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Abstract

In this paper, stability conditions for distributed control problems are derived under general integral quadratic

constraints to achieve quadratic performance. These results take the form of coupled LMIs, and the multipliers are

specified by the underlying integral quadratic constraints to model interconnections between the subsystems. It is

further shown that these stability results can be exploited for distributed controller synthesis in a similar way to

the gain-scheduling controller design in the LPV systems. The main contribution of this paper is to unify previous

stability results in one general framework of Integral Quadratic Constraints (IQC) analysis and provide lower dimension

controller synthesis conditions.

I. INTRODUCTION

Over the past few years, there has been renewed research interest in distributed control of large scale systems;

see for example, [1],[2], [3], [4], [5], [6], [7], [8], [9]. These systems are formed by the interconnection of multiple

homogeneous or heterogeneous subsystems. Their overall complex dynamical behavior is dictated by their distributed

nature and the dynamical interactions between the subsystems.

The spatially distributed nature of the system and the presence of interconnections make the sharing of feedback

information challenging. This factor has motivated new research directions in control theory where communication

constraints are considered explicitly. In particular, researchers have considered control problems with non-ideal

communication links such as limited bandwidth [10], [11], delay, and packet dropout between sensors and actuator

of these subsystems.

Because of communication and computation constraints, it is often useful to take advantage of special structures

of the underlying topology of the systems. Successful synthesis methods have been proposed for the existence

of decentralized controllers guaranteeing performance. However, these techniques only apply to systems with

specialized interconnections. For a collection of recent research results in this area, see [12], [13] and the references

therein.

Recently, a distributed control theory was developed for spatially-invariant distributed systems [2]. It is shown that

the controllers have ’identical’ structure as the underlying subsystems. A linear matrix inequality (LMI) based control

synthesis algorithm for this class of interconnected systems was developed in [2], [3] using a multidimensional
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system theory. These results were further extended in [1], [5], [14] to distributed systems over an arbitrary graph

under various communication conditions. Specifically, the results take the form of a set of coupled linear matrix

inequalities, where the particular design variables for the LMIs are shaped by the interconnections. It should be

pointed out that these stability results can be explained in the general framework of dissipativity theory [15],

and are related to the integral quadratic constraints (IQC) [16] analysis methods, since the interconnections are

generally modeled as IQCs. This distributed control theory has recently been applied to the control of large-scale

irrigation networks in Australia [17] and the performance is compared to standard centralized and decentralized

control techniques. It was shown that distributed controllers achieved similar performance to centralized controllers

and significantly better error propagation performance than simple decentralized feedback controllers. Since the

computational cost and the infrastructure cost for decentralized control does not scale well with the number of

subsystems, the distributed control appears to achieve an acceptable trade-off between performance and complexity.

The objective of this paper is first to characterize the stability conditions for distributed systems with IQC

constraints, and then to introduce a distributed controller design method using topological structures and the property

of the interconnections. The main contribution of our approach is to unify the stability results that first appeared in

[1] in one general framework of IQC analysis. This analysis is similar to what was proposed in [18], [19]. However,

here there is much more emphasis on the communication constraints between subsystems and the decoupled stability

conditions. Although stability conditions are available for the global system when it is seen as a single system,

these results are not directly applicable to distributed control design. In this paper, we show that distributed stability

conditions exist for some IQCs that can be modeled by a set of multipliers. These distributed stability conditions can

be later utilized for distributed controller synthesis. Another important contribution of the present paper is to relate

distributed control under communication constraints to the well-developed results in the literature of gain-scheduling

techniques for linear parameter varying (LPV) systems [19], [18]. Establishing and explaining the relations between

distributed control and LPV is important as it opens the way for using in distributed control problems the results

from the well-established field of LPV. Geometrically, the stability results can be interpreted from a graph separation

point view ([20], [21] [22]) following a similar proof as in [19]. As for synthesis, based on a recently extended

elimination lemma in [23], the synthesis inequalities turn out to be convex in all variables, including the scalings

[24]. It is also worth mentioning that in [1] the dimension of the controller nK
ij = 3nij for the synthesis condition,

while here we show that if the dimension of the distributed controller is greater than or equal to the associated

interconnected signals for the plants, i.e, nK
ij ≥ nij , there exist distributed controllers to guarantee the global

control performance.

The paper is organized as follows: We begin with some mathematical preliminaries and in section II, the distributed

system models are introduced. Section III is devoted to analysis of stability and performance of the distributed

systems under various interconnections. In Section IV, we derive distributed controller synthesis results and some

concluding remarks are made in Section V.

Notation. The set of real number is denoted by R, the nonnegative reals by R+. Rn×m is the set of n×m matrices.

The transpose(complex conjugate transpose) of matrix M is denoted by MT (M∗). We use Rn
S to denote n×n real
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symmetric matrices. If M ∈ Rn
S , then M > 0(M ≥ 0) indicate M is positive definite (positive semidefinite) matrix,

and M < 0(M ≤) denotes negative (negative semidefinite) matrix. For any matrix P , ker(P ) stands for the null

space of the linear operator associated with P . The inertia of a symmetric matrix A is the ordered triple in(A) =

(i+(A), i0(A), i−(A)) where i+(A), i−(A), i0(A) is the number of positive, negative and zero eigenvalues of A,

all counting multiplicity. A block diagonal matrix with Xk, . . . , Xl is denoted diagk≤i≤lXi = diag {Xk, . . . , Xl};

if e1, . . . , eL are elements of sets E1, . . . , EL, catk≤i≤lei will designate the elements (ek, . . . , el) ∈ Ek × . . . El

when 1 ≤ k ≤ l ≤ L. We will sometimes write diagi and cati instead of diag1≤i≤L and cat1≤i≤L.

The Euclidean norm of a vector x ∈ Rn is denoted by ‖x‖ = (xT x)1/2. The space of square integrable n-

dimensional functions f : (0,∞) → Rn is denoted by Ln
2 ; this is abbreviated as L2 when n is clear from context

or not relevant. The Fourier transform of a L2 function f is denoted as f̂(jω). The norm of an L2 signal and the

induced norm of an operator on L2 is denoted by ‖ · ‖, so for an operator F : L2 → L2, ‖F‖ = supu∈L2

‖Fu‖
‖u‖ . An

operator ∆ : Ln
2 → Ln

2 is said to be contractive if ‖∆v‖ ≤ ‖v‖,∀v ∈ Ln
2 . Lower case δ’s always denote operators

from L1
2 to L1

2, for u, v ∈ Ln
2 , the express v = δInu is defined to mean that uk of u and vk of v satisfy uk = δvk.

An operator δ : L2 → L2 is called self-adjoint if < u, δv >=< δu, v >,∀u, v ∈ L2. Note that all real-valued static

LTV operators are self-adjoint.

II. PROBLEM FORMULATION

A. Problem Formulation

In this paper, we will concern ourselves with systems formulated as follows. The global system consists of an

assembly of L subsystem Gi, i = 1, . . . , L connected arbitrarily. Each subsystems Gi is captured by the following

state-space equations: 
ẋi(t)

wi(t)

zi(t)

 =


Ai

TT Ai
TS Bi

T

Ai
ST Ai

SS Bi
S

Ci
T Ci

S Di




xi(t)

vi(t)

di(t)

 (1)

xi(0) = x0
i (2)

where xi(t) ∈ Rmi , di(t) ∈ Rpi , zi(t) ∈ Rqi , vi(t), wi(t) ∈ Rni for all t ≥ 0. In (1), di is the disturbance and zi

is the performance associated with Gi, while vi and wi are the overall interconnection signals used by Gi. For each

given i, vi, wi is further partitioned into vij , wij respectively. vij , wij are nij-dimension interconnection signals for

subsystems Gi, Gj . We use an operator ∆ij to model the input-output relationship for the interconnection between

subsystem Gi and Gj , such that,

vij = ∆jiwji, ∀ i, j, 1 ≤ i, j ≤ L (3)

In this model, wji is the input signal and vij is the output signal for the communication channel from Gj to Gi;

on the other hand, wji is an output signal for subsystem Gj , transmitted from subsystem Gj to subsystem Gi and

and can be regarded as an input signal vij for subsystem Gi. For example, the simplest case could be, wji = vij

which is called perfect interconnection since the input signal wji transmitted from Gj to Gi is perfectly recovered.
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The signals considered in this paper are square integrable, i.e, L2. Let ∆ij : L2 → L2 be an operator to model

the interconnection between subsystem i and j. The signal subspace defined by ∆ij is W(∆ij),

W(∆ji) =


 vij

wji

 ∈ L2nji

2 : vij = ∆jiwji

 (4)

If we denote v = cativi, where each vi can be further partitioned as vi = catjvij . For the global system,

x = catixi, w = caticatjwij , z = catizi, d = catidi are similarly defined. Note that the dimension of vij , vi and

v are nij , ni and N where ni =
∑L

j=1 nij , N =
∑L

i=1 ni.
Based on the state space representations of Gi, the state space representation of the global system can be described

as follows: 
ẋ(t)

w(t)

z(t)

 =


ATT BTS BTd

AST ASS BSd

CTz CSz Dzd




x(t)

v(t)

d(t)

 (5)

v(t) = ∆Pw(t) (6)

where ∆ ∈ ∆ is a (causal) operator from LN2 to LN2 generated via ∆ij ,

∆ = diagidiagj∆ji (7)

and the permutation matrix are chosen such that

w̄ = caticatjwji = Pw (8)

matrix ATT = diagiA
i
TT , all other matrices in (5) are diagonal matrices. Note that, although the system matrices

and the operator ∆ for the global system have a diagonal structure, the subsystems are coupled by the permutation

matrix P in (6) for interconnection signals v and w. The signal space for for v, w can be described as

W(∆) =


 v

w

 ∈ L2N
2 :

 vij

wji

 ∈ L2nji

2 , vij = ∆jiwji

 (9)

For the state-space representation of the global system (5), we represent its transfer function as follows:

G =

 G11 G12

G21 G22

 (10)

which has been partitioned to conform with the vector (v, d).

In this paper, if the system (5) is internally stable independently of the uncertainty of the interconnections ∆ij

(9), it is defined as well-posed and stable.

Definition 2.1: The interconnected system consisting of subsystems (5) and the interconnection constraints (9)

is said to be well-posed and stable if the map (I −∆PG11) has a bounded inverse on L2, for any choice of ∆

specified.

Finally, we will say that the global system G is contractive if it is stable and ‖z‖ < ‖d‖ for all d ∈ L2 and all

interconnection ∆ij .
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III. STABILITY ANALYSIS FOR DISTRIBUTED SYSTEMS

The main idea here is to first use Integral Quadratic Constraints (IQC) to model the interconnection operator

∆ij . The performance under the integral quadratic constraints for the internal signal v, w can then be casted as an

unconstrained quadratic optimization problem. For the LTI system, the stability results admit a LMI formulation.

Generally speaking, the stability results for the global system can not be used directly for distributed controller

design. Based on these results, we shall utilize the structure information dictated by the permutation matrix P for

distributed controller synthesis. By restricting our analysis to a particular set of multipliers for the IQCs, we can

derive distributed stability conditions for each of the subsystems to guarantee global performance.

We will need the following definition of Integral Quadratic Constraints.

A. Stability Analysis for the Global System

Integral Quadratic Constraints (IQC) give useful characterizations of the structure of given operators. The IQCs

are defined in term of quadratic forms which are defined in terms of self-adjoint operators. We will be particularly

interested in the case when the operators are defined on the extended spaces He = Lm
2e[0,∞). It is important to

notice that IQC is defined on the Hilbert space H.

Definition 3.1: [16] Let Π be a bounded and self-adjoint operator. Then ∆ satisfies the IQC defined by Π if

σΠ(v,∆(v)) =<

 v

∆(v)

 ,Π

 v

∆(v)

 >≥ 0, ∀v ∈ H (11)

We often call Π the multiplier that defines IQC. We will sometimes use the shorthand notation ∆ ∈ IQC(Π) to

mean that ∆ satisfies the IQC defined by Π.

Depending on the particular application, both the frequency-domain and time-domain versions of IQCs are available.

For example, if H = Lm
2 [0,∞), then Π can be taken as a transfer function satisfying Π(jω) = Π(jω)∗. The

condition in (11) reduces to

σΠ(v,∆(v)) =
∫ ∞

−∞

 v̂

∆̂(v)

∗Π

 v̂

∆̂(v)

 dω ≥ 0, ∀v ∈ Lm
2 [0,∞) (12)

Definition 3.2: Let X, Y and Z be constant real matrices and let the full rank matrix

Φ =

 X Y

Y T Z


Let H : L2e → L2e be an operator. We say H is {X, Y, Z}-dissipative if for every p, q ∈ L2e, p = H(q) implies

that ∫ T

0

 p(t)

q(t)

T  X Y

Y T Z

 p(t)

q(t)

 dt ≥ 0, ∀T ≥ 0 (13)

Note that, condition (13) can be represented as a frequency-domain IQC (12) when H is stable. For a stable

operator H , we can recover a special kind of time-domain IQC.Precisely, the condition∫ ∞

0

 p(t)

q(t)

T  X Y

Y T Z

 p(t)

q(t)

 dt ≥ 0
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is equivalently to condition (13).

Many important properties of basic system interconnections used in stability analysis can be characterized by

IQC’s with proper multiplier Π. A simple example of multiplier is

Π1 =

 I 0

0 −I


where Π1 defines a valid IQC for operators that have gain less than one. A collection of common used IQC’s has

been summarized in [16].

Based on results on (D,G)-scaling [25], the following linear time varying operators of fixed block and scalar

operators can be equivalently represented by IQCs with proper constant multiplier Π’s.

Lemma 1: • Suppose δ̃ : L2
n → L2

n, if the LTV operator δ̃ is self-adjoint and contractive, then for any

D ∈ Rn×n
S , D ≥ 0 and G = −GT , δ̃In is (D,G,−D)-dissipative.

• Suppose δ : L2
n → L2

n, if the LTV operator is contractive , then for any D ∈ Rn×n
S , D ≥ 0, δIn is (D, 0,−D)-

dissipative.

• There is a contractive LTV operator, ∆ : L2
n → L2

n such that p = ∆q if and only if ∆ is (I, 0,−I)-dissipative.

Definition 3.3: A quadratic performance is a quadratic functional σp(z, d) defined as

σp(z, d) =
∫ ∞

0

 d(t)

z(t)

T  Πp1 Πp2

ΠT
p2 Πp3

 d(t)

z(t)

 dt (14)

A system is said to satisfy σp-performance criterion over a set of disturbances if the system is well-posed, internally

stable and its performance measurement z satisfies σp(z, d) < 0.

The following theorem gives a sufficient condition for the system that satisfies the performance criterion σp < 0

over a class of signals W which can be characterized by IQCs. Based on this theorem, the main stability result of

this paper is derived.

Theorem 1: Suppose the operator ∆P in (6) is {X, Y, Z}-dissipative, then the interconnected systems (5), (6)

satisfies σp(z, d) performance (14), if there exists symmetric matrix XT ∈ Rm×m
S , XT > 0, such that the following

LMI holds true.

I 0 0

ATT BTS BTd

0 I 0

AST ASS BSd

0 0 I

CTz CSz Dzd



T 

0 XT 0 0 0 0

XT 0 0 0 0 0

0 0 X Y 0 0

0 0 Y T Z 0 0

0 0 0 0 Πp1 Πp2

0 0 0 0 ΠT
p2 Πp3





I 0 0

ATT BTS BTd

0 I 0

AST ASS BSd

0 0 I

CTz CSz Dzd


< 0 (15)

Proof 1: The proof can be found in [19].

Remark 1: The operator ∆P used to model the interconnection v = ∆Pw is characterized by several IQCs,

σw1, σw2, . . . , σwn. In this case the performance can be formulated as a convex feasibility problem over the set of
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IQCs via the lossless S-procedures,

σp(z, d) +
n∑

i=1

λiσwi(w) < 0, ∀ w ∈ L2. (16)

Remark 2: From the lossless (D,G) scaling theorem for Linear Time Invariant (LTI) systems with Linear Time

Varying (LTV) uncertainties, for the contractive operators (δ̃, δ and ∆) listed in lemma 1, the above stability results

are both necessary and sufficient for proper multipliers to model those LTV contractive operators [25]. Geometrically,

this sufficient part of proposition 1 can be proved via an separation of graph argument, and the inner matrix in (15)

can be interpreted as a hyperplane to separate the graph of the linear time invariant system G and the graph of the

time-varying interconnections operators ∆ [20]. The proof of the necessity part follows from the idea proposed in

[26] to construct a causal destabilizing operator when strict separation of the two graph is violated. The scalar case

δ, δ̃ has been proved in [27],[25] respectively. For the contractive operators listed in lemma 1, the above proposition

is a LMI reformulation of the necessary and sufficient condition presented in [25] via an application of the KYP

lemma to the LTI system (5).

B. Distributed Stability Conditions

In this section, we use IQCs to model the interconnection between subsystems. For each of the subsystems

Gi, i = i, . . . , L, let us consider a specific quadratic form on Rni ×Rni , such that

Pij(vij , wij) =

 vij

wij

T

Xij

 vij

wij

 (17)

The scaling matrix Xij is further partitioned into four nij by nij blocks as

Xij =

 X11
ij X12

ij

(X12
ij )T X22

ij

 (18)

The multipliers are chosen to model a set of interconnection operators such that the stability condition for the global

system can be equivalently represented as a set of ’decoupled’ stability conditions. In this way, it is possible to

design distributed controllers for the global system to guarantee global performance.

We are now in a position to state our first analysis conditions regarding the distributed system with interconnections

modeled by the a special set of IQCs.

Theorem 2: The interconnected system is well-posed, stable and contractive if there exist symmetric matrices,

Xi
T ∈ Rmi×mi

S and Xij ∈ R2nij×2nij

S , Xi
T > 0 such that

I 0 0

Ai
TT Ai

TS Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di



∗ 

0 Xi
T 0 0 0 0

Xi
T 0 0 0 0 0

0 0 P 11
i P 12

i 0 0

0 0 (P 12
i )∗ P 22

i 0 0

0 0 0 0 −I 0

0 0 0 0 0 I





I 0 0

Ai
TT Ai

TS Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di


< 0 (19)

σ(PX) > 0 (20)
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for all i = 1, . . . , L. where

P 11
i = diag1≤j≤LX11

ij (21)

P 22
i = diag1≤j≤LX22

ij (22)

P 12
i = diag1≤j≤LX12

ij (23)

σ(PX) =
∫ ∞

0

 v

w

T

PX

 v

w

 dt (24)

=
∑

1≤i,j≤L

∫ ∞

0

 vij

wij

T  X11
ij X12

ij

(X12
ij )T X22

ij

 vij

wij

 dt (25)

Proof 2: The above theorem is a reformulation of the global performance condition from theorem 1 by utilizing

the structural information of the IQCs and diagonal structure of the global system.

We now consider different IQCs that can be modeled by σ(PX) in Theorem 2 by choosing different scaling

matrices Xij to model the interconnection operator ∆ij .

1) Perfect Interconnections: Here we assume that ∆i,j = Inij ,∀i, j, that is, at any instance t

vij(t) = wji(t), ∀i, j, t ≥ 0 (26)

In this case,

σ(PX) =
∑

1≤i,j≤L

∫ ∞

0

 vij

wij

T

Xij

 vij

wij

 dt (27)

=
∑

i,j,i≥j

∫ ∞

0

 vij

wij

T  X11
ij + X22

ji X12
ij + (X12

ji )T

(X12
ij )T + X12

ji X22
ij + X11

ji

 vij

wij

 (28)

Suppose we choose for all 1 ≤ i, j ≤ L

X11
ij + X22

ji = 0

X12
ij + (X12

ji )T = 0

With the above parameterization, σ(PXideal
) = 0 and the family of multipliers Xideal can be characterized by the

following two sets {
X11

ij ∈ Rnij×nij

S , i, j = 1, . . . , L
}

and {
X12

ij ∈ Rnij×nij

S : X12
ii skew-symmetric, 1 ≤ j ≤ i ≤ L

}
(29)
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Proposition 1: The interconnected system (5), (6) is well-posed, stable and contractive for all ∆ij = Inij if there

exist symmetric matrices, Xi
T ∈ Rmi×mi

S and Xij ∈ R2nij×2nij

S , Xi
T > 0 such that

I 0 0

Ai
TT Ai

TS Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di



∗ 

0 Xi
T 0 0 0 0

Xi
T 0 0 0 0 0

0 0 P 11
i P 12

i 0 0

0 0 (P 12
i )∗ P 22

i 0 0

0 0 0 0 −I 0

0 0 0 0 0 I





I 0 0

Ai
TT Ai

TS Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di


< 0 (30)

for all i = 1, . . . , L. where

P 11
i = diag1≤j≤LX11

ij (31)

P 22
i = diag1≤j≤L −X11

ji (32)

P 12
i = diag

(
diag1≤j≤iX

12
ij ,diagi≤j≤i − (X12

ji )T
)

(33)

In [1], the signal space considered for the perfect interconnection case is the vector space RN instead of LN
2 .

Note that when viewing the vij(t) = wji(t) as algebraic constraints in the vector space RN , the well-posedness of

the above proposition need to be reevaluated (in RN ). Based on the matrix form S-procedure developed in [24],

[22], the well-posedness condition in RN is also guaranteed by (30).

2) Directed Interconnection with ∆ij = δijInij
: Let us now consider a new class of interconnected systems

with ∆ij = δijInij and ‖δij‖ ≤ 1.

We are seeking a new IQC to model such interconnections. Suppose we parameterize the multipliers Xij by the

following sets of matrices {
X11

ij ∈ Rnij×nij

S , X11
ij < 0, i, j = 1, . . . , L

}
and {

X22
ij = X11

ji , X12
ij = 0

}
In this case, it is straightforward to verify

σ(PXδ
) =

1
2

∑
1≤i,j≤L

〈 vij

wij

 ,

 X11
ij 0

0 −X11
ji

 vij

wij

〉
+

〈 vji

wji

 ,

 X11
ji 0

0 −X11
ij

 vji

wji

〉

=
∑

1≤j≤i≤L

< vij , X
11
ij vij > − < wji, X

11
ij wji >

≥ 0

Following similar arguments, we have the following propositions(2, 4). The sufficient part can be similarly proved

as in Proposition 1, and the necessity part follows from the lossless-(D,G)-scaling theorem for LTV uncertainties.

The details of the proof are omitted because of space considerations, they can be viewed as reformulations of the

(D,G)-scaling theorem for the distributed systems.
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Proposition 2: The interconnected system (5), (6) is well-posed, stable and contractive for all ∆ij = Inij δ, ‖δ‖ ≤

1 if and only if there exist symmetric matrices, Xi
T ∈ Rmi×mi

S , , Xi
T > 0 and for all i, j = 1, . . . , L, Xij ∈

Rnij×nij

S , X11
ij < 0 and LMI (30) are satisfied for all i = 1 . . . , L, with P 11

i = diagj(X11
ij ), P 22

i = diagj(−Xji)11

and P 12
i = 0.

Proposition 3: The interconnected system (5), (6) is well-posed, stable and contractive for all LTV ∆ij =

Inij δ̃, ‖δ̃‖ ≤ 1, δ̃ self-adjoint if and only if there exist symmetric matrices, Xi
T ∈ Rmi×mi

S , , Xi
T > 0 and for all

i, j = 1, . . . , L, X11
ij , X12

ij ∈ Rnij×nij

S , X11
ij < 0 and LMI (30) are satisfied for all i = 1 . . . , L, with P 11

i , P 22
i and

P 12
i defined as (31), (32), (33).

Proposition 4: The interconnected system (5), (6) is well-posed, stable and contractive for all LTV ∆ij , ‖∆ij‖ ≤

1, if and only if there exist symmetric matrices, Xi
T ∈ Rmi×mi

S , , Xi
T > 0 and for all i, j = 1, . . . , L, dij < 0,

X11
ij = d11

ij Inij
and LMI (30) are satisfied for all i = 1 . . . , L, with P 11

i = diagj(X11
ij ), P 22

i = diagj(−Xji)11

and P 12
i = 0.

Before we apply the stability analysis results for synthesis, the following commends are given. Theorem 2

unifies the stability results for different interconnections which can be modeled as integral quadratic constraints.

This theorem renders the performance specification based on the interconnected uncertain systems to an explicit

expression through the S-procedure, where the multipliers Xij are shaped by the structure and properties of the

interconnection operator ∆ij . Theorem 2 reflects the simple idea of topological separation of the graph generated

via the LTI plant and the LTV uncertainty.

IV. DISTRIBUTED CONTROLLER SYNTHESIS CONDITIONS

The synthesis part of this paper follows the same lines of derivation presented in [1], which are based on the

extended elimination lemma. We want to point out that for the synthesis condition corresponding to Theorem 2 in

[1], nK
ij = nij is enough since the inertia constraints for the closed-loop system are satisfied if the conditions in

(49), (50) are feasible and the multipliers are nonsingular.

Now let us consider each of subsystems Gi with control input ui and a measured output yi, in addition to the

signals given in (1), such that
ẋi(t)

wi(t)

zi(t)

yi(t)

 =


Ai

TT Ai
TS Bi

Td Bi
Tu

Ai
ST Ai

SS Bi
S Bi

Su

Ci
T Ci

S Di Di
zu

Ci
Ty Ci

Sy Di
yd Di

yu




xi(t)

vi(t)

di(t)

ui(t)

 (34)

vij = ∆jiwji (35)

for all t ≥ 0 and i = 1, . . . , L. ∆ji is an operator used here to specify the interconnection. In the rest of this paper,

without loss of generality, we assume that Di
yu = 0,∀i. Similarly to the controller considered in the LPV literature,

we are seeking controllers with ’similar’ structure as the plant: another interconnected system K with subsystems

Hui Fang and Panos J. Antsaklis, “Distributed Control with Integral Quadratic Constraints,” ISIS Technical 
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Ki, i = 1, . . . , L given by 
ẋK

i (t)

wK
i (t)

ui(t)




(Ai
TT )K (Ai

TS)K (Bi
T )K

(Ai
ST )K (Ai

SS)K (Bi
S)K

(Ci
T )K (Ci

S)K Di
K




xK
i (t)

vK
i (t)

yi(t)

 (36)

such that the closed loop system is well-posed, stable and contractive. In addition, we require nK
ij = 0 whenever

nij = 0, which means that if there is no communication between Gi and Gj , there is no communication between

controllers Ki and Kj , either.

The state vector for the subsystem xi
c has size mi + mK

i ,

xi
c =

 xi

xK
i

 .

The interconnection signal wC
ij , v

C
ij has size nC

ij = nij + nK
ij ,

wC
ij =

 wij

wK
ij

 (37)

vC
ij =

 vij

vK
ij

 (38)

Besides, since the controller K and the plant G share the same communication channel between each subsystem,

we further require

vC
ij = ∆jiw

C
ji (39)

.

Proposition 5: There exist distributed controllers with state representation (36) with nK
ij = nij and intercon-

nection ∆ij = I such that the closed-loop system is well-posed, stable and contractive if and only if for all

i = 1, . . . , L, there exist symmetric matrices (Xi
T )G, (Y i

T )G ∈ Rmi×mi

S (Xij)T
G, (Yij)T

G ∈ Rnij×nij

S for all

i, j = 1, . . . , L, and (X11
ij )G, (Y 11

ij )G ∈ Rnij×nij

S for all i, j = 1, . . . , L and (X12
ij )G, (Y 12

ij )G ∈ Rnij×nij for

i ≥ j, with (X12
ii )G, (Y 12

ii )G skew-symmetric such that (Xi
T ) > 0, (Y i

T ) > 0 and LMIs (49),(49),(49) are satisfied,

and Ψi,Φi are defined as (40), (41) respectively.

Ψi = ker
[

Ci
Ty Ci

Sy Di
yd

]
(40)

Φi = ker
[

(Bi
Tu)T (Bi

Su)T (Di
zu)T

]
(41)
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and

(Z11
i ) = diag1≤j≤L(X11

ij )G (42)

(Z22
i ) = −diag1≤j≤L(X11

ji )G (43)

(Z22
i ) = diag

{
diag1≤j≤iX

12
ij )G,−diagi<j≤LX12

ji )∗G
}

(44)

(Z̃11
i ) = diag1≤j≤L(Y 11

ij )G (45)

(Z̃22
i ) = −diag1≤j≤L(Y 11

ji )G (46)

(Z̃22
i ) = diag

{
diag1≤j≤iY

12
ij )G,−diagi<j≤LY 12

ji )I
G

}
(47)

(48)

(Ψi)∗



I 0 0

Ai
T T Ai

T S Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di



∗ 

0 (Xi
T )G 0 0 0 0

(Xi
T )G 0 0 0 0 0

0 0 (Z11
i )G (Z12

i )G 0 0

0 0 (Z12
i )∗G (Z22

i )G 0 0

0 0 0 0 I 0

0 0 0 0 0 −I





I 0 0

Ai
T T Ai

T S Bi
T

0 I 0

Ai
ST Ai

SS Bi
S

0 0 I

Ci
T Ci

S Di


Ψi

< 0 (49)

(Φi)∗



−(Ai
T T )T −(Ai

ST )T −(Ci
T z)T

I 0 0

−(Ai
T S)T −(Ai

SS)T −(Ci
Sz)T

0 I 0

−(Bi
T d)T −(Bi

Sd)T −(Di
zd)T

0 0 I



∗ 

0 (X̃i
T )G 0 0 0 0

(X̃i
T )G 0 0 0 0 0

0 0 (Z̃11
i )G (Z̃12

i )G 0 0

0 0 (Z̃12
i )∗G (Z̃22

i )G 0 0

0 0 0 0 I 0

0 0 0 0 0 −I





−(Ai
T T )T −(Ai

ST )T −(Ci
T z)T

I 0 0

−(Ai
T S)T −(Ai

SS)T −(Ci
Sz)T

0 I 0

−(Bi
T d)T −(Bi

Sd)T −(Di
zd)T

0 0 I


Φi

> 0

(50) (Xi
T )G I

I (Y i
T )G

 > 0 (51)

Proof 3: Notice that, the closed loop system for the individual subsystem with the controller described by (36)

is linear in the controller’s parameter Θi with

Θi =


(Ai

TT )K (Ai
TS)K (Bi

T )K

(Ai
ST )K (Ai

SS)K (Bi
S)K

(Ci
T )K (Ci

S)K Di
K

 (52)

If the elimination lemma from [23](see appendix) is applied to each individual stability condition derived in

Proposition 1 (30) for the closed-loop system , the necessity part follows instantly. The sufficient part follows

using similar techniques to construct the extended multiplier for the overall interconnection wC
ij , v

C
ji [24].

(Necessity) Suppose there exist symmetric matrices (Xi
T )C ∈ R

mC
i ×mC

i

S and X11
ij ∈ R

nC
ij×nC

ij

S for all i, j =

1, . . . , L, and (X12
ij )C ∈ RnC

ij×nC
ij for all i ≥ j, with (X12

ii )C skew symmetric , such that (Xi
T )C > 0 and (30) is

satisfied, then try to show that (49), (50) are satisfied. Let

P i
C =


0 (Xi

T )C 0 0

(Xi
T )C 0 0 0

0 0 (Z11
i )C (Z12

i )C

0 0 (Z12
i )∗C (Z22

i )C

 (53)
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and

P̃ i
C = (P i

C)−1 (54)

=


0 (X̃i

T )C 0 0

(X̃i
T )C 0 0 0

0 0 (Z̃11
i )C (Z̃12

i )C

0 0 (Z̃12
i )∗C (Z̃22

i )C

 (55)

Suppose P i
C is nonsingular. Applying the elimination lemma 2 to the stability condition (30) of the closed-loop

system, we have

ΦT
e



I 0 0 0 0

0 I 0 0 0

Ai
T T 0 Ai

T S 0 Bi
T d

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

Ai
ST 0 Ai

SS 0 Bi
Sd

0 0 0 0 0

0 0 0 0 I

Ci
T z 0 Ci

Sz 0 Di
zd



T



0 (Xi
T )C 0 0 0 0

(Xi
T )C 0 0 0 0 0

0 0 (Z11
i )C (Z12

i )C 0 0

0 0 (Z12
i )∗C (Z22

i )C 0 0

0 0 0 0 I 0

0 0 0 0 0 −I





I 0 0 0 0

0 I 0 0 0

Ai
T T 0 Ai

T S 0 Bi
T d

0 0 0 0 0

0 0 I 0 0

0 0 0 I 0

Ai
ST 0 Ai

SS 0 Bi
Sd

0 0 0 0 0

0 0 0 0 I

Ci
T z 0 Ci

Sz 0 Di
zd



Φe < 0

Due to the zero block of Φe, it is clear that this is the same as

ΦT



I 0 0

0 0 0

Ai
T T Ai

T S Bi
T d

0 0 0

0 I 0

0 0 0

Ai
ST Ai

SS Bi
Sd

0 0 0

0 0 I

Ci
T z Ci

Sz Di
zd



T



0 (Xi
T )C 0 0 0 0

(Xi
T )C 0 0 0 0 0

0 0 (Z11
i )C (Z12

i )C 0 0

0 0 (Z12
i )∗C (Z22

i )C 0 0

0 0 0 0 I 0

0 0 0 0 0 −I





I 0 0

0 0 0

Ai
T T Ai

T S Bi
T d

0 0 0

0 I 0

0 0 0

Ai
ST Ai

SS Bi
Sd

0 0 0

0 0 I

Ci
T z Ci

Sz Di
zd



Φ < 0

The four zero block rows in the outer factors allow us to simplify this inequality to obtain (49). Inequality (50)

can be derived via similar argument with respect to P̃ i
C .

(Sufficiency) If the LMIs (49), (49), (51) are satisfied, we can find the block multipliers (Xi
T )C , (Zi)C , such that

proposition (30) is satisfied. For this, it is enough to show that

•  (Xi
T )G (Xi

T )GK

((Xi
T )GK)∗ (Xi

T )K

−1

=

 (Y i
T )G (Y i

T )GK

((Y i
T )GK)∗ (Y i

T )K

 > 0 (56)

This result can be proved via lemma 3.

•

(X−1
ij )C =

 (X11
ij )C (X12

ij )C

(X12
ij )∗C −(X11

ji )C

 (57)

=

 (Y 11
ij )C (Y 12

ij )C

(Y 12
ij )∗C −(Y 11

ji )C

 (58)

for all i ≥ j. Notice that for i = j, (Xij)C ∈ κ
2nC

ij×2nC
ij

C , which can be proved via lemma 5, and for the

general case i > j, this can be proved via lemma 4.
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In correspondence to Proposition 2, Proposition 3, Proposition 4, the following synthesis condition can be proved

similarly to Proposition 5.

Proposition 6: There exist distributed controllers with state representation (36) with nK
ij = nij and intercon-

nection ∆ij = δI, ‖δ‖ ≤ 1 such that the closed-loop system is well-posed, stable and contractive if and only

if for all i = 1, . . . , L, there exist symmetric matrices (Xi
T )G, (Y i

T )G ∈ Rmi×mi

S (Xij)T
G, (Yij)T

G ∈ Rnij×nij

S

for all i, j = 1, . . . , L, and (X11
ij )G, (Y 11

ij )G ∈ Rnij×nij

S , (X11
ij )G < 0, (Y 11

ij )G < 0 for all i, j = 1, . . . , L and

(X12
ij )G, (Y 12

ij )G ∈ Rnij×nij for i, j = 1 . . . , L, with (X12
ij )G = (Y 12

ij )G = 0 such that (Xi
T ) > 0, (Y i

T ) > 0 and

LMIs (49),(49),(49) are satisfied, and Ψi,Φi are defined as (40), (41) respectively.

Proposition 7: There exist distributed controllers with state representation (36) with nK
ij = nij and intercon-

nection ∆ij = δ̃I such that the closed-loop system is well-posed, stable and contractive if and only if for

all i = 1, . . . , L, there exist symmetric matrices (Xi
T )G, (Y i

T )G ∈ Rmi×mi

S (Xij)T
G, (Yij)T

G ∈ Rnij×nij

S for

all i, j = 1, . . . , L, and (X11
ij )G, (Y 11

ij )G ∈ Rnij×nij

S , (X11
ij )G < 0, (Y 11

ij )G < 0 for all i, j = 1, . . . , L and

(X12
ij )G, (Y 12

ij )G ∈ Rnij×nij for i ≥ j, with (X12
ij )G, (Y 12

ij )G skew-symmetric such that (Xi
T )G > 0, (Y i

T )G > 0

and LMIs (49),(49),(49) are satisfied, and Ψi,Φi are defined as (40), (41) respectively.

Proposition 8: There exist distributed controllers with state representation (36) with nK
ij = nij and inter-

connection ∆ij , ‖∆ij‖ ≤ 1 such that the closed-loop system is well-posed, stable and contractive if and only

if for all i = 1, . . . , L, there exist symmetric matrices (Xi
T )G, (Y i

T )G ∈ Rmi×mi

S , and xij , yij ∈ R such

that xij < 0, yij < 0, (X11
ij )G = xijInij , (Y

11
ij )G = yijInij for all i, j = 1, . . . , L and (X12

ij )G, (Y 12
ij )G ∈

Rnij×nij , (X12
ij )G = (Y 12

ij )G = 0 for i ≥ j such that such that (Xi
T )G > 0, (Y i

T )G > 0 and LMIs (49),(49),(49)

are satisfied, and Ψi,Φi are defined as (40), (41) respectively.

V. CONCLUSION

In this paper, we derived stability conditions for distributed systems with IQC constraints that model the internal

interconnections. The sufficient stability results follow from an application of the S-procedure and can be proved

via a graph separation argument. Our stability theorem expresses the condition to guarantee global performance

with implicit uncertainty interconnections as one explicit conditions with design multipliers parameterized by the

uncertainty. Controller synthesis techniques from the gain-scheduling literature is also introduced in this paper

for distributed controllers design. However, questions regarding the performance limitations for these distributed

controllers compared to centralized controllers remain open research topics.

VI. APPENDIX

The following result is basically an extension of the well-known elimination lemma to a quadratic matrix

inequality. It is convenient for elimination of controller parameters from the synthesis conditions.

Lemma 2: Elimination Lemma [23]. Let P be a symmetric matrix with inertia in(P ) = (m, 0, n) and C ∈ Rn×m.
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The quadratic matrix inequality,  I

AT XB + C

T

P

 I

AT XB + C

 < 0 (59)

in the unstructured unknown matrix variable X has a solution if and only if

BT
⊥

 I

C

T

P

 I

C

B⊥ < 0 (60)

AT
⊥

 −CT

I

T

P−1

 −CT

I

A⊥ > 0 (61)

Lemma 3: [18] Suppose S1, R1 ∈ Rn×n
S , with S1 > 0, R1 > 0. Let m be a positive integer. Then there exists

matrices S2 ∈ Rn×m, S3 ∈ Rm×m
S , and S1 S2

ST
2 S3

 > 0 and

 S1 S2

ST
2 S3

−1

=

 R1 R2

RT
2 R3

 (62)

if and only if  S1 In

In R1

 ≥ 0 and rank

 S1 In

In R1

 ≤ n + m

Let us define the following four types of matrices χ2n×2n
G , κ2n×2n

G , χ
2(n+m)×2(n+m)
C , κ

2(n+m)×2(n+m)
C

χ2n×2n
G =

Θ : Θ =

 Θ11 Θ12

Θ∗12 Θ22

 ,Θ11,Θ22 ∈ Rn×n
S ,Θ12 ∈ Rn×n

 (63)

κ2n×2n
G =

Θ : Θ =

 Θ11 Θ12

Θ∗12 −Θ11

 ,Θ11 ∈ Rn×n
S ,Θ12 ∈ Rn×n,Θ∗12 = −Θ12

 (64)

χ
2(n+m)×2(n+m)
C =

Θ : Θ =

 Θ11 Θ12

Θ∗12 Θ22

 ,Θ11,∈ χ2n×2n
G ,Θ22 ∈ χ2m×2m

G ,Θ12 ∈ R2n×2m

 (65)

κ
2(n+m)×2(n+m)
C =

Θ : Θ =

 Θ11 Θ12

Θ∗12 Θ22

 ,Θ11 ∈ κ2n×2n
G ,Θ22 ∈ κ2m×2m

G ,Θ12 ∈ R2n×2m,Θ∗12 = −Θ12

(66)

Lemma 4: Suppose S1, R1 ∈ χ2n×2n
G , then for some m, there exsit a matrix S, R ∈ χ

2(n+m)×2(n+m)
C , suth that,

S =

 S1 S2

S∗2 S3

−1

=

 R1 R2

R∗2 R3

 = R (67)

Proof 4: Suppose N = (S1 − R−1
1 )−1 is nonsingular, for any m ≥ n, choose S3 ∈ RS such that, in+(S3) ≥

in−(N), in−(S3) ≥ in−(N), then there exist T , such that

N−1 = TS−1
3 T ∗ (68)

choose S3 = T , then (4) are satisfied with S3, S2 specified above and R2, R3 can be easily determined.
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Lemma 5: Suppose S1, R1 ∈ κ2n×2n
G , then for some m, there exsit a matrix S, R ∈ κ

2(n+m)×2(n+m)
C , suth that,

S =

 S1 S2

S∗2 S3

−1

=

 R1 R2

R∗2 R3

 = R (69)

Proof 5: Since for any matrix M ∈ κ2n×2n
G , in+(M) = in−(M) = n , and there exist a matrix Eii =

 I 0

0 I

,

such that

EiiME∗ii =

 In 0

0 −In

 (70)

besides,

N = (S1 −R−1
1 )−1 ∈ κ2n×2n

G (71)

By similar argument, choose S3 ∈ κ2n×2n
G , and in(S3) = in(N), then there exist S2,

N−1 = S2S
−1
3 S∗2 (72)

and R2, R3 can be easily determined.
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