
1

Control with Intermittent Sensor Measurements: A New Look at
Feedback Control.

Tomas Estrada Panos J. Antsaklis

Presented at the Workshop on Networked Distributed Systems for Intelligent Sensing and Control
Kalamata, Greece, Saturday, June 30, 2007

Abstract

In many control systems, including networked control systems, feedback information is not necessarily contin-
uous or instantaneous, but intermittent, where the loop is closed for finite time intervals. Intermittent feedback is
not uncommon in applications, but it has not been adequately studied in control theory. The aim of this work is to
explore theoretically the advantages (and disadvantages) of intermittent feedback.

In this paper, we apply the concept of Intermittent Feedback to a class of networked control systems known
as Model-Based Networked Control Systems (MB-NCS). We first introduce the basic architecture for model-based
control with intermittent feedback, then address the cases with output feedback (through the use of a state observer)
and with delays in the network, providing a full description of the state response of the system, as well as a necessary
and sufficient condition for stability in each case. Extensions of our results to cases with nonlinear plants are also
presented. Finally, we propose future research directions.

I. INTRODUCTION

In this paper, we deal with control systems where sensor measurements are available intermittently. We refer to
this concept as intermittent feedback. Intermittent feedback is displayed in nature and has been applied in a variety
of fields for a long time, but its application to control systems and, in particular, to networked control systems is
novel.

The basic idea of intermittent feedback is simple: rather than using closed loop control all the time, apply closed
loop control only for a certain interval, then go back to open loop. After a certain period of time, apply closed
loop control again, and so on. Essentially, the goal is to only apply closed loop control when it is needed, and thus
reduce the overall control effort. Its application to control is highly intuitive and, in fact, it presents in biological
systems. Take, for example, the kind of control one performs when driving a car. When in the presence of a
straight road, less attention or control effort is required; but when we anticipate a curve, we focus on the road
and apply closed loop control. When the curve has been passed and we are once again in a straightaway, we can
change to an ”open loop” variety of control. Parting from this biologically-inspired concept, then, the transition to
control systems applications is intuitive and natural. Fig 1 shows a control system whose feedback loop contains
an interface, which could be a network, for example. Fig 2 provides a look at the closed loop and open look time
intervals in an intermittent feedback setup. This will be explained in more detail in Section 2.

The concept of intermittent feedback has been applied in other areas of study. For example, in applications
to chemical engineering processes, in intermittent feedback is rather prominent. See, for example [23], where
intermittent feedback is used to address turbulence. Oldroyd [24] addresses the issue of ”intermittent distillation”,
using intermittent feedback to address product removal. The concept also arises when dealing with product treatment,
such as chlorine disinfection or combined sewer overflows, in that the problem is in itself of an intermittent nature
[25]. Most of the articles in this area are very application-oriented and focus on processes such as manufacturing.

In the field of psychology, the use of intermittent feedback is widespread. The corresponding term often used in
psychology papers is ”intermittent reinforcement” and often arises in the literature regarding education, learning,
and child-rearing. The main idea is that human behavior, in itself, follows this intermittent nature. This does not just
apply to physical processes such as motor control, but to psychological pulls to practices, such as work, gambling
[26]. The learning process is another area where intermittent feedback arises very naturally, and where methods
based on it have proven to be very effective. [27] Intermittent feedback is also used in regards to motor control,
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Fig. 1. Control system with interface in feedback loop

Fig. 2. Intermittent feedback - open and closed loop times

such as controlling seizures, epilepsy, etc. [28], [29] The main idea in terms of psychological aspects of motion
control is that while, initially, continuous control is applied, as the human being learns, and there is growth in
cognitive and associative skills, there is a shift to intermittent feedback and a more automatic nature of motion
control.

Other researchers have considered how these concepts may apply to other, more complex areas, such as speech
development [30]. All these ideas are very interesting to us in that they provide an initial justification as to why
intermittent feedback makes so much sense in nature, and why, then, it would make sense to seek to apply them
in other contexts.

Intermittent feedback has also been used to some extent in robotics and mechanical engineering. This makes sense
due to the fact that the visual component of robots is often designed to follow a biologically inspired analogous
process. Thus, intermittent feedback arises naturally. For example, in [31] Ronco, et al use intermittent feedback
to address a conceptual, and practical difficulty in robotics: by replacing the continuously moving horizon by
an intermittently moving horizon, they solve a continuous-time generalized predictive controller. [32] Koay and
Bugmann also address intermittent visual feedback in robotics and study how to compensate for the effects of
delays [33], while Leonard and Krishnaprasad [34] use intermittent feedback in dealing with motion control of
robots, leading to nonlinear control with fewer state variables. Also, because the concept of ”learning” in robots
is closely tied in with the learning process in human beings, the application of intermittent feedback here makes
sense as well, as has been dealt with in [35] and [36].

Finally, while intermittent feedback, per se, has not been prominently featured in electrical engineering research,
or in systems and control theory, in particular, similar concepts do arise in the literature. Consider, for example,
[5], [18]. Also, in the field of information theory, Kramer uses intermittent feedback in [37], by employing a
feedback communication scheme where the feedback channel is only used to inform the transmitter, at specified
times, which message the receiver considers most likely - that is, the information is used to modify the transmission
according to a rule known by the receiver.

In particular, the potential of intermittent feedback in networked control systems is of special interest to us. The
concept is extremely appealing in that it effectively addresses one of the key concerns, that of saving bandwidth
by reducing the use of network as much as possible. Yet, the benefits of intermittent feedback may not limit
themselves to this. As discussed above, intermittent feedback is closely associated with the learning process, and,
when adapting these ideas to control, we can begin to see that significant improvements may be possible. For
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example, by combining intermittent feedback with the model-based architecture, we can gradually improve the
parameters of the model -in a way, the system is ”learning” or ”adapting”- so that as time elapses, the control
performance increases and the required use of network decreases. Additionally, the fact that in an intermittent
feedback setting there are times when the loop is closed and closed-loop control is being applied suggests that
results from classical, continuous-time control theory can be useful here and may be able to give us additional
insight into the nature of networked control systems, as well. Finally, when dealing in networks, the notion that
when one has access to the network, one will send all the information possible (as opposed to just one packet) is
intuitively appealing and consistent with the notion of intermittent feedback.

Throughout this paper, we apply intermittent feedback to a particular class of networked control systems known as
Model-Based Networked Control Systems (MB-NCS) and obtain the corresponding state responses under different
setups. We obtain stability conditions in each case as well. We focus on MB-NCS because this architecture has
proven to work well and makes sense in this context; also, the use of the model allows us to derive concrete, useful
results. Our main goal is to take advantage of the concept of intermittent feedback as applied to MB-NCS to bridge
the gap between instantaneous feedback and closed-loop control, thus providing a new look at feedback control.

The rest of the paper is organized as follows. In Section 2, we provide the initial setup for model-based control
with intermittent feedback and provide a complete state response of the system, as well as necessary and sufficient
condition for stability. In Sections 3 and 4, we do the same for the cases with output feedback (using a state
observer) and with delays in the network, respectively. We extend our results to nonlinear plants in Section 5.
Finally, in Section 6, we briefly discuss our ongoing work.

II. MB-NCS WITH INTERMITTENT FEEDBACK: BASIC SETUP

Let us start by introducing model-based control with intermittent feedback, in its simplest setup. The problem
formulation is as follows.

The basic setup for MB-NCS with intermittent feedback is essentially the same as that proposed in the literature
for traditional MB-NCS. Please see references [10], [11], [12] for more results on MB-NCS.

Consider the control of a continuous linear plant where the state sensor is connected to a linear controller/actuator
via a network. In this case, the controller uses an explicit model of the plant that approximates the plant dynamics
and makes possible the stabilization of the plant even under slow network conditions.

Fig. 3. MB-NCS with intermittent feedback - basic architecture

The main idea here is to perform the feedback by updating the model’s state using the actual state of the plant
that is provided by the sensor. The rest of the time the control action is based on a plant model that is incorporated
in the controller/actuator and is running open loop for a period ofh seconds.

As mentioned before, the main difference between model-based networked control systems as have been studied
previously, and the case with intermittent feedback is that in the literature, the loop is closed instantaneously, and
the rest of the time the system is running with input based on the model of the plant. Here, we part from the same
basic idea, but the loop will remain closed for intervals of time which are different from zero. Intuitively, we should
be able to achieve much better results the longer the loop is closed, as the level of degradation of the information
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increases the longer the system is running open loop, so intermittent feedback should yield better results than those
for traditional MB-NCS.

In dealing with intermittent feedback, we have two key time parameters: how frequently we want to close the
loop, which we shall denote byh, and how long we wish the loop to remain closed, which we shall denote byτ .
Naturally, in the more general cases bothh and τ can be time-varying. For the purposes of this paper, however,
we will deal initially with the case where bothh andτ are fixed.

We consider then a system such that the loop is closed periodically, everyh seconds, and where each time the
loop is closed, it remains so for a time ofτ seconds. The loop is closed at timestk, for k = 1, 2, .... Thus, there
are two very clear modes of operation: closed loop and open loop. The system will be operating in closed loop
mode for the intervals[tk, tk + τ) and in open loop for the intervals[tk + τ, tk+1). When the loop is closed, the
control decision is based directly on the information of the state of the plant, but we will keep track of the error
nonetheless.

The plant is given byẋ = Ax + Bu, the plant model bŷ̇x = Âx̂ + B̂u, and the controller byu = Kx̂. The
state error is defined ase = x − x̂ and represents the difference between plant state and the model state. The
modeling error matrices̃A = A− Â and B̃ = B − B̂ represent the plant and the model. We also define the error
e (t) = x (t)− x̂ (t) and the vectorz = [x e]T .

The state response of the system can be summarized in the following proposition.

Proposition 1: The system described above with initial conditionsz (t0) =

[
x (t0)

0

]
= z0 has the following

response:

z (t) =






eΛc(t−tk)

([
I 0
0 0

]
Σ

[
I 0
0 0

])k

z0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)

([
I 0
0 0

]
Σ

[
I 0
0 0

])k

z0 , t ∈ [tk + τ, tk+1)

(1)

whereΣ = eΛo(h−τ)eΛc(τ), Λo =

[
A + BK −BK

Ã + B̃K Â− B̃K

]
, Λc =

[
A + BK −BK

0 0

]
, andtk+1 − tk = h.

We now present a necessary and sufficient condition for stability.

Theorem 2: The system described above is globally exponentially stable around the solutionz =

[
x

e

]
if and

only if the eigenvalues of

[
I 0
0 0

]
Σ

[
I 0
0 0

]
are strictly inside the unit circle, whereΣ = eΛo(h−τ)eΛc(τ).

III. MB-NCS WITH INTERMITTENT FEEDBACK: OUTPUT FEEDBACK CASE(STATE OBSERVER)

In the previous section we considered plants where the full vector of the state was available at the output. When
the state is not directly measurable, we must resort to a state observer. In this section we extend our results to this
situation.

As in the architecture used in [12] for instantaneous model-based feedback, we assume that the state observer
is collocated with the sensor. We use the plant model to design the state observer. Our configuration is based on
the analogous setup for model-based control with output feedback, proposed by Montestruque.

In [12] it is justified the sensor carry the computational load of an observer by the fact that, typically, sensors
that can be connected to a network have an embedded processor (usually in charge of performing the sampling,
filtering, etc.) inside.

The observer has the form of a standard state observer with gainL. It makes use of the plant model.
In summary, the system equations are the following:

Plant: ẋ = Ax + Bu, y = Cx + Du

Model: ̂̇x = Âx̂ + B̂u, y = Ĉx + D̂u

Controller:u = Kx̂

Observer:ẋ = (Â− LĈ)x̄ +
[

B̂ − LD̂ L
] [

u

y

]

Controller model state:̂x
Observer’s estimate:̄x
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Fig. 4. MB-NCS with intermittent feedback - state observer

When loop is closed:e = 0

Error matrices:Ã = A− Â, B̃ = B − B̂, C̃ = C − Ĉ, D̃ = D − D̂

The state response of the system is summarized in the following proposition.
Proposition 3: The system described above has a state response:

z (t) =

{
eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)Σkz0 , t ∈ [tk + τ, tk+1)
(2)

whereΣ =




I 0 0
0 I 0
0 0 0



 eΛo(h−τ)eΛc(τ)




I 0 0
0 I 0
0 0 0



 , and

Λo =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ A− LD̃K



 ,

Λc =




A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

0 0 0



.

The following gives a necessary and sufficient condition for stability.

Theorem 4: The system described above is globally exponentially stable around the solutionz =




x

x̄

e



 = 0 if

and only if the eigenvalues ofΣ are strictly inside the unit circle, whereΣ =




I 0 0
0 I 0
0 0 0



 eΛo(h−τ)eΛc(τ)




I 0 0
0 I 0
0 0 0



 ,

andΛo,Λc as before.

IV. MB-NCS WITH INTERMITTENT FEEDBACK: CASE WITH DELAYS

In the previous sections, we have assumed that the delays in the network are negligible. However, in reality, this
is usually not the case. We now consider the case where delays in the network are present. Although in real-life
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plants delays might be variable, for the sake of analysis we will consider the case where delays are constant and
known.

Consider the following setup:

Fig. 5. MB-NCS with intermittent feedback - delay case

The corresponding equations are as follows:
Plant: ẋ = Ax + Bu

Model: ̂̇x = Âx̂ + B̂u

Controller:u = Kx̂ , t ∈ [tk, tk+1)
Propagation unit:̆x′ = Ăx̆ + B̆u , t ∈ [tk+1 − τd, tk+1]
Update law:x̆←− x, t = tk+1 − τd ; x̂←− x̆, t = tk
This setup follows the original one proposed my Montestruque for the case with instantaneous feedback. See

[13] for more details.
The state response of the system is given by the following proposition.
Proposition 5: The system described above has a state response:
For t ∈ [tk, tk + τ)

z (t) = eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ) (3)

For t ∈ [tk + τ, tk+1 − τd)

z (t) = eΛo(t−(tk+τ))




I 0 0
0 I 0
0 0 0



 eΛcτΣkz0 , t ∈ [tk + τ, tk+1 − τd) (4)

For t ∈ [tk+1 − τd, tk+1)

z (t) = eΛo(t−(tk+1−τd))




I 0 0
0 0 0
0 I I



 eΛo(h−τd−τ)




I 0 0
0 I 0
0 0 0



 eΛcτΣkz0, (5)

where

Σ =




I 0 0
0 I 0
0 0 0



 eΛoτd




I 0 0
0 0 0
0 I I



 eΛo(h−τd−τ))




I 0 0
0 I 0
0 0 0



 eΛcτ




I 0 0
0 I 0
0 0 0



 . (6)
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We also provide a necessary and sufficient condition for stability.

Theorem 6: The system described above is globally exponentially stable around the solutionz =




x

ĕ

ê



 = 0 if

and only if the eigenvalues ofΣ are strictly inside the unit circle, whereΣ is defined by (6) andΛo,Λc are defined
as before.

V. NONLINEAR PLANTS

In the previous sections we have restricted our study to the cases where the plant is linear. Let us now lift this
restriction and seek to find the corresponding stability properties for nonlinear plants with intermittent feedback.

The setup and procedure that follows closely mirrors that proposed by Montestruque [ [10]] for traditional MB-
NCS. The sufficient conditions obtained relate the stability of the nonlinear MB-NCS with the value of a function
that depends on the Lipschitz constants of the plant and model as well as the stability properties of the compensated
non-networked model. The results are obtained by studying the worst-case behavior of the norm of the plant state
and the error, thus leading to conservative results.

Let the plant be given by:
ẋ = f(x) + g (u) (7)

We use a model on the actuator side of the plant to estimate the actual state of the plant. The controller will
be assumed to be a nonlinear state feedback controller. The control signalu is generated by taking into account
the plant model state . The plant state sensor will send through the network the real value of the plant state to
the model (that is, the loop will be closed) everyh seconds, and the loop will remain closed forτ seconds during
each cycle. During these times, the state of the model is set to be the same as that of the plant. We will assume
the plant model dynamics are given by:

ˆ̇x = f̂(x) + ĝ (u) (8)

And the controller has the following form:
u = ĥ (x̂) (9)

We define as the error between the plant state and the plant model state,e = x− x̂. Combining the above, we
obtain:

ẋ = f(x) + g
(
ĥ (x̂)

)
= f (x) + m(x̂)

ˆ̇x = f̂(x) + ĝ
(
ĥ (x̂)

)
= f (x) + m̂ (x̂) (10)

Assume also that the plant model dynamics differ from the actual plant dynamics in an additive fashion:

f̂ (ζ) = f (ζ) + δf (ζ) (11)

m̂ (ζ) = m (ζ) + δm (ζ)

Thus:

ẋ = f (x) + m (x̂) (12)
ˆ̇x = f (x) + m̂ (x̂) + δf (x̂) + δm (x̂)

Assume thatf andδ satisfy the following local Lipschitz conditions for withx, y ∈ BL, a ball centered on the
origin:

‖f (x)− f (y)‖ ≤ Kf ‖x− y‖ (13)

‖δ (x)− δ (y)‖ ≤ Kδ ‖x− y‖

It is to be noted that if the plant model is accurate the Lipschitz constantKδ will be small.
Assume that the non-networked compensated plant model is exponentially stable whenx̂ (t0) ∈ BS , x̂ (t) ∈

Bτ , for t ∈ [t0, t0 + τ) with BS andBτ balls centered on the origin.

‖x̂ (t)‖ ≤ α ‖x̂ (t0)‖ e
−β(t−t0) with α, β > 0 . (14)
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Theorem 7: The non-linear MB-NCS with dynamics described above, and that satisfies the Lipschitz conditions
described and with exponentially stable compensated plant model satisfying is asymptotically stable if:

(
1− α

(
e−β(h−τ) +

(
eKf (h−τ) − e−β(h−τ)

)(
Kδ

Kf + δ

)))
> 0 (15)

VI. ONGOING WORK

In addition to the previous results, there is ongoing work pertaining to model-based control and intermittent
feedback. We will complement the above results by investigating stability properties for cases with time-varyingτ

andh and with discrete-time plants.
Another aspect we are addressing is performance. Through simulations, we have observed that intermittent

feedback yields excellent benefits in performance, when compared to instantaneous feedback; in particular, the
benefits are especially significant in the cases when the model is of poor quality, that is, its values are very different
from those of the plant. While these simulations give us initial insight into the effect of intermittent feedback on
performance, we are also addressing this issue from a systematic, analytical perspective.

Closely tied to this are the issues of optimal control and robustness. We hope to obtain results on controller
design meeting robustness or optimality demands consistent with the intermittent feedback setup.

Another potential benefit of intermittent feedback is that, as time may pass, the model may be updated during
the closed loop intervals -through system identification techniques, for example- so that, as time elapses, the system
needs progressively less feedback to achieve satisfactory stability and performance margins. We are currently
investigating this issue as well.

Throughout this research, we keep the aim of bridging the gap between instantaneous feedback and full feedback
control.
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