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Abstract: In this paper, we apply the concept of Intermittent Feedback to a class of networked
control systems known as Model-Based Networked Control Systems (MB-NCS). We begin by
introducing the basic architecture for model-based control with intermittent feedback, then
address the case with output feedback (through the use of a state observer), providing a full
description of the state response of the system, as well as a necessary and sufficient condition for
stability in each case. Examples are provided to complement the theoretical results. Extensions
of our results to cases with nonlinear plants are also presented. Finally, we investigate the
situation where the update times τ and h are time-varying, first addressing the case where they
have upper and lower bounds, then moving on to the case where their distributions are i.i.d or
driven by a Markov chain.

1. INTRODUCTION

A networked control system (NCS) is a control system
in which a data network is used as feedback media. NCS
is an important area in control, see for example the
recent special issue Antsaklis [2007]. The use of networks
as media to interconnect the different components of an
industrial system is rapidly increasing. However, the use
of NCSs poses some challenges. One of the main problems
to be addressed when considering an NCS is the size of
the bandwidth required by each subsystem. Clearly, the
bandwidth required by the communication network is a
major concern. Recently, modeling, analysis and control
of networked control systems with limited communication
capability has emerged as a topic of significant interest to
control community, see for example Wong [1999], Walsh
[1999], Brockett [2000], Elia [2001], Zhang [2001], Ishii
[2002], Nair [2000], Took [2002], as well as recent survey
papers such as Baillieul [2007] and Hespanha [2007]. An
efficient way to address this is reducing the rate at which
packets are transmitted.

A particular class of NCSs is model-based networked
control systems (MB-NCS); Montestruque [2002]. The
MB-NCS architecture makes explicit use of the knowledge
of the plant dynamics to enhance the performance of the
system, and it is an efficient way to address the issue of
reducing packet rate. In this paper we extend the work
done in MB-NCS by taking advantage of intermittent
feedback. In the previous work done in MB-NCS, the state
updates given to the model of the plant were for a time
instant only, but with intermittent feedback the system
remains in closed loop control for more extended intervals.
This notion is also motivated by human motor control
observation, see Schmidt [2005] and Ronco [1999]. For
example, when driving a car, when approaching a curve

or hilly terrain, we pay close attention to the road for
a longer time, which is equivalent to staying in closed-
loop mode, and we only reduce our attention -switch to
open loop control, with an occasional glance to provide
instantaneous data values- when the road is once again
straight. While intermittent control is a very intuitive
notion, its combination with the MB-NCS architecture
allows for obtaining important results and opening new
paths in controlling NCSs effectively.

With the finite bit-rate constraints, quantization has to
be taken into consideration in NCSs. Therefore, quanti-
zation and limited bit rate issues have attracted many
researchers’ attention with the aim to identify the mini-
mum bit rate required to stabilize a NCS, see for example
Delchamps [1990], Brockett [2000], Elia [2001], Tatikonda
[2004], Nair [2000]. In Brockett [2000] Brockett and Liber-
zon proposed a dynamic quantization scheme, so called
“zoom-in, zoom-out” approach, to asymptotically stabilize
linear systems. The idea behind this scheme is to provide
more detailed information when the states come closer
to the origin through finer quantization (zoom-in), while
only coarser quantization (zoom-out) is sufficient for states
farther away from the origin. As an interesting observation
of a person’s response in face of changing environment, one
usually tends to pay longer attention to objects of concern,
instead of paying closer attention. This motivates us to use
intermittent feedback in NCSs. Earlier results using this
approach have appeared in Estrada [2006, 2007].

The rest of the paper is organized as follows. In Section
2, we describe the problem formulation in detail, as well
as provide a full description of the system and necessary
and sufficient conditions for stability. In Section 3, we
extend our results to the output feedback case. In Section
4, we look into the case of nonlinear plants. The case for
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time-varying updates is presented in Section 5. Finally, in
Section 6, we provide conclusions and propose future work.

2. MB-NCS WITH INTERMITTENT FEEDBACK:
SETUP AND FORMULATION

Let us start by introducing model-based control with
intermittent feedback, in its simplest setup.

The basic setup for MB-NCS with intermittent feedback is
essentially the same as that proposed in the literature for
traditional MB-NCS; see references Montestruque [2002,
2003, 2004] for more results on MB-NCS.

Consider the control of a continuous linear plant where the
state sensor is connected to a linear controller/actuator
via a network. In this case, the controller uses an explicit
model of the plant that approximates the plant dynamics
and makes possible the stabilization of the plant even
under slow network conditions.

Fig. 1. MB-NCS with intermittent feedback - basic archi-
tecture

Fig. 2. Partition of the time interval into close and open
loop intervals

The main idea here is to perform the feedback by updating
the model’s state using the actual state of the plant that
is provided by the sensor. The rest of the time the control
actions is based on a plant model that is incorporated
in the controller/actuator and is running open loop for
a period of h seconds.

As mentioned before, the main difference between model-
based networked control systems as have been studied
previously, and the case with intermittent feedback, which
we are here discussing, is that in the literature, the loop is
closed instantaneously, and the rest of the time the system
is running open loop. Here, we part from the same basic
idea, but the loop will remain closed for intervals of time
which are different from zero. Intuitively, we should be
able to achieve much better results the longer the loop

is closed, as the level of degradation of the information
increases the longer the system is running open loop,
so intermittent feedback should yield better results than
those for traditional MB-NCS.

In dealing with intermittent feedback, we have two key
time parameters: how frequently we want to close the loop,
which we shall denote by h, and how long we wish the loop
to remain closed, which we shall denote by τ . Naturally, in
the more general cases both h and τ can be time-varying.
For the purposes of this paper, however, we will deal only
with the case where both h and τ are fixed.

We consider then a system such that the loop is closed
periodically, every h seconds, and where each time the
loop is closed, it remains so for a time of τ seconds. The
loop is closed at times tk, for k = 1, 2, .... Thus, there are
two very clear modes of operation: closed loop and open
loop. The system will be operating in closed loop mode for
the intervals [tk, tk + τ) and in open loop for the intervals
[tk +τ, tk+1). When the loop is closed, the control decision
is based directly on the information of the state of the
plant, but we will keep track of the error nonetheless.

The plant is given by ẋ = Ax + Bu, the plant model
by ˙̂x = Âx̂ + B̂u, and the controller by u = Kx̂. The
state error is defined as e = x − x̂ and represents the
difference between plant state and the model state. The
modeling error matrices Ã = A − Â and B̃ = B − B̂
represent the plant and the model. We also define the
vector z = [xT eT ]T .

We derived the full state response of the system and a
necessary and sufficient condition for stability in Estrada
[2006]. For completeness, we summarize the results here.
Proposition 1. The system described above with initial

conditions z (t0) =
[

x (t0)
0

]
= z0 has the following

response:

z(t) =



eΛc(t−tk)

([
I 0
0 0

]
Σ

[
I 0
0 0

])k

z0

for t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)

([
I 0
0 0

]
Σ

[
I 0
0 0

])k

z0

for t ∈ [tk + τ, tk+1)

(1)

where
Σ = eΛo(h−τ)eΛc(τ),

Λo =
[

A + BK −BK

Ã + B̃K Â− B̃K

]
,

Λc =
[

A + BK −BK
0 0

]
,

and tk+1 − tk = h.

Theorem 2. The system described above is globally ex-
ponentially stable around the origin if and only if the

eigenvalues of
[

I 0
0 0

]
Σ

[
I 0
0 0

]
are strictly inside the unit

circle, where Σ = eΛo(h−τ)eΛc(τ).

While this theorem is restricted to the case where the time
parameters remain constant and full information of the
state is known, we believe it is a very valuable first step
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in understanding more general situations. As we will see
in the next section, the case with state observers is dealt
with in a very similar fashion.

3. OUTPUT FEEDBACK CASE (STATE OBSERVER)

When the state of the plant is not directly measurable, we
must resort to a state observer. In this section we derive
results for this situation.

As in the architecture used in Montestruque [2002] for
instantaneous model-based feedback, we assume that the
state observer is collocated with the sensor. We use the
plant model to design the state observer. See Figure 3.
Our configuration is based on the analogous setup for
model-based control with output feedback, proposed by
Montestruque.

In Montestruque [2002] it is justified that the sensor carry
the computational load of an observer by the fact that,
typically, sensors that can be connected to a network have
an embedded processor (usually in charge of performing
the sampling, filtering, etc.) inside. The observer has
as inputs the output and input of the plant. In the
implementation, in order to acquire the input, which is at
the other side of the communication link, the observer can
have a version of the model and controller, and knowledge
of the update times τ and h. The controller and the
observer are also synchronized.

Fig. 3. MB-NCS with intermittent feedback - state ob-
server

The observer has the form of a standard state observer
with gain L. It makes use of the plant model.

In summary, the system equations are the following:

Plant: ẋ = Ax + Bu, y = Cx + Du

Model: ̂̇x = Âx̂ + B̂u, y = Ĉx + D̂u

Controller: u = Kx̂

Observer: ẋ = (Â− LĈ)x̄ +
[
B̂ − LD̂ L

] [
u
y

]

Controller model state: x̂

Observer’s estimate: x̄

When loop is closed: e = 0

Error matrices: Ã = A − Â, B̃ = B − B̂, C̃ = C −
Ĉ, D̃ = D − D̂

The state response of the system is summarized in the
following proposition.
Proposition 3. The system described above has a state
response:

z (t) =
{

eΛc(t−tk)Σkz0 , t ∈ [tk, tk + τ)
eΛo(t−(tk+τ))eΛc(τ)Σkz0 , t ∈ [tk + τ, tk+1)

(2)

where Σ =

[
I 0 0
0 I 0
0 0 0

]
eΛo(h−τ)eΛc(τ)

[
I 0 0
0 I 0
0 0 0

]
, and

Λo =

 A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K

LC LD̃K − LĈ A− LD̃K

 ,

Λc =

 A BK −BK

LC Â− LĈ + B̂K + LD̃K −B̂K − LD̃K
0 0 0

.

The following gives a necessary and sufficient condition for
stability.
Theorem 4. The system described above is globally expo-

nentially stable around the solution z =

[
x
x̄
e

]
= 0 if and

only if the eigenvalues of Σ are strictly inside the unit

circle, where Σ =

[
I 0 0
0 I 0
0 0 0

]
eΛo(h−τ)eΛc(τ)

[
I 0 0
0 I 0
0 0 0

]
, and

Λo,Λc as before.

For the proof, see Estrada [2008].

3.1 Examples

We now run simulations to illustrate the above results.
Figure 4 displays the model and plant state for a high value
of τ , while an analogous plots are displayed in Figure 5 for
low values. Finally, in Figure 6 we show the maximum
eigenvalue of the system (the system becomes unstable
when this value exceeds 1), verifying the added stability
range provided by increased intermittent feedback.

For the purpose of these simulations, we used the following
values: A =[0 1;0 0.25], B =[0;1], C =[1 0], D =0,
Â =[0.0958 1.0604; -0.0066 -0.0134], B̂ =[-0.0518; 1.0269],
Ĉ =[0.9734 -0.0137], D̂ =-.0396, K =[-1 -2], L =[20;100].

The above results are useful for situations when the full
state of the plant is unavailable. An extension of our results
to nonlinear plants is presented in the next section.
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Fig. 4. Plant and model state. State observer case, h =
0.5, tau = 0.4

Fig. 5. Plant and model state. State observer case, h =
0.5, tau = 0.1

Fig. 6. Maximum eigenvalue search. State observer case,
intermittent feedback

4. NONLINEAR PLANTS

In the previous sections we have restricted our study to
the cases where the plant is linear. Let us now lift this
restriction and seek to find the corresponding stability
properties for nonlinear plants with intermittent feedback.

The setup and procedure that follows closely mirrors that
proposed by Montestruque [2003] for traditional MB-NCS.
The sufficient conditions obtained relate the stability of
the nonlinear MB-NCS with the value of a function that
depends on the Lipschitz constants of the plant and model
as well as the stability properties of the compensated non-
networked model. The results are obtained by studying the
worst-case behavior of the norm of the plant state and the
error, thus leading to conservative results.

Let the plant be given by:
ẋ = f(x) + g (u) (3)

We use a model on the actuator side of the plant to
estimate the actual state of the plant. The controller will
be assumed to be a nonlinear state feedback controller.
The control signal u is generated by taking into account
the plant model state . The plant state sensor will send
through the network the real value of the plant state to
the model (that is, the loop will be closed) every h seconds,
and the loop will remain closed for τ seconds during each
cycle. During these times, the state of the model is set to
be the same as that of the plant. We will assume the plant
model dynamics are given by:

ˆ̇x = f̂(x) + ĝ (u) (4)

And the controller has the following form:

u = ĥ (x̂) (5)

We define as the error between the plant state and the
plant model state, e = x − x̂. Combining the above, we
obtain:

ẋ = f(x) + g
(
ĥ (x̂)

)
= f (x) + m(x̂)

ˆ̇x = f̂(x) + ĝ
(
ĥ (x̂)

)
= f (x) + m̂ (x̂) (6)

Assume also that the plant model dynamics differ from the
actual plant dynamics in an additive fashion:

f̂ (ζ) = f (ζ) + δf (ζ) (7)
m̂ (ζ) = m (ζ) + δm (ζ)

Thus:
ẋ = f (x) + m (x̂) (8)
ˆ̇x = f (x) + m̂ (x̂) + δf (x̂) + δm (x̂)

Assume that f and δ satisfy the following local Lipschitz
conditions for with x, y ∈ BL, a ball centered on the origin:

‖f (x)− f (y)‖ ≤ Kf ‖x− y‖ (9)
‖δ (x)− δ (y)‖ ≤ Kδ ‖x− y‖

It is to be noted that if the plant model is accurate the
Lipschitz constant Kδ will be small.

Assume that the non-networked compensated plant model
is exponentially stable when x̂ (t0) ∈ BS , x̂ (t) ∈ Bτ , for
t ∈ [t0, t0+τ) with BS and Bτ balls centered on the origin.
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‖x̂ (t)‖ ≤ α ‖x̂ (t0)‖ e−β(t−t0) with α, β > 0 . (10)
Theorem 5. The non-linear MB-NCS with dynamics de-
scribed above, and that satisfies the Lipschitz condi-
tions described and with exponentially stable compensated
plant model satisfying is asymptotically stable if:

1−α

(
e−β(h−τ) +

(
eKf (h−τ) − e−β(h−τ)

) (
Kδ

Kf + δ

))
> 0

(11)

For the proof, see Estrada [2008]. It should be noted
that these results are conservative, and the condition is
sufficient only. Finding tighter bounds for nonlinear plants
in model-based networked control systems remains an
open problem.

5. STABILITY OF MB-NCS WITH INTERMITTENT
FEEDBACK AND TIME-VARYING UPDATES

Until now we have only considered the case where the
parameters τ and h are constant. Let us now take a closer
look at what happens when these parameters vary with
time. The definitions for Lyapunov stability and mean
square stability used throughout this section are the same
as those in Montestruque [2004].

5.1 Lyapunov stability with bounded intervals

We shall first analyze the case where the parameters
are time-varying, but their probability distributions are
unknown. Let the plant, model, and controller have the
same dynamics as described in Section 2. The following
result describes the state response of the system. The
derivation of this result is analogous to that for constant
τ and h.

Proposition 6. The system described above with initial

conditions z =
[

x (t0)
0

]
= z0 has the following response:

z (t) =



eΛo(t−tk)

 k∏
j=1

M (j)

 z0 , t ∈ [tk, tk + τ)

eΛo(t−(tk+τ))eΛc(τ)

 k∏
j=1

M (j)

 z0,

t ∈ [tk + τ, tk+1)

where M (j) =
[

I 0
0 0

]
eΛo(h(j)−τ(j))eΛc(τ(j))

[
I 0
0 0

]
, Λo =[

A + BK −BK

Ã + B̃K Â− B̃K

]
, Λc =

[
A + BK −BK

0 0

]
, tk+1 −

tk = h (k) , and τ(j) < h(j).

We now present a condition for Lyapunov stability of this
system.
Theorem 7. The system described above is Lyapunov
asymptotically stable for h ∈ [hmin, hmax] and τ ∈
[τmin, τmax] (with τmax < hmin) if there exists a sym-
metric positive definite matrix X such that Q = X −
MXMT is positive definite for all h ∈ [hmin, hmax] and

τ ∈ [τmin, τmax], where M =
[

I 0
0 0

]
eΛo(h−τ)eΛc(τ)

[
I 0
0 0

]
.

Note that the output norm can be bounded by∥∥∥∥∥∥eΛo(t−(tk+τ))eΛc(τ)

 k∏
j=1

M (j)

 z0

∥∥∥∥∥∥
≤

∥∥∥eΛo(t−(tk+τ))
∥∥∥∥∥∥eΛc(τ)

∥∥∥
∥∥∥∥∥∥

k∏
j=1

M (j)

∥∥∥∥∥∥ ‖z0‖

≤ eσ̄(Λo)hmax−τmin

∥∥∥eΛc(τ)
∥∥∥

∥∥∥∥∥∥
k∏

j=1

M (j)

∥∥∥∥∥∥ ‖z0‖

That is, since eΛo(t−(tk+τ)) has finite growth and will grow
for at most from τmin to hmax, then convergence of the
product of matrices M (j) to zero ensures the stability of
the system. Such convergence to zero is guaranteed by the
existence of a symmetric positive definite matrix X in the
Lyapunov equation.

5.2 Mean square stability of discrete MB-NCS with IF
with i.i.d update times

Now, let us consider the case where τ is constant, but
h (k) are independent identically distributed with proba-
bility distribution F (h) . This corresponds to the situation
where we might not know how frequently we can access the
network, but when we do obtain access to it, we continue
to have access to it for a fixed amount of time, so as to, for
example, complete a given task or transmit a certain set
of packets. We present a stability condition for this case:
Theorem 8. The system described above with update
times h (j) independent identically distributed random
variable with probability distribution F (h) is globally
mean square asymptotically stable around the solu-

tion z =
[

0
0

]
if K = E

[(
eσ̄(Λo)(h−τ)

)2
]

< ∞

and the maximum singular value of the expected value
MT M,

∥∥E
[
MT M

]∥∥ = σ̄
(
E

[
MT M

])
is strictly less than

one, where M =
[

I 0
0 0

]
eΛo(h−τ)eΛc(τ)

[
I 0
0 0

]
.

The proof is similar to that found in Montestruque [2004]
for the case of instantaneous feedback.

5.3 Mean square stability of discrete MB-NCS with IF
with Markov chain-driven update times

We now consider the situation where the parameter h is
driven by a Markov chain and provide a stability condition.
Theorem 9. The system described above with update
times h (k) = hωk

6= ∞ driven by a finite state Markov
chain {ωk} with state space {1, 2, ..., N} and transition
probability matrix Γ with elements pi,j is globally mean
square asymptotically stable around the solution z =[
xT eT

]T = 0 if there exist positive definite matrices
P (1) , P (2) , ... , P (N) such that N∑

j=1

pi,j

(
H (i)T

P (j) H (i)
)
− P (i)

 < 0 ∀i, j ∈ 1, ..., N

with H (i) = eΛo(hi−τ)eΛc(τ)

[
I 0
0 0

]
.
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Once again, the proof follows that in Montestruque [2004]
for the case of instantaneous feedback.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have provided a set of results for
model-based networked control systems with intermittent
feedback. We focused first on deriving stability results
and provided necessary and sufficient conditions for the
basic setup as well as the case with state observers. We
also provided sufficient conditions for nonlinear systems.
Finally, we investigated the situation where the update
times τ and h are time-varying, first addressing the case
where they have upper and lower bounds, then moving on
to the case where their distributions are i.i.d or driven by a
Markov chain, providing stability conditions in each case.

The area of performance of networked control systems,
both under the model-based architecture and otherwise,
remains a relatively unexplored ground for research. In fu-
ture work, we expect to provide results on performance of
model-based networked control systems with intermittent
feedback, and will consider other issues, such as robust-
ness, filtering, and improving control as time elapses, as
well.

REFERENCES

P. Antsaklis and A. Michel. Linear Systems 1st edition,
McGraw-Hill, New York, 1997.

P. Antsaklis and J. Baillieul. Special Issue on Networked
Control Systems. Proceedings of the IEEE, 95(1), 2007.

B. Azimi-Sadjadi. Stability of Networked Control Systems
in the Presence of Packet Losses. Proceedings of the 42nd
Conference of Decision and Control, December 2003.

J. Baillieul and P. Antsaklis. Control and communication
challenges in networked real-time systems. Proceedings
of the IEEE, 95(1), 2007.

M.S. Branicky, S. Phillips, and W. Zhang. Scheduling
and feedback co-design for networked control systems.
Proceedings of the 41st Conference of Decision and
Control, December 2002.

R. Brockett and D. Liberzon. Quantized Feedback Sta-
bilization of Linear Systems IEEE Transactions on
Automatic Control, Vol 45, no 7, pp 1279-89, July 2000.

D. Delchamps. Stabilizing a Linear System with Quan-
tized State Feedback. IEEE Transactions on Automatic
Control, Vol 35, no. 8, pp. 916-924.

N. Elia, and S. K. Mitter. Stabilization of linear systems
with limited information. IEEE Transactions on Auto-
matic Control, 2001, 46(9): 1384-1400.

T. Estrada, H. Lin, and P.J. Antsaklis. Model-based
control with Intermittent Feedback Proceedings of the
Mediterranean Control Conference, 2006, Ancona, Italy.

T. Estrada and P.J. Antsaklis. Control with Intermittent
Communication (Feedback) over a Network: Recent
Results Proceedings of the Workshop on Networked
Distributed Systems for Intelligent Sensing and Control,
2007, Kalamata, Greece.

T. Estrada and P.J. Antsaklis. ISIS Technical Report
on Model-Based Control with Intermittent Feedback
http://www.nd.edu/ isis/tech.html.

J. Hespanha, P. Naghshtabrizi, Yonggang Xu. A survey of
recent results in networked control systems Proceedings
of the IEEE, 95(1), 2007.

D. Hristu-Varsakelis. Feedback Control Systems as Users
of a Shared Network: Communication Sequences that
Guarantee Stability, Proceedings of the 40th Conference
on Decision and Control, December 2001, pp. 3631-36.

H. Ishii and B. A. Francis. Limited Data Rate in Control
Systems with Networks. Lecture Notes in Control and
Information Sciences, vol. 275, Springer, Berlin, 2002.

L.A. Montestruque. A Dissertation: Model-Based Net-
worked Control Systems. University of Notre Dame,
Notre Dame, IN, USA, September 2004.

L.A. Montestruque and P.J. Antsaklis. Model-Based Net-
worked Control Systems: Necessary and Sufficient Con-
ditions for Stability. Proceedings of the 10th Mediter-
ranean Conference on Control and Automation, July
2002.

L.A. Montestruque and P.J. Antsaklis. State and Output
Feedback Control in Model-Based Networked Control
Systems Proceedings of the 41st IEEE Conference on
Decision and Control, December 2002.

L.A. Montestruque and P.J. Antsaklis. Stability of Model-
Based Networked Control Systems with Time-Varying
Transmission Times IEEE Transactions on Automatic
Control, Special Issue on Networked Control Systems,
Vol. 49, No. 9, pp.1562-1572, September 2004.

G. Nair and R. Evans. Communication-Limited Stabiliza-
tion of Linear Systems. Proceedings of the Conference
on Decision and Control, 2000, pp. 1005-1010.

E. Ronco and D. J. Hill. Open-loop intermittent feedback
optimal predictive control: a human movement control
model. Proceedings of the Neural Information Process-
ing Systems conference, 1999.

L. Schenato. To zero or to hold control inputs in lossy
networked control systems. Proceedings of the European
Control Conference, 2007, Kos, Greece.

Richard A. Schmidt. Motor Control and Learning - A
Behaviorial Emphasis 4th edition, Human Kinetics,
2005.

J. Took, D. Tilbury, and N. Soparkar. Trading Compu-
tation for Bandwidth: Reducing Computation in Dis-
tributed Control Systems using State Estimators. IEEE
Transactions on Control Systems Technology, July 2002,
Vol 10, No 4, pp 503-518.

S. Tatikonda and S. Mitter. Control under communication
constraints IEEE Transactions on Automatic Control,
2004, 49(7): 1056-1068.

G. Walsh, H. Ye, and L. Bushnell. Stability Analysis of
Networked Control Systems. Proceedings of American
Control Conference, June 1999.

W. S. Wong and R. W. Brockett. Systems with finite
communication bandwidth constraints I: Stabilization
with limited information feedback. IEEE Transactions
on Automatic Control, 1999, 44(5): 1049-1053.

W. S. Wong and R. W. Brockett. Systems with finite
communication bandwidth constraints II: Stabilization
with limited information feedback. IEEE Transactions
on Automatic Control, 1999, 44(5): 1049-1053.

W. Zhang, M. S. Branicky, and S. M. Phillips. Stability
of networked control systems. IEEE Control Systems
Magazine, 2001, 21(1): 84-99.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12586


