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Abstract—This paper provides a sufficient framework to
synthesizel*-stable networks in which the controller and plant
can be subject to delays and data dropouts. This framework
can be applied to control systems which use “soft-real-time”

scheduling performance, the time varying delays which will
ultimately be encountered with wireless sensing and actuation
will be comparable if not more significant. Hence, the primary

cooperative schedulers as well as those which use wired andaim of this paper is to provide the theoretical framework to

wireless network feedback. The framework applies to plants and
controllers which are passive therefore thesepassivesystems can
be either linear, nonlinear, and (or) time-varying. This framework
arises from fundamental results related topassivecontrol, and
scattering theory which are used to desigmpassiveforce-feedback
telemanipulation systems, in which we provide a short review.
Theorem 3 states how a (non)linear §trictly inputor strictly outpu)
passive plant can be transformed to a discrete sfrictly inpuf
passive plant using a particular digital sampling and hold scheme.
Furthermore, Theorem 4(5) provide new sufficient conditions for
12 (and L?)-stability in which a strictly-output passivecontroller
and plant are interconnected with only wave-variablesLemma 2
shows it is sufficient to use discretavave-variablesvhen data is
subject to fixed time delays and dropouts in order to maintain
passivity Lemma [3 shows how to safely handle time varying
discrete wave-variabledata in order to maintain passivity Based
on these new theories, we provide an extensive set of new result
as they relate toLTI systems. For example, Propositiol2 shows
how a LTI strictly-output passivebserver can be implemented. We
then present a new cooperative scheduler algorithm to implement
an [°-stable control network. We also provide an illustrative
simulated example which uses gassiveobserver followed with
a discussion for future research.

. INTRODUCTION

build /2-stablecontrollers which can be subject to time-varying
scheduling delays. Such results are also of importance as they
will eventually allow the plant-controller network depicted

in Fig. 5 to run entirely isolated from the plant as is done
with telemanipulation systems. Telemanipulation systems have
had to address wireless control problems [3] years before the
MICA2 mote existed and the corresponding literature provides
results to address how to design stable control systems subject
to transmission delays in such systems. Much of the theory
presented in this paper is inspired and related to work related to
telemanipulation systems. Thus, our introduction will conclude
(Sectiorl-A) with a brief review of telemanipulation, and how

it relates topassivecontrol and scattering theory in order
too provide the reader some physical insight related to the

Sramework presented in Sectidn

Telemanipulation systems are distributed control systems in
which a human operator controls a local manipulator which
commands a remotely located robot in order to modify a
remote environment. The position tracking between the human
operator and the robot is typically maintained by a passive
proportional-derivative controller. In fact, a telemanipulation
system typically consists of a series network of interconnected

The primary goal of this research is to develop reliablsvo-port passive systems in which the human operator and

wireless control networks. These networks typically consist ehvironment terminate each end of the network [4]. These pas-
distributed-wireless sensors, actuators and controllers whiilie networks can remain stable in-spite of system uncertainty;
communicate with low cost devices such as the MICA2 arftbwever, delays as small as a few milliseconds would cause
MICAz motes [1]. The operating systems for these devicefgrce feed back telemanipulation systems to become unstable.
typically consist of a very simple scheduler, known as a cdhe instabilities occur because delayed power variables, force
operative scheduler [2]. The cooperative scheduler providegedfort) and velocity (flow), make the communication channel
common time-base to schedule tasks to be executed, howeren passive In [3] it was shown that by using a scattering

it does not provide a context-switch mechanism to interrupansformation of the power variables into poweave vari-
tasks. Thus, tasks have to cooperate in order not to dektyles[5] the communication channel would remain passive
pending tasks, but this cooperative condition is rarely satisfigd. spite of arbitrary fixed delays. For continuous systems, if
As a result, a controller needs to be designed to tolerate tinaelditional information is transmitted along with the continuous
varying delays which can be incurred from disruptive tasksave variablesthe communication channel will also remain
which share the cooperative scheduler. Although, other opena&ssive in the presence of time varying delays [6]. However,
ing systems can be designed to provide a more hard real-tiordy recently has it been shown how discretave variables
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can remain passive in spite of time varying delays and dropouts
[7], [8]. We verified this to be true for fixed time delays
and data dropouts (Lemnf). However, we provide a simple
counter example that shows this is not the case for all time-
varying delays and provide a lemma which states how to
properly handle time varying discrete wave variable data aEd 1. Telemanipulation system depicted in the s-Domain, subject to
maintainpassivity(Lemma3). The initial results from [7] build communication delays.
upon a novel digital sample and hold scheme which allows
the discrete inner-product space and continuous inner-product
space to be equivalent [9], [10]. delays between the master controller and slave manipulator
We will build on the results in [9] to show in general howin which the delays can be as small as a few milliseconds.
to transform a (non)linearstrictly input or strictly outpu) Instabilities may occur when the communication channel be-
passivesystem into a discretesffictly inpu) passivesystem comes a non-passive element in the telemanipulation system
(Theorem3). We then formally show some potentially new5]. Wave variablesare used here to communicate commands
[2-stability results related tetrictly-output passivenetworks. and provide feed-back in telemanipulation systems, because
In particular Theorer2 shows how to make a discrgpassive they allow the communication channel to remain passive for
plant strictly-output passiveand [2-stable Theorem2 also arbitrarily fixed delays. The variables which traditionally in
makes it possible to synthesize discrstéctly-output passive the past were communicated over a telemanipulation channel
systems from discretgpassive LTIsystems such as thosewerepower variablesuch as force and velocity+(:). Power
consisting of passive wave digital filters [11]. We will then useariables generally denoted with amffort and flow pair
the scattering transform to interconnect the controller to tle,,f.) whose product is power, are typically used to show the
plant with wave variablesWe use Lemma to show that the exchange of energy between two systems usiogd graphs
cooperative scheduler can allow time varying data transmissid®], [17]. Some other examples efffort and flow pairs of
delays and maintain passivity between the plant and controllpawer variablesare voltage and current/(g), and magneto-
As a result our digital control system implemented with enotive force and flux rateX,y). Wave variablesare denoted
cooperative scheduler will remai-stable We conclude this by the following pair of variables,,v,), the transmission
introduction with a brief discussion of telemanipulation sysvave impedancé > 0 and the channel communication time
tems,passivityand scattering theory from continuous time andelay T [5]. The transmission between the master and slave
classic control framework. Sectidh provides the necessarycontroller (as depicted in Fid in the s-Domain) are governed
definitions and theorems necessary to present our main resiisthe following delayed equations:
Sectiorilll! shows our main results and outlines how to design a

driver which allow the digital controller to be implemented as us(t) = um(t = T) )
a cooperative task managed by a cooperative scheduler, such
as the one provided b$OS SectionllV] concludes with a vm(t) = vs(t = T) 3)

simulation implementing the cooperative scheduler to control
a passive system. Sectidisummarizes our key findings andin which the input waves are computed using
discusses future research directions. o) — b (1) + em(t)

A. PASSIVE SYSTEMS AND TELEMANIPULATION. v2b

Passive systems are an important class of systems for which va(t) = bfsa(t) — ec(t)
Lyapunov like functions exist [12]-[15]. The Lyapunov like 5 V2b

funct:t|on ?”‘I’ﬁs fr?m tfhehdef|n|§|ontof %asswnzg()(ln.passwcla These simple wave variable transformations, which can be
systems), the rate of change in stored enemy,,. Is equa applied to vectors, allow us to show that the wave commu-

to the amount of power put in to th_e systefiy, minus the nication channel is both passive and lossless assuming zero
amount of power dissipate®;;ss which is greater than or initial conditions

equal to zero.

(4)

®)

Estore = Pin — Paiss (1) / t 1
. . Estore(t) = /PzndT - / uqnum + ’U sUs > 0 (6)
As long as all internal states of the system are associated T2 2
with stored energy in the system, we can show that a passive
System is stable when no |nput power is present S|mp|y by Sb’l Flg 1, the transfer function associated with the master
ting P, = 0. Pyiss > 0 implies thatE,.o.. < 0 which shows manipulator is denoted7,,(s) and is typically apassive

the system is Lyapunov stable. By using either the invariant $8@ss. Furthermore, the slave manipulator is denoted by the
theorem or Barbalat’s Lemma [13] we can prove asymptofieansfer functionG(s) and is typically apassivemass. The
stability [4]. These passive systems can be interconnec@Fsive‘proportional-derivative” plant controlleK’rp(s) has

in parallel and feed-back configurations and are fundament@¢ following form:

components in telemanipulation systems [4]. Instabilities can Bs+ K

occur when a telemanipulation system incurs communication Kpp(s) = ——— (1)

0



« T ol II. PASSIVE CONTROL THEORY
: T Passive control theory is extremely general and broad in that
CSa e : i) it applies to a large class of controllers for linear, non-linear,
C "l continuous and discrete control systems. In [12] control theory

for continuous and discrete passive systems is presented. In
Fig. 2. Block diagrams depicting the wave variable transformation (simplifie@articular, passive control theory has been used in digital
version of Fig. 3 in [20]). adaptive controtheory to show stability of variousarameter
adaptation algorithms[21]. Additional texts which discuss
non-linear continuous passive control theory are [13]-[15]. In
[22] a comprehensive treatment is dedicated to the passive
control of a class of non-linear systems, known Eager-
Lagrange SystemEuler-Lagrange Systentsin be represented
by a Hamiltonianwhich possess a Dirac structure that allows
dissipative and energy storage elements to be interconnected
to ports without causal specification [23, p. 124]. Thus, in
Fig. 3. A delay-insensitive system in which a passive controller command€3] @n extensive treatment on intrinsically passive control
a passive plant. using Generalized Port-Controlled Hamiltonian Systems is
presented, in particular as it relates to telemanipulation and
scattering theory. Our presentation of passive control theory
focuses on laying the groundwork for discrete passive control
The plant controller is “proportional-derivative” in the senséheorems, mirrors the continuous counterpart results presented
that the integral of the flow variablg, yields a displacement in [14], and is based off of the continuous and discrete
variableg, which is then multiplied by a proportional gafi theorems in [12].
and derivative termB. Since both the plant and controller
are zero-state observable, then: wheiis) = eq(s) = 0 A, |2 STABILITY THEORY FOR PASSIVE NETWORKS
the system is stable in regards to the plants velocity and theDefinition 1: The 2

velocity equilibrium point= 0 (note that the final position of . space, is the real space of all bounded,

; " o infinitely summable functions (i) € R™. We note thatR™
the plant is dependent on the systems initial condition) [11I IS ) .
Proposition 3.4.1, Remark 3.4.3]. This velocity equilibriu could be replaced witlC" in () without loss of generality.

rrbenoting (-,-) as an inner product space [24], tife space
holds in spite of arbitrary fixed delays in the systene,ifs) = . ’ . , . ’ )
0 then it can be shown that (s) is positive real forb > 0 is the set of all functionsf(:) which meet the following

(see [18] for explanation of{(s)). We may be able to show inequality §).
that the system i€.? stable where,(s) = 0 using Theorem 2 Z(f*(z‘), fl@) <o (8)
in [19]. However, we will show that it is sufficient faK pp(s) i=0

andGp(s) to be modified to bstrictly-output passivén order A truncation operator will be defined as follows:
to satisfy L? stability for vb > 0 and bothe,(s) and r,(s)

can be signals i.2. The sufficient proof for bottL.? and? , f(i), FO<i<N
stability is given in Sectioiilll Although the wave variables n(i) = {07 otherwise
(u+,v,) do not need to be associated with a particular direction

as do the power variables, when interconnected with a phikewise the extended space/, is the set of all functions
of effort and flow variables an effective direction is implied/(¢) which meet the following inequalitylQ).

C)

Fig. 3 shows how to implement the wave transform for both N—1
cases. Figll can be modified to yield the following system Z (f*(i), f(i)) < oo, N > 1 (10)
in which a passive controlleKpp(s) is able to command a i=0

passive plants,(s). The plant will follow the negative flow Note thatl? c [2. Typically I2 is defined with the summation

set-pointrs (s). If we preced;e the flow set-point with a causal,, n; 5 the truncation include’ [21, p. 75] and [12, p. 172],

gzg@g‘lgiggﬁggn‘f](e?t s:etjpsgilm ;t(z;en the plant will track a however, these definitions are equivalent and is convenient for
' future analysis. Finally we can define olfrnorms [(L1) and

The following observations, have been made by simulatiigincation of the/? norm [12) as follows:

this system: If the plant is g@assivemass, then the plant 0o

displacement will equal the negative displacement set-point I1f (@)= = (Z(f(z’),f(i)))% (11)
at steady state. If the plant gassiveand stable such as a i=0

mass-spring-damper, then steady state error will occur. So far N1

the discussion has taken place with respect to the continuous IF@) N2 2 (F@), ()N 2 (FG), () (12)
time domain we have shown that delayed data to and from the et

controller Kpp(s) can occur in an isolated manner such thathe following definition fori2-stability is similar to the one
a passive control system can be designed. given in [25] which refers to [14] in regards to stating that
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finite 2-gain is sufficient for/2-stability, however, in [14] this R=0.50(8),T=25seconds
is only stated for the continuous time case. We provide a short ‘ ‘ ‘ ‘
proof for the discrete time case and note where it parallels [14]
for completeness.

Definition 2: Let the set of all functions (i) € R™, y(i) €
R? which are either in thé®> space, oi? space be denoted as
P(UYI2(U) and I2(Y)/I2(Y) respectively. Then defin€ as
an input-output mapping- : I2(U) — [2(Y), such that it is
[2-stable if

m),E/E,(Joules)

u € *(U) = G(u) € I*(Y) (13)
The mapG hasfinite 12-gain if there exist finite constants
andb such that for allv > 1 I S
)

(G (W) nll2 < Yllunllz + b, Vu € E(U) (14)

holds. EquivalentlyG has finite [2-gain if there exist finite
constantsy > + andb such that for allNv > 1 [14, (2.21)]

1(G(w)) N2 < A3 lun|? + 1}’ = lg(U) (15) input u al_"nd outputy. This is accomplished b_y_ closin_g_the
loop relative to a reference vectorwith a positive definite
feedback gain matri¥X > 0 such thatu = r — Ky.

Theorem 2:Given apassivesystem with inputu, output

Fig. 4. lllustration showing(v(z), F'(¢))n = (v(t), F'(¢))NT

holds. If G hasfinite 12-gainthen it is sufficient for2-stability.
The proof is as simple as lettinge /?(U) and N — oo which

leads [07) to G(u) = y, a positive definite matri¥’ > 0, and new reference
1(G(w)2 < 7lull2 + b, Yu € *(U) (16) Vectorr. If the inputu = r — Ky, then the new mapping.; :
o r — y is strictly-output passivevhich impliesi?-stability.
which implies 3) and completes the proof. Proof: First we use the definition of passivity f¢¥ and

Lemma 1: [14, Lemma 2.2.13] Thé*-gain v(G) is given gypstitute the feedback formula for

as
~(G) = inf{#|3bs.t.(15)holds} 17) (y,u)y =(y,r — Ky)y = = (22)

Next we will present definitions for various types of passivit
for discrete time systems.

Definition 3: [12], [14] Let G : [2(U) — [2(U) then for (Y, )n = A (K |yl53 — B (23)
alluel?(U)andallN > 1:

I. G is passiveif their exists some constani such that

(18) holds.

¥hen we can obtain the following inequality

in which \,,(K) > 0 is the mimimum eigenvalue fo¥.
Hence, [23) has the form of19) which showsstrictly-output
passiveand impliesi?-stability. [
(Gu)uy 2 =B (18) It is important to note that for very small maximum eigen-
Il. G is strictly-output passivéf their exists some constantsvalues, the system is essentially the nominal passive system

G ande > 0 such that/19) holds. we started with. This is important, for we can design more
9 general passive digital controllers and modify them with this
(Gu),u)n 2 €| (Guw)n ]2 — 8 (19) " simple transform to make thestrictly-output passive
lll. G is strictly-input passivef their exists some constants
p andd > 0 such that20) holds. B. INNER-PRODUCT EQUIVALENT SAMPLE AND HOLD
(G(u),u)y > S|lun|z — 3 (20) In this section we prove Theore® which shows how a
Theorem 1:Let G : [2(U) — [2(U) be strictly-output (non)linear étrictly input or strictly outpuj passive plant can
passive ThenG hasfinite [2-gain. be transformed to a discretstyictly inpuf) passive plant using

Proof: The proof for the discrete case is practically the particular digital sampling and hold scheme. This novel zero-
same as for the continuous case given in [14, Theorem 2.2.1a¥jer digital to analog hold, and sampling scheme proposed
for completeness we denote= G(u), and rewrite [19) by [9] was to yield a combined system such that the energy

9 exchange between the analog and digital port is equivalent.

cllynllz < (g ww + 5 This equivalence allows one to interconnect an analog to
< {y,u)n + B+ EHLUN —Veyn||? (21) a digital Port-Controlled HamiltonianPCH) system which

. 27 e yields an overall passive system. In [10], a correction was

L 2, ¢ 2 made to the original scheme proposed in [9]. In order to prove

=h+ QEHUNHQ * 2HyN”2 Theorem3, we will restate the sample and hold algorithm

thus moving all terms of; to the left, 21), has the final form with a slightly modified nomenclature. Fig.shows a simple
of (15) with [2-gain ¥ = % andb = %. m example of a continuous forcé;(t) (solid blue line), being
The requirement fostrictly-output passivés a relatively easy applied to a damper with damping ratid5 (kg/s-m). The
requirement to obtain for @assiveplant with mapG and force is updated at a rate @f seconds, such that at= i7" the



corresponding discrete forcé&)(i) (circles), update$’(¢) and
is held for an additionall’ seconds. The discrete “velocity”,
v(i) (diamonds), is defined as(i) = (xz(i + 1) — x(2)).
The discrete “position”x(¢), is the sampled integral of the
continuous velocity,v(t) (solid magenta line), up to time
t = 4T. Likewise z(i + 1) is the sampled integral of the
predicted continuous velocity up to time + 7. Note that
the solid green lineg(t) denotes the integral of the contin-

uous velocity. Finally, the continuous inner-product integr

(F(t),v)nr = [NT(F(t),0(1)), is denoted by the solid

red line. The discrete inner-product summatianz), F(i)) N,
is indicated at each indexwith a blue square, thus showing substituting [28) and 24) into (27) results in
equivalence tq F'(t),v(t)) Nr-

Definition 4: [9], [10] Let a continuous one-port plant be (y(@),u(i))ny > To|u(i)nll5 = B,YN =1 (29)
denoted by the input-output mappiig., : L2(U) — L2(U).
Denote continuous time as the discrete time index ag
the continuous input as(t) € LZ(U), the continuous output |,
asy(t) € L2(U), the transformed discrete input asi) € '
I2(U), and the transformed discrete outputids) € (2(U).

The inner-product equivalent sample and ho{tPESH is (y(t),u(t))r > €lly(t)+]|5 — B,¥7 >0 (30)
implemented as follows:

I z(t) = jot y(7)dr

Il y(@) =2((@+1)T) — 2(iT)

M. w(t) =wu(i),vt € [iT,i(T + 1))

all—'ﬁg. 5. [2-stabledigital control network for cooperative scheduler

therefore, the transformed discrete systép satisfies
(20) and completes the proof of Theore3Hl.

Let 7 = NT, then since the continuousrictly-output
passivesystemG; satisfies

however, no direct relationship can be made between
lly(t)- |3 and||ly(i)x||3. But Definition 4111 still implies
(28), and sinceG,; is strictly-output passive which
implies finite 2-gain such that

As a result . 28
(y(i), u(i))n = (y(t), u(t)) nr, YN > 1 (24) ly@)-1Iz < Sllu®)-115+ =
holds. < EZZHu(i)NH% + ? (31)

Theorem 3:Using the IPESH given in Definition/4, the o _ .
following relationships can be stated between the continuous holds. Substituting3]) into (30) results in
one-port plant,G.;, and the discrete transformed one-port o T, . 2
plant, G : 12(U) — 2(U): (@), u@)n = —[ul@)wl3 - B0 - 2), YN 21 (32)
I. If G, is passivethenG, is passive

. : . ' ) ) _ therefore, the transformed discrete systéin satisfies
II. If G is strictly-input passivehen G is strictly-input

(20) and completes the proof of Theore3Hlll

passive
. . . . . . | |
ll. If G is strictly-output passivéhen G, is strictly-input . . . L .
passcitve y-output p d y-Inp Continuous and discrete linear time invariant systems have an

important property in that if they arsetrictly-input passive

This i | It, in which Theore3A fi - . . .
IS IS a general result, in whic eordi] was defined é%ey havefinite L?/I?-gain and arestrictly-output passive

for the special case in which the input was a force and t
output was a velocity [10, Definition 2] and for the special
case when interconnectii®CH systems [9], [26, Theorem 1]
Proof:

I. Since the continuoupassivesystemG,; satisfies

orollary'8).
Corollary 1: Using thelPESHdefined by Definitiord, the
"following relationships can be stated between the continuous
LTI one-port plant(.;, and the discrete transforméd| one-
port plant,G, : 12(U) — 12(U): If G is eitherstrictly-input
(y(t),u(t)), > —B,¥7 >0 (25) passiveor strictly-output passivéhenG, is bothstrictly-input

o ] ) passivewith finite /2-gain and strictly-output passive
then by substituting24) into (25) results in

(i), u(i))y > —B,YN > 1 (26) ll. MAIN RESULTS

which satisfies[18) and completes the proof of Theo- Fig. 5 depicts our proposed control scheme in order to
rem/3IL ’ guaranted? stability in which the feedback and control data

Il. Let 7 = NT, then since the continuoustrictly-input €an be subject to variable delays between the controller and
passivesystemG,; satisfies the plant. Depicted is a continuous passive plapte,(t)) =
fp(t) which is actuated by a zero-order hold and sampled
(y(t), ut))r > dllu(t)- |3 - 8,97 >0  (27) by anIPES ThusG, is transformed into a discrete passive
plant Gap(ep(i)) = fop(i). Next, a positive definite matrix
K, is used to create a discresgrictly-output passiveplant
llu(t)-|12 = T||u(i)n]3 (28)  Gopleop(i)) = fop(i) outlined by the dashed line. Next,,

and Definition4I1T] implies
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is interconnected in the following feed-back configuration such  Proof: With the exception that th&PESH is no longer

that

I(vop)wl3)  (33)

<f0p» edoc>N

5 (I (wop) w5 -

the strictly-output passiveligital controller Go.(foc) = €oc
we first note that

2 Ctoe) w13

I(voc)n1I3)  (34)

<fopd7 6oc>N -

involved and the discrete time delays are replaced with con-

tinuous time delays. The proof is completely analogous to the

proof given for Theorend. ]

In order for B7) to hold, the communication channel/ data-
Buffer needs to remaipassive It has been proved in [26] that
the discrete communication channel is passive for both fixed
delays [26, Proposition 1] and variable time delays including
loss of packets [26, Proposition 2], as we will show with a
different and straight forward proof.

holds due to the wave transform. The wave variablesLemma 2:If the discrete time varying delays are fixed
uoc (1), vop(i) are related to the corresponding wave variablggi) = p, c(i) = ¢ and/or data packets are dropped thai) (

Uop (1), Uoc(7) and by the discrete time varying delgy@), c(7)
such that
UOC(i) = UOP(i - p(z)) (35)
Vop (1) = Voc (1 — ¢(4)) (36)

(35) and B6) hold. Finally the positive definite matriX. is
used to make thpassivedigital controllerG.(f.(i)) = ec(i)

holds.

Before we begin the proof, we denote the partial sum from
M to N of an extended norm as follows

N—-1

Z (x*, x)
=M

In order to satisfy/37), (33) minus B34) must be

A
HI(M,N)Hg =(z 733>(J\17N) = (43)

Proof:

strictly-output passiveTypically, .. can be considered thegreater than zero, or

set-point in whichf,,q(i) ~ —r..(i) at steady state, while
rop(1) Can be thought as a discrete disturbance. Which Ieaég

us to the following theorem.
Theorem 4:The system depicted in Fifl is [2-stableif

<fop7 edoc>N Z <eocv fopd>N (37)

holds for allN > 1.

Proof: First, by theorem3dl, G, is transformed to a
discretepassiveplant. Next, by theoren2 both the discrete
plant and controller are transformed into strictly-output
passivesystems. Thestrictly-output passivelant satisfies

(fops €op) N = 6op”(fop)NH% — Bop (38)
while the strictly-output passiveontroller satisfies39).
<eoca foc>N Z 6ocH(eoc)NH% - ﬁoc (39)

Substituting.egoc = 7op
yields

— eop AN fopd = foc — T'oc iNt0 (37)

<f0pa Top — eop>N Z <eOC7 foc - roc>N

which can be rewritten as
Z <fopveop>N + <eocafoc>N (40)
so that we can then substitu:8g{ and 39) to yield

> e([|(fop) 115 + II(eoc)n1I3) —
(41)

in which ¢ = min(e,p, €oc) aNd 8 = Bop + Boc. Thus @)

satisfies/19) in which the input is the row vector df,,, 7],

<fop7 Top>N + <eoca TOC>N

<fop7 rop>N + <eoca Toc>N

and the output is the row vectdf,,, e..] and completes the

proof. |
Theorem 5:The system depicted in Figh without the

IPESH in which i andt denote continuous time i52-stable

if

(42)

<fop>edoc>7' Z <6007f0pd>7'

holds for allT > 0.

pINIZ = 1 (ap)113) = (I (oc) N 113 = | (Woe)w [13) 2 0
)N||2 — [[(toc) N” (H(UOC)NH% - H(UOP)NH%) >0
(Iop) w13 = ll(uop(i — p(@)) 1I3)+
(I(oe) M 113 = I1(voe (i = (@) v 13) =
(44)

holds. Clearly '44) holds when the delays are fixed, &)
can be written to show

ml3) >

the inequality always holds for all < p,¢ < N. Note if p
andc equal zero, then inequality ii#E) becomes an equality.
If all the data packets were dropped théjts,.)n||3) =
and ||(vop) v|13) = 0, such that87) holds and all the energy
is dissipated. If only part of the data packets are dropped, the
effective inequality described by4) serves as a lower bound
> 0; hence dropped data packets do not viol&#).( [ ]
[26, Proposition 2] is to broad in stating that the commu-
nication channel is passive in spite of variable time delays
when only the transmission of one data packet per sample
period occurs. For instance, a simple counter example is to
assumep(i) = i, then @4) will not hold if N||(uep)13 >
(I(uop) N 113 + [[(voc)n||3). Clearly other variations can be
given such thatp(i) eventually becomes fixed and never
changes after sending olduplicate samplesand still 37)
will not hold. Therefore, we state the following lemma:
Lemma 3:The discrete time varying delays(i), c(i) can
vary arbitrarily as long as4d) holds. Thus, the main assump-
tion (37) will hold if:
1) we change(i) = (i+1), which setSu,.(i) = ugy(—1) =
0, when ever a duplicate,, (i — p(¢)) would be received
(ie. we eliminate duplicate transmissions). We also need
to changec(i) = (i+ 1), which setsv,, (i) = vee(—1) =
0, when ever a duplicate,.(i — ¢(7)) would be received.
2) we change(i) = (i+1) and/orc(i) = (i+1) in order that
(44) holds. This requires us to track the current energy

(I (top) (v —p), M) 13 4 11 (Voe) (N —p), (45)



storage in the communication channel. A similar energjtenceC, = C,(®, — I), andD;, = C,I', which completes

storage audit is discussed in [27, Section V] withouhe proof. |
using wave-variables. In [6] a similar audit is describetdsing Propositiorill and Theoren the following corollary
for the continuous time case. can be shown:

Corollary 2: Given a positive definite matri¥, > 0 and

A PASSIVE DISCRETE LTI SYSTEM SYNTHESIS discretepassivesystem described bbl), the system

In [28], using dissipative theory and a longer proof than we 2(k+1) = Sspr(k) + Tspu(k)
will provide, it was shown how to synthesize a discrete passive y(k) = Cspx(k) + Dgpu(k) (53)
plant from a linear time invariant 1) plant. The advantage ofi
such a result is that one does not need to measure an integrast
output from the passive plant. However, if one is concerned b, = P, - T K (I+D,Ky) 'Cp
with controlling the integrated output such as position, one Wi!l Tsp = T'o(I — Ky (I+ D K,) 'Dy)
probably have this measurement as well as the corresponding 1
passive output such as velocity. We will also show how an Cop = (I+ DpKy)™ Gy
observer, based on the integrated output measurement can still Dy, = (I+DpKx) 'Dy (54)
be used. Such an observer maintains passivity and elimina@éh our discretestrictly-output passiveystem we can scale
the need to directly measure the actual passive output sucisgain so that its steady state gain matchestetly-output
the velocity. The proof for the observer will follow a similarPassivecontinuous systems steady state gain.
proof by [29]. Corollary 3: Given a diagonal matri¥Xs > 0 and discrete
A passive continuous time.Tl system, H(s), which strictly-o_utpl_Jt passiveystem _describ_ed b'_53),_ t_he following
is described by the following state space representatig¥Stem isstrictly-output passiver strictly positive real
{A c Rnxn7.t]a c }%lf-wp7 C le Rptx.n7Df - iRpxpt} i;{c(aicadded w(k+1) = ®gpa(k) + Tepu(k)
in series with a diagonal matrix of integrator&;(s), de-
scribed by{A; = 0,B1 = I, C; = I, Dy = 0}. The combined y(k) = KsCep (k) + KeDapu(k) (55)
system,H,(s) = H(s)H (s), is described by{A,, Bo,Co}. in which each diagonal element

esérictly-output passiver strictly positive real Here

Where . . , . .
A 0] _ ) x(nip) k(i) = Jue@/ya(@Vi e {1,....p} if (i) andya(i) # 0;
A, = €R 46) ks(i) =4 .
CcC o T otherwise
(56)
B. — B c R(vP)xp (47) The vectorsy./y, correspond to the respective steady state
° |D continuous/discrete output of strictly-output passiveplant

given a unit step input. These vectors can be computed as
Co=[0 I eRrr*(ntr) (48) follows:

-1
Applying a zero-order-hold, the system is described by [30]Yc = (—CeAe™ Be + Do)l
Yd = Hsp(z = 1)1’ HS;D('Z) = CSP(zI - <I)Sp)_1FSP + Dsp

x(k+1) = ®ox(k) + Tou(k) (57)
in which Gx =14+ DKx
o, = eheT Cc=Gx 'C
T D.=Gx 'D
T, - / Ao dyB, (50)
0 A.=A - BK,C,
B. =B(I-K\D.) (58)

Proposition 1: A passive continuous timeLTl system, Next, the following corollary provides a method to compute
H(s), can be converted to a discrete pastiVesystem(G, (2)  w,,(k), fop(k) Qiven r,,, vy, b. We can also synthesize the
at a sample rat@ in which the discrete state equations are digital controller from a continuous model using fRESwith

_ ZOH as well, so an additional corollary will show how to
ok +1) = ®ox(k) + Tou(k) computevee(k), eoc(k) given uye(k), roc(k).
y(k) = Cpa(k) + Dpu(k) (1) corollary 4: The following state equation describes the
in which Cp, = Co(®, — I), andD,, = CoT. gelatlznsh|p betwee]: the |knput$p, vop and scattering gain
Proof: From Definition|4 it is a simple exercise to to the outputSiep (k), fop (k).
compute the passive outputk) = p(k+1) — p(k) as follows 2(k + 1) = ®era(k) + Top(V2b00p (k) + rop (k)

z(k+1) = ®ox(k) + Tou(k) fop(k) = Cog(k) + Dot (V2bvoy (k) + rop(k))
y(k) = Co(®o — I)a(k) + CoTou(k)  (52) Uy (k) = V2b fop (k) — vop (k) (59)
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the augmented observer state vectorcagk) 2 [x(k), e(k)]
the system dynamics are

Here

G =1+ bK.Dyp,

Cef — GflKSCSp xob(k + 1) = éobzob(k) -+ Fobu(k)

Der = GfleDsp 9(k) = KsCobzop(k) + Kstu(k) (65)
q)ef = (I’sp - brspcef where
Pef = Tsp(I — bDer) (60) 3, 0
Corollary 5: The following state equation describes the ®op = {0 B, — KeCO:|
relationship between the inputs,, u,. and scattering gain r
b to the outputv,.(k), eoc (k). Top = { 0"}
Cop = [Cp Cp] (66)

:L'(k + ].) = ‘I)fel’(k) + Ffe(\/zuoc(k) + 7'oc(k))

Proposition 2: If the sampled_TI system is eithestrictly-
input passiveor strictly-output passiveand K. is chosen so

eoc(k) = Crex(k) + Dfe(\/zuoc(k) + 70c(k))

Voo(k) = toe(k) — \/Eeoc(k) (61) that the eigenvalue_s ab, — Ke_C0 are in_side _the unit cir_cle
b the observer described b$4) is both strictly-input passive
Where with finite [2-gain and strictly-output passive
1 Proof: First by choosing the eigenvalues to be inside the
Gy=1+ ngDsp unit circle there exists two matric&€3, > 0 andP, > 0 such
4 that the following Lyapunov inequality is satisfied
Cfe = Gl KsCsp
Do = G 'K, Dy, —Qz = (P — KcCo) P (@, — K.Co) <0 (67)
Pse = P, — lrspcfe In order to satisfy the requirements of Lem#ave consider
b 1 the following symmetric positive definite matrix
T'e = Fsp(I - nge) (62) P 0
In order to prove that a state observer can be usedtrialy- Pob = {0 uPo] >0 (68)

input passivemanner, we require the following lemma.
Lemma 4: [31] The discreteL Tl system [51) is strictly-

and show that there exists;a > 0 that satisfies/{2). Note

input passive(strictly-positive realSPR) if and only if a the following inequalities hold from our originatrictly-input
symmetric positive definite matri¥ exists and satisfies the passivesystem.

following LMI: T
Q1 =%, PP, —-P <0
T T T
Lot B e P KeCe) L[ <0 —Qu= —(KuDp+ DK, — oy PouTon)

o o Bxsp *( s—p + P s — Lo 0)(63) — _(Kst + DpTKST _ FOTPFO) <0 (69)
Ther\_"-;fore b)_/ Theorer8-(ll ,III_) any continuou$triptly-input To simplify the expression we define
passiveor strictly-output passive LTdystem which is sampled
and actuated by afPESHwill satisfy (63). Note that we added C, 2 r.,”Po, — K,C, (70)

K, in order to show that any positive diagonal matrix can be
used to scale the output(k) as is done with our observerTherefore the proposed passive system describe®@Eyhas
described by64). to satisfy
We now propose the following state observer, based on the

- -
sampled integrated output of th&rictly-input passiveor Q1 0 *(le T
strictly-output passiveplant and the corresponding output 0 Q2 —Cp Ks'| >0 (71)
estimatey (k): |-C1 -KGp Qs
3k +1) = ®oi(k) + Toulk) — Ke(p(k) — p(k)) Using a similarity transformation7q) is equivalent to

p(k) = Col (k) [ Qu -C{ 0 ]

LN . -C Q -K:Cp| >0 (72)

y(k) = KsCpz(k) + KsDpu(k (64) 1 3 P

(k) p (k) puu(k) T o o]

This observer is along similar lines to the observer propos
in [29] except that our observer is based on the sampl
integrated output and we specifically focus on how it applies For
strictly-input passivendstrictly-output passivelants. Defin-

ing the error in the state estimate &%) 2 z(k) — z(k) and

ge following upper block matrixQ, satisfies |63) due to
oposition1, Theorem3-(ILJII), and Lemméd.

T
Q Cl] >0

0= [—01 Qs (73)



SinceO > 0, and@- > 0, then from using Proposition 8.2.3-relationship between the inpuis., u,. and scattering gain
v in [32] which is based on the Schur Complement Theoyto the outputS,.(k), éoc(k).
we need to show that

0 > 0, and 74y Tk +1) = Preol (k) + Ffeo(\/zuoc(k) + roc(k)) + Kep(k)
4Qz — [0 ~C,TK,"] 0! [_K‘: Cp] >0 éoc(k) = Creoii(k) + Dfeo(\/guoc(k) roe(k)
uQz2 — CpTKSTO*lKSCp >0 (75) Doc(k) = toe(k) — \/géoc(k) (79)

Thus denoting\,,,(-)/Axs(+) as the minimum/maximum eigen- _
values for a matrix, noting that the similarity transform ot which

. AN

Q2 = P3A;P;", and definingM = C, "K,"O 'K, Cp, 1 Gy —I+2K.D,
needs to satisfy b

(P2 (M + MT)Py) Creo = 1 KOy

Mm(P2 + 2 -1
> 76 Dseo = G117 KD
/‘L 2)\m(Q2) ( ) fe 1 P 1
Therefore u exists and satisfies7?) which completes the Preo = Po — KeCo — grocfeo
roof. | 1

p Ffeo - Fo (I - 7Dfe0) (80)

The proof emphasizes the fact that the one given in [29] only
showssulfficiencyfor passivesystems and implicitly assumes
that their discrete sampled plant ®&rictly-input passive B. STABLE CONTROL WITH A COOPERATIVE SCHED-
Furthermore, their results can not be applied for our desired ER

design of an observer which uses the integrated output of
strictly-input passiveor strictly-output passivelant.

Since we are using the observer on continubtlissystems
which are eithesstrictly-input passivewith finite L2-gain, or
strictly-output passivand the corresponding discrete observ
is both strictly-input passivewith finite 2-gain and strictly-
output passivave can simplify our implementation by setting
the feedback gaink,, = 0 in Fig. 5. We note thatk,
may still be helpful in converting a continuous passive sign
into a discretestrictly-output passiveignal with an observer,
however we found the analysis to be quite difficult. Similar
to Corollary4d we state for the observer of @trictly-output
passiveplant.

Corollary 6: If using an observer for either BT system
which is strictly-input passivewith finite gain or isstrictly-
output passive the following state equation describes the
relationship between the inpuis,,v,, and scattering gain
b to the outputsiiy, (k), fop (k).

b

%0sis an operating system which uses a high priority and
low priority queue with timers which signal a task through the
gueue in order to implement the soft real time scheduler (note
that most other operating systems suchlasyOSwhich use
%st a single FIFO message queue could be used to notify the
control task as well) [2]. For simplicity we will us80OSto
discuss one possible implementation for étustable control
S}lstem illustrated in Figh. As a future project, we will write

' device driver which does the following:

1) Provide an interface for the controller to register a func-
tion to enable the device driver to semng, (i) to. Also
allow the controller to specify a desired sample tiffie
wave impedancé, and K, (note K, does not need to be
a matrix, it could be a scalar to modify all parts £, (¢)
equally. Note that the driver will buffep,.(:) while the
controller will buffer w,, (7).

2) Provide an interface for the controller to send outgoing
Voc(1) tO.

2k +1) = ®egoi(k) + refo(\/ﬂvop(k) + 7op(k)) + Kep(k) 3) Calculatef,, (i) based on théPESgiven in Definition4-

2 . 1IN
Jop(k) = Cefo”:r(k) + Deto(V2bvop (k) + rop (k) 4) Calculate the corresponding,, (i), ande,,. (i) based on

Giop (k) = V2b fop (k) — vop(k) (77) the buffereduv,. (i), the servicing of the buffer is where

thev,, (i —c(i)) delay comes in effect. Since data can be

In which popped directly from the buffer, we do not need to worry
G =1+bK:D, about counting duplicate data. For simplicity if the buffer
Coto = G'K,C, begms to get full Wg can safely' drop data. '
. 5) With the neweg..(i) and f,,(i), calculatee,(i) =
Deto = G™ K;Dp —edoc(1) — K, fop (i) and apply toZOH.
Poto = Po — KeCo — b6 Ceto The controller, is notified by the driver through the high-
Teto = T'o(I — bDeto) (78) priority queue and implements the right side of Fig.
Note that Corollary6 describes a standard observer not comMote, that the lower-priority queue can be used for more
nected to a wave junction whéen= 0. time-consuming tasks, such as changing control parameters

Corollary 7: If using an observer for either BTl system and loading new modules. This may cause temporary de-
which is strictly-input passivewith finite gain or isstrictly- lays, however]2-stability will be maintained. Note that old
output passive the following state equation describes thelata does not have to be simply dropped (which satisfies
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Lemmal2) in order for the system to recover from these
longer periodic delays. Using Lemnf2 we can calculate
the two-norm of all M, in which ¢ = 0,1,...,.M —1 of
the non-processed inputSu,,, M) = |luyp(i)|l2 and mul-
tiply it by the sign of the sum of the non-processed inputs
sn(uep, M) = sgn(ziﬂio_luop(i)) such that the input for
Uoe(t) = $n(Uop, M)s(uop, M). This will improve tracking
and highlights why we split the buffers appropriately. The

driver can do a similar calculation in order to calculagg(i). %

150

100

50 e

Magnitude (dB)

500

IV. SIMULATION

We shall control a motor with an ideal current source, which
will allow us to neglect the affects of the motor inductance .
and resistance for simplicity. The fact that the current source 0 O eaency (atins o’
is non-ideal, leads to a non-passive relationship between the
desired motor current and motor velocity [20]. There are way$y. 6. Bode plot depicting crossover frequency for baseline plant with
to address this problem using passive control technigques dpgerver and controller.
controlling the motors velocity indirectly with a switched volt-
age source and a minimum phase current feedback technique
[33], and more recently incorporating the motors back voltage
measurement which provides an exact tracking error dynamics
passive output feedback controller [34].

Phase (deg)
A

600 T T — ——

The motor is characterized by its torque const&t, > 0, s ~_
back-emf constan¥., rotor inertia, J,, > 0, and damping 00l yd \\ ]
coefficient B,,, > 0. The dynamics are described by /

o Bu o K
W= —ﬂw + ﬂz (81) é O {
and are in a (strictly) positive real form which is a neces- £ { ;
sary and sufficient condition for (strict input) passivity [35, er
Section V.A.2)] [31, Defintion 1]. We choose to use the ool . J/
passive “proportional-derivative” controller described ¥ ( \ /
and definer = % in order to factor outk” and yield g e e
s + 1 Real Axis
Kpp(s) =K (82)

5 Fig. 7. Nyquist plot for the continuous plant (solid line) and the synthesized

Using loop-shaping techniques we choese % and choose discrete counterpart (solid dots) with observer.

m

K = 1oJf<":,T- This will provide a reasonable crossover fre-
guency at roughly a tenth the Nyquist frequency and maintain
a 90 degree phase margin. We choose to use the same motor
parameter values given in [34] in whicki,, = 49.13mVrad

sec, J,, = 7.95 x 10~ 3kgm?, and B,,, = 41uNmsec. With

500

T = .05 seconds, we use CorollaB/to synthesize atrictly- L
output passivecontroller from our continuous modeB2), AZZ / \
and Corollary6 to implement the observer. We also use 4
Corollary 3 in order to compute the appropriate gains for . ;o
both the controllerk,, = 1 and thestrictly-output passive | P i
plant K, = 20. Note that by arbitrarily choosind(,, = g ’ 4 ‘

7 = 20 would have led to a incorrectly scaled system in ooy -\
which the crossover frequency would essentially equal the oo
Nyquist frequency (only because a zero exists extremely close ~s00r : f\ ) ya
to —1 in the z-plane). Figl6, Fig. 7, and Fig.8 indicates 400 o~
that our baseline system performs as expected. We chose T me  am e sw ime 1o
K. = [16.193271,1.799768]T for our observer in which the Reat s

poles are equal to a tenth of the poles of the discpetssive _ _ o

plant synthesized by Propositich this by definition forces Fig. 8. Nyquist plot for the continuous controller (solid line) and the
L . . . synthesized discrete counterpart (solid dots).

all the poles inside the unit circle. Since the plansigctly-

output passivewe chosek, = 0. For the controller we
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|<=0.50836.Kp=0,KC=0.00:L.I<s =20K =1,Kl=[16.1933 1.79977]
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25

15prx

0.5

11

a fairly complete, and needéti stability analysis, in particular

the results in Theorei, and Theorer?® (for the discrete-time
case) appeared to be lacking from the open literature and were
necessary in order to complete our proof. The other new results
(not available in the open literature) which led td%astable
controller design are as follows:

1) Theorem3llis an improvement which captures glhs-
sive systems (not jusPCH) systems.

2)

i i i i i i i
0 0.5 1 15 2 25 3 35 4
time (s)

3)

Fig. 9. Baseline step response for motor witnictly-output passiveligital

controller andstrictly-output passivebserver. 4)

K=0.50836, K,=0.0, K=1.0x10"", w,,;=2m, (=0.9
r r r

Theorem3-ll, and Theoren8-l1l] are completely original
(the latter forced us to require that the driver had to
implement the additional feedback(f) calculation to
obtain passivity for the non-linear case).

Corollary'1 allows us to setf,, = 0 if the continuous
LTI plant is eitherstrictly-input passiveor strictly-output
passive

Theoreni is a new and general theorem to interconnect
continuous non-linear passive plants which we hope will
lead to more elaborate networks interconnected in the

1.6 =5

g ‘ g discrete time domain. Theorebiis also new, in which

' PO no knowledge of the energy storage function is required
1 R e to show stability of the network.

wal . ) N 5) Propositioril shows how to synthesize a discret@ssive

7 e -“#f Bt ."L o, LTI system from a continuous one.

A I R A 1 6) Corollary2 and Corollary3 show how to respectively
o B ““‘:'V,,M make the discretgassiveplant strictly-output passive
os : - (strictly-positive rea) and scale the output so that it

: * will match the steady state output for its continuous
2 i s counterpart.
YRGS S SO S S S — 7) Corollary4 and Corollarys show how to implement the

strictly-output passiveetwork depicted in Figh.

8) Propositior2 shows how to implement a discredtrictly-

Fig. 10. Step response for motor witltrictly-output passiveigital controller
and strictly-output passivebserver as depicted in Fiélwith delays.

output passive LTlobserver for either astrictly-input
passiveor strictly-output passiveontinuousLTI system.

9) Corollarylé and Corollary7 show how to implement the

choseK,. = 0.001 in order to make ifstrictly-output passive

observer when attached to a scattering junction.

Fig. 9 shows the step response to a desired position set-point\e are excited about Theoreé2rbecause it allows us to di-
64(k) which generates an approximate velocity reference fagctly designiow-sensitivity strictly-output passiveontrollers

Toc(2) = —Hy(2)04(z). Hy(2) is a zero-order hold equivalentusing thewave-digital filtersdescribed in [11]. We plan on ex-
of Hy(s), in which wy,q; =27 and{ = .9. tending this networking theory as it applies to multiple plants
2 controlled by either a single or possibly multiple controllers.

wtraj s
2 + 2( . + 2
s Wtraj wtraj

Note, that it is important to use a second order filter in
order to achieve near perfect tracking, a first order filtef,
resulted in significant steady state position errors for relatively
slow trajectories. Finally in Figld we see that the proposed
control network maintains similar performance as the baselin[%
system. Note that by increasirig= 5 significantly reduced
the overshoot caused by a half second delay (triangles
1/squaresb = 5). Also note that even a two second delay
(large circlesh = 5) results in only a delayed response nearl
identical to the baseline system.

(83)

Hy(s) =

3]

(4]

V. CONCLUSIONS

We have presented the necessary theory to design a digi[5
control network which maintaing — stability in spite of time
varying delays caused by cooperative schedulers. We presente
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statements relatin§PRto strictly-input passivesystems [12], output) as depicted in Figh and described by Corollary
[35], [37]. Thus by definitions5/6 continuous and discretethen the system can be described by

SPR LTlsystems are stable which implies thsdtictly-input Bk +1) P K.C (k)
passiveor strictly-output passiveystems are also stable. It has [ } { feo - Oa] [9” }

1
already been shown thatrictly-output passivesystems have ok +1) pToaCreo  ®oa (k)
finite [2-gain, it remains to be shown thdfTl strictly-input |:Ffeo:| \F
d 7 Woc k oc k

passivesystems also havinite [2-gain. * I'teoa ( b (k) + Toc(k))

Theorem 6: [39] The L?/i?-gainof aLTI system described éoc(k)]  [Creo 0 | [2(k)
by a transfer matrix? (p) equals theH ., norm of H defined pk) | | 0 Coa |z(k)
by Dfeo 2

|Hlloo = sup [[H®)I| (84) 0 | (f puectk) +rac(k) - (87)
PEQ

where Q) is the right half plane? = C, for the continuous in which r L (I 1D 88
time (CT) case, and the exterior of the unit cirdle= D; in feoa = Loa b feo) (88)

the discrete timeIT) case. Moreover, for rational transfer.
matrices with no poles imM2 (such asSPR systems), the
supremum can be calculated on the boundary(of(the
imaginary axis in theCT case and the unit circle in thBT
case).
Therefore, from Theorelfi a continuous/discreteTI strictly-
input passivesystem which isSPR has finite L?/i?-gain
which implies theLTI system isstrictly-output passivg14,
Remark 2.3.5].

Corollary 8: Every continuous/discreteT| system which
is strictly-input passivenasfinite L2 /12-gain, therefore it also
strictly-output passive

APPENDIXII
OBSERVERSIMULATION EQUATIONS

In order to simulate an observer for a contin-
uous LTI plant in which the actual state space
matrices for the actual passive plant are denoted
{A, e R**? B, € R**P C, € RP*? D, € RP*P}. The
actual discrete equivalent matrices for a passive system are
computed appropriately as described B€)( (47), (48), (49),
and 60), and denoted a§®,,, I'oa, Coa}- If the observer is
implemented on the plant side forld | strictly-input passive
or strictly-output passiveplant as depicted in Fig5 and
described by Corollar, then the system can be described

by
Lot Lo, K@S;a] b
| | (V1) + 7))
] =[5 Hézi]
+[D fo} (V2buop(k) +1op(k))  (85)
in which

Fefoa = Foa(I - bDefo) (86)

. Similarly, if we implement the observer for a continuous plant
on the “controller side” (i.e. when the plant is more accurately
depicted as having a flow input and corresponding effort



