
wave-variables when data is subject to fixed time delays and
dropouts in order to maintain passivity. Lemma 3 shows how
to safely handle time varying discrete wave-variable data in
order to maintain passivity. We then present a new cooperative
scheduler algorithm to implement a l

2-stable control network.
We also provide an illustrative simulated example followed by
a discussion of future research.

I. INTRODUCTION
The primary goal of this research is to develop reliable

wireless control networks. These networks typically con-
sist of distributed-wireless sensors, actuators and controllers
which communicate with low cost devices such as the
MICA2 and MICAz motes [1]. The operating systems for
these devices, typically consist of a very simple scheduler,
known as a cooperative scheduler [2]. The cooperative
scheduler provides a common time-base to schedule tasks to
be executed, however, it does not provide a context-switch
mechanism to interrupt tasks. Thus, tasks have to cooperate
in order not to delay pending tasks, but this cooperative
condition is rarely satisfied. As a result, a controller needs
to be designed to tolerate time-varying delays which can
occur from disruptive tasks which share the cooperative
scheduler. Although, other operating systems can be designed
to provide a more hard real-time scheduling performance, the
time varying delays which will ultimately be encountered
with wireless sensing and actuation will be comparable if
not more significant. Hence, the primary aim of this paper
is to provide the theoretical framework to build a l2-stable
controller which can be subject to time-varying scheduling
delays. Such results are also of importance as they will
eventually allow the plant-controller network depicted in
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Fig. 2 to run entirely isolated from the plant as is done
in telemanipulation systems. Telemanipulation systems have
had to address wireless control problems [3] years before
the MICA2 mote existed and the corresponding literature
provides results to address how to design stable control
systems subject to transmission delays. Much of the theory
presented in this paper is inspired by and related to work on
telemanipulation systems; it is discussed in greater detail in
[4], [5].

Telemanipulation systems are distributed control systems
where a human operator controls a local manipulator, which
commands a remotely located robot in order to modify
a remote environment. The position tracking between the
human operator and the robot is typically maintained by
a passive proportional-derivative controller. In fact, a tele-
manipulation system typically consists of a series network
of interconnected two-port passive systems in which the
human operator and environment terminate each end of the
network [6]. These passive networks can remain stable in-
spite of system uncertainty; however, delays as small as a few
milliseconds would cause force feedback telemanipulation
systems to become unstable. The instabilities occur because
delayed power variables, force (effort) and velocity (flow),
make the communication channel non passive. In [3] it was
shown that by using a scattering transformation of the power
variables into power wave variables [7] the communication
channel would remain passive in spite of arbitrary fixed
delays. For continuous systems, if additional information is
transmitted along with the continuous wave variables, the
communication channel will remain passive in the presence
of time varying delays [8]. However, only recently has it
been stated that discrete wave variables can remain passive
in spite of time varying delays and dropouts [9], [10]. We
verified this to be true for fixed time delays and data dropouts
(Lemma 2). However, we provide a simple counter example
that shows this is not the case for all time-varying delays and
provide a lemma which states how to properly handle time
varying discrete wave variable data and maintain passivity
(Lemma 3). The initial results from [9] build upon a novel
digital sample and hold scheme which allows the discrete
inner-product space and continuous inner-product space to
be equivalent [11], [12].

We will build on the results in [11] to show in general
how to transform a (non)linear (strictly input or strictly
output) passive system into a discrete (strictly input) passive
system (Theorem 3). We then formally show some new l2-
stability results related to strictly-output passive networks.
In particular Theorem 2 shows how to make a discrete
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passive plant strictly-output passive and l2-stable. Theorem 2
also makes it possible to synthesize discrete strictly-output
passive systems from discrete passive LTI systems such as
those consisting of passive wave digital filters [13]. We
will then use the scattering transform to interconnect the
controller to the plant with wave variables. We use Lemma 3
to show that the cooperative scheduler can allow time varying
data transmission delays and maintain passivity between the
plant and controller. As a result our digital control system
implemented with a cooperative scheduler will remain l2-
stable. Section II provides the necessary definitions and
theorems necessary to present our main results. Section III
shows our main results and outlines how to design a driver
which allow the digital controller to be implemented as a
cooperative task managed by a cooperative scheduler, such
as the one provided by SOS [2]. Section IV concludes with a
simulation implementing the cooperative scheduler to control
a passive system. Section V summarizes our key findings and
discusses future research directions.

II. PASSIVE CONTROL THEORY

Passive control theory is very general and broad in that
it applies to a large class of controllers for linear, nonlinear,
continuous and discrete control systems. In [14] a control
theory for continuous and discrete passive systems is dis-
cussed. In particular, passive control theory has been used
in digital adaptive control theory to show stability of vari-
ous parameter adaptation algorithms [15]. Additional texts
which discuss nonlinear continuous passive control theory
are [16], [17]. In [18] a comprehensive treatment is dedicated
to the passive control of a class of nonlinear systems, known
as Euler-Lagrange Systems. Euler-Lagrange Systems can
be represented by a Hamiltonian which possess a Dirac
structure that allows dissipative and energy storage elements
to be interconnected to ports without causal specification
[19] (p. 124). An extensive treatment on intrinsically pas-
sive control using Generalized Port-Controlled Hamiltonian
Systems is presented in [19] as it relates to telemanipulation
and scattering theory. Our presentation of passive control
theory focuses on laying the groundwork for discrete passive
control theorems, mirrors the continuous counterpart results
presented in [17], and is based on the continuous and discrete
theorems in [14].

A. l2 STABILITY THEORY FOR PASSIVE NETWORKS
Definition 1: The l2 space, is the real space of all

bounded, infinitely summable functions f(i) ∈ Rn. We
assume f(i) = 0 for all i < 0 and note that Rn could
be replaced with C

n in (1) without loss of generality. The
inner product is denoted as 〈·, ·〉 in which for example
〈u, y〉 = uTy is a valid inner product [20, p.68]. The l2

space is the set of all functions f(i) which meet the following
inequality (1).

∞
∑

i=0

〈f(i), f(i)〉 < ∞ (1)

A truncation operator will be defined as follows:

fN (i) =

{

f(i), if 0 ≤ i < N

0, otherwise
(2)

Likewise the extended l2 space, l2e , is the set of all functions
f(i) which meet the following inequality (3).

N−1
∑

i=0

〈f(i), f(i)〉 < ∞, N ≥ 1 (3)

Note that l2 ⊂ l2e . Typically l2e is defined with the summation
to N and the truncation includes N [15, p.75] and [14,
p. 172], however, these definitions are equivalent and are
convenient for future analysis. Finally we define our l2 norms
(4) and truncation of the l2 norm (5) as follows:

‖f(i)‖2
4
= (

∞
∑

i=0

〈f(i), f(i)〉) 1

2 (4)

‖f(i)N‖2
2

4
= 〈f(i), f(i)〉N

4
=

N−1
∑

i=0

〈f(i), f(i)〉 (5)

The following definition for l2-stability is similar to the one
given in [21] which refers to [17] in regards to stating that
finite l2-gain is sufficient for l2-stability, however, in [17]
this is only stated for the continuous time case. We provide
a short proof for the discrete time case and we note for
completeness where the development parallels [17].

Definition 2: Let the set of all functions u(i) ∈ R
n, y(i) ∈

Rp which are either in the l2 space, or l2e space be denoted
as l2(U)/l2e(U) and l2(Y )/l2e(Y ) respectively. Then define G
as an input-output mapping G : l2e(U) → l2e(Y ), such that it
is l2-stable if

u ∈ l2(U) ⇒ G(u) ∈ l2(Y ) (6)

The map G has finite l2-gain if there exist finite constants γ
and b such that for all N ≥ 1

‖(G(u))N‖2 ≤ γ‖uN‖2 + b, ∀u ∈ l2e(U) (7)

holds. Equivalently G has finite l2-gain if there exist finite
constants γ̂ > γ and b̂ such that for all N ≥ 1 [17, (2.21)]

‖(G(u))N‖2
2 ≤ γ̂2‖uN‖2

2 + b̂, ∀u ∈ l2e(U) (8)

holds.
Remark 1: If G has finite l2-gain then it is sufficient for

l2-stability. Let u ∈ l2(U) and N → ∞ which leads (7) to

‖(G(u))‖2 ≤ γ‖u‖2 + b, ∀u ∈ l2(U) (9)

which implies (6) (see [17, p. 4] for continuous time case).
Lemma 1: [17, Lemma 2.2.13 p.19] The l2-gain γ(G) is

given as

γ(G) = inf{γ̂ | ∃ b̂ s.t. (8) holds} (10)
Next we will present definitions for various types of passivity
for discrete time systems.

Definition 3: [14], [17] Let G : l2e(U) → l2e(U) then for
all u ∈ l2e(U) and all N ≥ 1:
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I. G is passive if there exists some constant β such that
(11) holds.

〈G(u), u〉N ≥ −β (11)

II. G is strictly-output passive if there exists some con-
stants β and ε > 0 such that (12) holds.

〈G(u), u〉N ≥ ε‖(G(u))N‖2
2 − β (12)

III. G is strictly-input passive if there exists some constants
β and δ > 0 such that (13) holds.

〈G(u), u〉N ≥ δ‖uN‖2
2 − β (13)

Theorem 1: Let G : l2e(U) → l2e(U) be strictly-output
passive. Then G has finite l2-gain.
For completeness we provide the proof for the discrete case
which is practically the same as the proof given for the
continuous case in [17, Theorem 2.2.14 p.19]. Proof:
We denote y = G(u), and rewrite (12)

ε‖yN‖2
2 ≤ 〈y, u〉N + β

≤ 〈y, u〉N + β +
1

2
‖ 1√

ε
uN −

√
εyN‖2

2 (14)

≤ β +
1

2ε
‖uN‖2

2 +
ε

2
‖yN‖2

2

thus moving all terms of y to the left, (14), has the final form
of (8) with l2-gain γ̂ = 1

ε
and b̂ = 2β

ε
.

The requirement for strictly-output passive is a relatively
easy requirement to obtain for a passive plant with map G
and input u and output y. This is accomplished by closing the
loop relative to a reference vector r with a positive definite
feedback gain matrix K > 0 such that u = r − Ky.

Theorem 2: Given a passive system with input u, output
G(u) = y, a positive definite matrix K > 0, and new
reference vector r. If the input u = r − Ky, then the new
mapping Gcl : r → y is strictly-output passive which implies
l2-stability.

Proof: First we use the definition of passivity for G
and substitute the feedback formula for u.

〈y, u〉N = 〈y, r − Ky〉N ≥ −β (15)

Then we can obtain the following inequality

〈y, r〉N ≥ λm(K)‖y‖2
2 − β (16)

in which λm(K) > 0 is the minimum eigenvalue for K.
Hence, (16) has the form of (12) which shows strictly-output
passive and implies l2-stability.

Remark 2: When K has small maximum eigenvalues the
system is approximately the nominal passive system we
started with. This allows us to take a more general passive
digital controller and modify it with this simple transform in
order to make it strictly-output passive.

B. INNER-PRODUCT EQUIVALENT SAMPLE AND HOLD
In this section we prove Theorem 3 which shows how

a (non)linear (strictly input or strictly output) passive plant
can be transformed to a discrete (strictly input) passive plant
using a particular digital sampling and hold scheme. This
novel zero-order digital to analog hold, and sampling scheme
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Fig. 1. Illustration showing 〈v(i), F (i)〉N = 〈v(t), F (t)〉NT

proposed by [11] was to yield a combined system such that
the energy exchange between the analog and digital port
is equivalent. This equivalence allows one to interconnect
an analog to a digital Port-Controlled Hamiltonian (PCH)
system and obtains an overall passive system. In [12], a
correction was made to the original scheme proposed in [11].
In order to prove Theorem 3, we will restate the sample
and hold algorithm with a slightly modified nomenclature.
Fig. 1 shows a simple example of a continuous force, F (t)
(solid blue line), being applied to a damper with damping
ratio 0.5 (kg/s-m). The force is updated at a rate of T
seconds, such that at t = iT the corresponding discrete force,
F (i) (circles), updates F (t) and is held for an additional T
seconds. The discrete “velocity”, v(i) (diamonds), is defined
as v(i) = (x(i + 1)−x(i)). The discrete “position”, x(i), is
the sampled integral of the continuous velocity, v(t) (solid
magenta line), up to time t = iT . Likewise x(i + 1) is the
sampled integral of the predicted continuous velocity up to
time t + T . Note that the solid green line, x(t) denotes the
integral of the continuous velocity. Finally, the continuous
inner-product integral, 〈v(t), F (t)〉NT

4
=

∫ NT

0
〈v(t), F (t)〉,

is denoted by the solid red line. The discrete inner-product
summation, 〈v(i), F (i)〉N , is indicated at each index i with
a blue square, thus showing equivalence to 〈v(t), F (t)〉NT .

Definition 4: [11], [12] Let a continuous one-port plant
be denoted by the input-output mapping Gct : L2

e(U) →
L2

e(U). Denote continuous time as t, the discrete time index
as i, the continuous input as u(t) ∈ L2

e(U), the continuous
output as y(t) ∈ L2

e(U), the transformed discrete input
as u(i) ∈ l2e(U), and the transformed discrete output as
y(i) ∈ l2e(U). The inner-product equivalent sample and hold
(IPESH) is implemented as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y(i) = x((i + 1)T ) − x(iT )
III. u(t) = u(i), ∀t ∈ [iT, i(T + 1))

As a result

〈y(i), u(i)〉N = 〈y(t), u(t)〉NT , ∀N ≥ 1 (17)

holds.
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Theorem 3: Using the IPESH given in Definition 4, the
following relationships can be stated between the continuous
one-port plant, Gct, and the discrete transformed one-port
plant, Gd : l2e(U) → l2e(U):

I. If Gct is passive then Gd is passive.
II. If Gct is strictly-input passive then Gd is strictly-input

passive.
III. If Gct is strictly-output passive then Gd is strictly-input

passive.
This is a general result, in which Theorem 3-I includes the
special case where the input is a force and the output is a
velocity [12, Definition 2] and it includes the special case
for interconnecting PCH systems [11], [22, Theorem 1].
Proof:

I. Since the continuous passive system Gct satisfies

〈y(t), u(t)〉τ ≥ −β, ∀τ ≥ 0 (18)

then by substituting (17) into (18) results in

〈y(i), u(i)〉N ≥ −β, ∀N ≥ 1 (19)

which satisfies (11).
II. Let τ = NT , then since the continuous strictly-input

passive system Gct satisfies

〈y(t), u(t)〉τ ≥ δ‖u(t)τ‖2
2 − β, ∀τ ≥ 0 (20)

and Definition 4-III implies

‖u(t)τ‖2
2 = T‖u(i)N‖2

2 (21)

substituting (21) and (17) into (20) results in

〈y(i), u(i)〉N ≥ Tδ‖u(i)N‖2
2 − β, ∀N ≥ 1 (22)

therefore, the transformed discrete system Gd satisfies
(13).

III. Let τ = NT , then since the continuous strictly-output
passive system Gct satisfies

〈y(t), u(t)〉τ ≥ ε‖y(t)τ‖2
2 − β, ∀τ ≥ 0 (23)

however, no direct relationship can be made between
‖y(t)τ‖2

2 and ‖y(i)N‖2
2. But Definition 4-III still im-

plies (21), and since Gct is strictly-output passive,
which implies finite l2-gain such that

‖y(t)τ‖2
2 ≤ 1

ε2
‖u(t)τ‖2

2 +
2β

ε

≤ T

ε2
‖u(i)N‖2

2 +
2β

ε
(24)

holds. Substituting (24) into (23) results in

〈y(i), u(i)〉N ≥ T

ε
‖u(i)N‖2

2 − (−β), ∀N ≥ 1 (25)

therefore, the transformed discrete system Gd satisfies
(13).

Continuous/discrete linear time invariant systems have an
important property, namely that if they are strictly-input
passive they have finite L2/l2-gain and are strictly-output
passive [5, Corollary 10 p.162].

Fig. 2. l2-stable digital control network.

Corollary 1: Using the IPESH given in Definition 4, the
following relationships can be stated between the continuous
LTI one-port plant, Gct, and the discrete transformed LTI
one-port plant, Gd : l2e(U) → l2e(U): If Gct is either
strictly-input passive or strictly-output passive then Gd is
both strictly-input passive with finite l2-gain and strictly-
output passive.

III. MAIN RESULTS
Fig. 2 depicts our proposed control scheme in order to

guarantee l2 stability in which the feedback and control data
can be subject to variable delays between the controller and
the plant. Depicted is a continuous passive plant Gp(ep(t)) =
fp(t) which is actuated by a zero-order hold and sampled
by an IPES. Thus Gp is transformed into a discrete passive
plant Gdp(ep(i)) = fop(i). Next, a positive definite matrix
Kp is used to create a discrete strictly-output passive plant
Gop(eop(i)) = fop(i) outlined by the dashed line. Next Gop

is interconnected in the following feedback configuration
such that

〈fop, edoc〉N =
1

2
(‖(uop)N‖2

2 − ‖(vop)N‖2
2) (26)

holds due to the wave transform [5, p.15]. Moving left to
right towards the strictly-output passive digital controller
Goc(foc) = eoc we first note that

〈fopd, eoc〉N =
1

2
(‖(uoc)N‖2

2 − ‖(voc)N‖2
2) (27)

holds due to the wave transform. The wave variables
uoc(i), vop(i) are related to the corresponding wave vari-
ables uop(i), voc(i) and by the discrete time varying delays
p(i), c(i) such that

uoc(i) = uop(i − p(i)) (28)
vop(i) = voc(i − c(i)) (29)

(28) and (29) hold. Finally the positive definite matrix Kc

is used to make the passive digital controller Gc(fc(i)) =
eoc(i) strictly-output passive. Typically, roc can be consid-
ered the set-point in which fopd(i) ≈ −roc(i) at steady state,
while rop(i) can be thought as a discrete disturbance. Which
leads us to the following theorem.

Theorem 4: The system depicted in Fig. 2 is l2-stable if

〈fop, edoc〉N ≥ 〈eoc, fopd〉N (30)

holds for all N ≥ 1.
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Proof: First, by Theorem 3-I, Gp is transformed to a
discrete passive plant. Next, by Theorem 2 both the discrete
plant and controller are transformed into a strictly-output
passive systems. The strictly-output passive plant satisfies

〈fop, eop〉N ≥ εop‖(fop)N‖2
2 − βop (31)

while the strictly-output passive controller satisfies (32).

〈eoc, foc〉N ≥ εoc‖(eoc)N‖2
2 − βoc (32)

Substituting, edoc = rop−eop and fopd = foc−roc into (30)
yields

〈fop, rop − eop〉N ≥ 〈eoc, foc − roc〉N

which can be rewritten as

〈fop, rop〉N + 〈eoc, roc〉N ≥ 〈fop, eop〉N + 〈eoc, foc〉N (33)

so that we can then substitute (31) and (32) to yield

〈fop, rop〉N + 〈eoc, roc〉N ≥ ε(‖(fop)N‖2
2 + ‖(eoc)N‖2

2) − β
(34)

in which ε = min(εop, εoc) and β = βop + βoc. Thus (34)
satisfies (12) in which the input is the row vector of [rop, roc],
and the output is the row vector [fop, eoc] and completes the
proof.

Theorem 5: The system depicted in Fig. 2 without the
IPESH in which i and t denote continuous time is L2-stable
if

〈fop, edoc〉τ ≥ 〈eoc, fopd〉τ (35)

holds for all τ ≥ 0.
Proof: The proof is completely analogous to the proof

given for Theorem 4, the differences being that the IPESH is
no longer involved and the discrete time delays are replaced
with continuous time delays.
In order for (30) to hold, the communication channel/ data-
buffer needs to remain passive. It has been stated in [22] that
the discrete communication channel is passive for both fixed
delays [22, Proposition 1] and variable time delays including
loss of packets [22, Proposition 2]. [22, Proposition 2] does
not hold for all time varying delays, therefore we will first
verify [22, Proposition 1] and the part of [22, Proposition 2]
which accounts for fixed delays with a different and straight
forward proof.

Lemma 2: If the discrete time varying delays are fixed
p(i) = p, c(i) = c and/or data packets are dropped then (30)
holds.
Before we begin the proof, we denote the partial sum from
M to N of an extended norm as follows

‖x(M,N)‖2
2

4
= 〈x, x〉(M,N) =

N−1
∑

i=M

〈x, x〉 (36)

Proof: In order to satisfy (30), (26) minus (27) must
be greater than zero, or

(‖(uop)N‖2
2 − ‖(vop)N‖2

2) − (‖(uoc)N‖2
2 − ‖(voc)N‖2

2) ≥ 0

(‖(uop)N‖2
2 − ‖(uoc)N‖2

2) + (‖(voc)N‖2
2 − ‖(vop)N‖2

2) ≥ 0

(‖(uop)N‖2
2 − ‖(uop(i − p(i))N‖2

2)+

(‖(voc)N‖2
2 − ‖(voc(i − c(i))N‖2

2) ≥ 0
(37)

holds. Clearly (37) holds when the delays are fixed, as (37)
can be written to show

(‖(uop)((N−p),N)‖2
2 + ‖(voc)((N−c),N)‖2

2) ≥ 0 (38)

the inequality always holds for all 0 ≤ p, c < N . Note if p
and c equal zero, then inequality in (38) becomes an equality.
If all the data packets were dropped then, ‖(uoc)N‖2

2 = 0
and ‖(vop)N‖2

2 = 0, such that (30) holds and all the energy
is dissipated. If only part of the data packets are dropped,
the effective inequality described by (37) serves as a lower
bound ≥ 0; hence dropped data packets do not violate (30).

[22, Proposition 2] appears to be too broad when stating that
the communication channel is passive in spite of variable
time delays when only the transmission of one data packet
per sample period occurs. For instance, a simple counter
example is to assume p(i) = i, then (37) will not hold if
N‖(uop)1‖2

2 > (‖(uop)N‖2
2+‖(voc)N‖2

2). Clearly other vari-
ations can be given such that p(i) eventually becomes fixed
and never changes after receiving old duplicate samples, and
still (30) will not hold. Therefore, we state the following
lemma:

Lemma 3: The discrete time varying delays p(i), c(i) can
vary arbitrarily as long as (37) holds. Thus, the main as-
sumption (30) will hold if:

I. Duplicate transmissions are dropped at the receivers.
This can be accomplished by transmitting the tuple
(i,uop(i)), if i ∈ { the set of received indexes } then
set uoc(i) = 0.

II. we drop received data in order that (37) holds. This
requires us to track the current energy storage in the
communication channel.

Remark 3: Examples of similar energy-storage audits as
stated in Lemma 3-II are given in [23, Section IV] which
does not use wave variables, and in [8] which is for the
continuous time case.

A. PASSIVE DISCRETE LTI SYSTEM SYNTHESIS
The immediate applicability of our results as applied to

LTI systems is discussed further in [4], [5]. For example we
show that by simply using Definition 4 it is a simple exercise
to show how to synthesize a passive discrete LTI system from
a passive continuous LTI system. Our proof of this result is
much shorter than the one given by [24]: see either [4] or
[5, Section 2.3.1] for further details as they pertain to our
simulation example.
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B. STABLE CONTROL WITH A COOPERATIVE SCHED-
ULER

SOS is an operating system for embedded devices with
wireless transceivers such as the Berkeley motes. SOS uses
a high priority and low priority queues with timers which
signal a task through the queue in order to implement the soft
real time scheduler (note that most other operating systems
such as TinyOS which use just a single FIFO message
queue could be used to notify the control task as well)
[2]. For simplicity we will use SOS to discuss one possible
implementation for our l2-stable control system illustrated
in Fig. 2. The following is an outline for a suitable device
driver:

1) Provide an interface for the controller to register a
function to enable the device driver to send uop(i) to.
Also allow the controller to specify a desired sample
time T , wave impedance b, and Kp (note Kp does not
need to be a matrix, it could be a scalar to modify all
parts of fop(i) equally. Note that the driver will buffer
voc(i) while the controller will buffer uop(i).

2) Provide an interface for the controller to send outgoing
voc(i) to.

3) Calculate fop(i) based on the IPES given in Defini-
tion 4-I,II.

4) Calculate the corresponding uop(i), and edoc(i) based
on the buffered voc(i), the servicing of the buffer is
where the vop(i−c(i)) delay comes in effect. Since data
can be popped directly from the buffer, we do not need
to worry about counting duplicate data. For simplicity
if the buffer begins to get full we can safely drop data.

5) With the new edoc(i) and fop(i), calculate ep(i) =
−edoc(i) − Kpfop(i) and apply to ZOH.

The controller, is notified by the driver through the high-
priority queue and implements the right side of Fig. 2.
Note, that the lower-priority queue can be used for more
time-consuming tasks, such as changing control parameters
and loading new modules. This may cause temporary de-
lays, however, l2-stability will be maintained. Note that old
data does not have to be simply dropped (which satisfies
Lemma 2) in order for the system to recover from these
longer periodic delays. Using Lemma 3-II we can calculate
the two-norm of all M , in which i = 0, 1, ..., M − 1 of the
non-processed inputs s(uop, M) = ‖uop(i)‖2 and multiply
it by the sign of the sum of the non-processed inputs
sn(uop, M) = sgn(

∑M−1
i=0 uop(i)) such that the input for

uoc(i) = sn(uop, M)s(uop, M). This will improve tracking
and highlights why we split the buffers appropriately. The
driver can do a similar calculation in order to calculate
vop(i).

IV. SIMULATION
We shall control a motor with an ideal current source,

which will allow us to neglect the effects of the motor
inductance and resistance for simplicity. The fact that the cur-
rent source is non-ideal, leads to a non-passive relationship
between the desired motor current and motor velocity [25].

There are ways to address this problem using passive control
techniques by controlling the motors velocity indirectly with
a switched voltage source and a minimum phase current
feedback technique [26], and more recently incorporating the
motors back voltage measurement which provides an exact
tracking error dynamics passive output feedback controller
[27].

The motor is characterized by its torque constant, Km > 0,
back-emf constant Ke, rotor inertia, Jm > 0, and damping
coefficient Bm > 0. The dynamics are described by

ω̇ = −Bm

Jm

ω +
Km

Jm

i (39)

and are in a (strictly) positive real form which is a necessary
and sufficient condition for (strictly-input) passivity [28],
[29]. We choose to use the passive “proportional-derivative”
controller described by (40).

KPD(s) = K
τs + 1

s
(40)

Using loop-shaping techniques we choose τ = Jm

Bm

and
choose K = Jmπ

10KmT
. This will provide a reasonable

crossover frequency at roughly a tenth the Nyquist frequency
and maintain a 90 degree phase margin. We choose to use
the same motor parameter values given in [27] in which
Km = 49.13 (mV×rad ×sec), Jm = 7.95×10−3 (kg×m2),
and Bm = 41(µN × sec/meter). With T = .05 seconds,
we use [4, Corollaries 4,5] to synthesize a strictly-output
passive plant and controller from our continuous model
(40). We also use [4, Corollary 3] in order to compute
the appropriate gains for both the controller Ksc

= 1 and
the strictly-output passive plant Ksp

= 20. Note that by
arbitrarily choosing Ksc

= 1
T

= 20 would have led to an
incorrectly scaled system in which the crossover frequency
would essentially equal the Nyquist frequency (since a zero
is extremely close to −1 in the z-plane). Since the plant is
strictly-output passive we chose Kp = 0. For the controller
we chose Kc = 0.001 in order to make it strictly-output
passive. Fig. 3 shows the step response to a desired position
set-point θd(k) which generates an approximate velocity
reference for roc(z) = −Ht(z)θd(z). Ht(z) is a zero-order
hold equivalent of Ht(s), in which ωtraj = 2π and ζ = .9.

Ht(s) =
ω2

trajs

s2 + 2ζωtraj + ω2
traj

(41)

Note, that it is important to use a second order filter
in order to achieve near perfect tracking, a first order
filter resulted in significant steady state position errors for
relatively slow trajectories. Finally in Fig. 4 we see that
the proposed control network maintains similar performance
as the baseline system. Note that by increasing b = 5
significantly reduced the overshoot caused by a half second
delay (triangles b = 1/squares b = 5). Also note that even
a two second delay (large circles b = 5) results in only a
delayed response nearly identical to the baseline system.
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V. CONCLUSIONS
We have presented an approach to design a digital control

network which maintains l2−stability in spite of time vary-
ing delays caused by cooperative schedulers. We presented a
fairly complete, and needed l2 stability analysis, in particular
the results in Theorem 1, and Theorem 2 (for the discrete-
time case). Such analysis appeared to be lacking from the
open literature and was necessary in order to complete our
proofs. The other new results (not available in the open
literature) which led to a l2-stable controller design are as
follows:

1) Theorem 3-I is an improvement which captures all
passive systems (not just PCH) systems.

2) Theorem 3-II, and Theorem 3-III are completely orig-
inal (the latter forced us to require that the driver had
to implement the additional feedback (Kp) calculation
to obtain strictly-output passivity.

3) Corollary 1 allows us to set Kp = 0 if the continuous
LTI plant is either strictly-input passive or strictly-
output passive.

4) Theorem 4 is a new and general theorem to intercon-
nect continuous nonlinear passive plants which should
lead to more elaborate networks interconnected in the
discrete time domain. Theorem 5 is also new. Neither
Theorem 4 nor Theorem 5 require knowledge of the
energy storage function in order to show l2/L2-stability
of the network.

Theorem 2 allows us to directly design low-sensitivity
strictly-output passive controllers using the wave-digital
filters described in [13]. This networking theory can be
extended to the control of multiple plants by either a single
controller or multiple controllers using a ”power-junction”
[5, Section 2.5].
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Fig. 3. Baseline step response for motor with strictly-output passive digital controller.

Fig. 4. Step response for motor with strictly-output passive digital controller as depicted in Fig. 2 with delays.
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