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Abstract— This paper provides a sufficient framework to
synthesizel2-stable networks in which the controller and plant
can be subject to delays and data dropouts. This framework
can be applied to control systems which use “soft-real-time”
cooperative schedulers as well as those which use wired and
wireless network feedback. The framework applies to plants and
controllers which are passive, therefore thesepassivesystems can
be either linear, nonlinear, and (or) time-varying. This framework
arises from fundamental results related topassivecontrol, and
scattering theory which are used to designpassiveforce-feedback
telemanipulation systems, in which we provide a short review.
Theorem3 states how a (non)linear (strictly inputor strictly output)
passive plant can be transformed to a discrete (strictly input)
passive plant using a particular digital sampling and hold scheme.
Furthermore, Theorem 4(5) provide new sufficient conditions for
l2 (and L2)-stability in which a strictly-output passivecontroller
and plant are interconnected with only wave-variables. Lemma 2
shows it is sufficient to use discretewave-variableswhen data is
subject to fixed time delays and dropouts in order to maintain
passivity. Lemma 3 shows how to safely handle time varying
discrete wave-variabledata in order to maintain passivity. Based
on these new theories, we provide an extensive set of new results
as they relate toLTI systems. For example, Proposition2 shows
how a LTI strictly-output passiveobserver can be implemented. We
then present a new cooperative scheduler algorithm to implement
an l2-stable control network. We also provide an illustrative
simulated example which uses apassiveobserver followed with
a discussion for future research.

I. INTRODUCTION

The primary goal of this research is to develop reliable
wireless control networks. These networks typically consist of
distributed-wireless sensors, actuators and controllers which
communicate with low cost devices such as the MICA2 and
MICAz motes [1]. The operating systems for these devices,
typically consist of a very simple scheduler, known as a co-
operative scheduler [2]. The cooperative scheduler provides a
common time-base to schedule tasks to be executed, however,
it does not provide a context-switch mechanism to interrupt
tasks. Thus, tasks have to cooperate in order not to delay
pending tasks, but this cooperative condition is rarely satisfied.
As a result, a controller needs to be designed to tolerate time-
varying delays which can be incurred from disruptive tasks
which share the cooperative scheduler. Although, other operat-
ing systems can be designed to provide a more hard real-time

scheduling performance, the time varying delays which will
ultimately be encountered with wireless sensing and actuation
will be comparable if not more significant. Hence, the primary
aim of this paper is to provide the theoretical framework to
build l2-stablecontrollers which can be subject to time-varying
scheduling delays. Such results are also of importance as they
will eventually allow the plant-controller network depicted
in Fig. 5 to run entirely isolated from the plant as is done
with telemanipulation systems. Telemanipulation systems have
had to address wireless control problems [3] years before the
MICA2 mote existed and the corresponding literature provides
results to address how to design stable control systems subject
to transmission delays in such systems. Much of the theory
presented in this paper is inspired and related to work related to
telemanipulation systems. Thus, our introduction will conclude
(SectionI-A) with a brief review of telemanipulation, and how
it relates topassivecontrol and scattering theory in order
too provide the reader some physical insight related to the
framework presented in SectionII .

Telemanipulation systems are distributed control systems in
which a human operator controls a local manipulator which
commands a remotely located robot in order to modify a
remote environment. The position tracking between the human
operator and the robot is typically maintained by a passive
proportional-derivative controller. In fact, a telemanipulation
system typically consists of a series network of interconnected
two-port passive systems in which the human operator and
environment terminate each end of the network [4]. These pas-
sive networks can remain stable in-spite of system uncertainty;
however, delays as small as a few milliseconds would cause
force feed back telemanipulation systems to become unstable.
The instabilities occur because delayed power variables, force
(effort) and velocity (flow), make the communication channel
non passive. In [3] it was shown that by using a scattering
transformation of the power variables into powerwave vari-
ables [5] the communication channel would remain passive
in spite of arbitrary fixed delays. For continuous systems, if
additional information is transmitted along with the continuous
wave variables, the communication channel will also remain
passive in the presence of time varying delays [6]. However,
only recently has it been shown how discretewave variables
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can remain passive in spite of time varying delays and dropouts
[7], [8]. We verified this to be true for fixed time delays
and data dropouts (Lemma2). However, we provide a simple
counter example that shows this is not the case for all time-
varying delays and provide a lemma which states how to
properly handle time varying discrete wave variable data and
maintainpassivity(Lemma3). The initial results from [7] build
upon a novel digital sample and hold scheme which allows
the discrete inner-product space and continuous inner-product
space to be equivalent [9], [10].

We will build on the results in [9] to show in general how
to transform a (non)linear (strictly input or strictly output)
passivesystem into a discrete (strictly input) passivesystem
(Theorem3). We then formally show some potentially new
l2-stability results related tostrictly-output passivenetworks.
In particular Theorem2 shows how to make a discretepassive
plant strictly-output passiveand l2-stable. Theorem2 also
makes it possible to synthesize discretestrictly-output passive
systems from discretepassive LTIsystems such as those
consisting of passive wave digital filters [11]. We will then use
the scattering transform to interconnect the controller to the
plant with wave variables. We use Lemma3 to show that the
cooperative scheduler can allow time varying data transmission
delays and maintain passivity between the plant and controller.
As a result our digital control system implemented with a
cooperative scheduler will remainl2-stable. We conclude this
introduction with a brief discussion of telemanipulation sys-
tems,passivityand scattering theory from continuous time and
classic control framework. SectionII provides the necessary
definitions and theorems necessary to present our main results.
SectionIII shows our main results and outlines how to design a
driver which allow the digital controller to be implemented as
a cooperative task managed by a cooperative scheduler, such
as the one provided bySOS. Section IV concludes with a
simulation implementing the cooperative scheduler to control
a passive system. SectionV summarizes our key findings and
discusses future research directions.

A. PASSIVE SYSTEMS AND TELEMANIPULATION.

Passive systems are an important class of systems for which
Lyapunov like functions exist [12]–[15]. The Lyapunov like
function arises from the definition of passivity (1). In passive
systems (1), the rate of change in stored energyEstore is equal
to the amount of power put in to the systemPin minus the
amount of power dissipatedPdiss which is greater than or
equal to zero.

Ėstore = Pin − Pdiss (1)

As long as all internal statesx of the system are associated
with stored energy in the system, we can show that a passive
system is stable when no input power is present simply by set-
ting Pin = 0. Pdiss ≥ 0 implies thatĖstore ≤ 0 which shows
the system is Lyapunov stable. By using either the invariant set
theorem or Barbalat’s Lemma [13] we can prove asymptotic
stability [4]. These passive systems can be interconnected
in parallel and feed-back configurations and are fundamental
components in telemanipulation systems [4]. Instabilities can
occur when a telemanipulation system incurs communication

Fig. 1. Telemanipulation system depicted in the s-Domain, subject to
communication delays.

delays between the master controller and slave manipulator
in which the delays can be as small as a few milliseconds.
Instabilities may occur when the communication channel be-
comes a non-passive element in the telemanipulation system
[5]. Wave variablesare used here to communicate commands
and provide feed-back in telemanipulation systems, because
they allow the communication channel to remain passive for
arbitrarily fixed delays. The variables which traditionally in
the past were communicated over a telemanipulation channel
werepower variablessuch as force and velocity (F ,ẋ). Power
variables, generally denoted with aneffort and flow pair
(e∗,f∗) whose product is power, are typically used to show the
exchange of energy between two systems usingbond graphs
[16], [17]. Some other examples ofeffort and flow pairs of
power variablesare voltage and current (V ,q̇), and magneto-
motive force and flux rate (F ,ϕ̇). Wave variablesare denoted
by the following pair of variables (u∗,v∗), the transmission
wave impedanceb > 0 and the channel communication time
delay T [5]. The transmission between the master and slave
controller (as depicted in Fig.1 in the s-Domain) are governed
by the following delayed equations:

us(t) = um(t− T ) (2)

vm(t) = vs(t− T ) (3)

in which the input waves are computed using

um(t) =
bfm(t) + em(t)√

2b
(4)

vs(t) =
bfsd(t)− ec(t)√

2b
(5)

These simple wave variable transformations, which can be
applied to vectors, allow us to show that the wave commu-
nication channel is both passive and lossless assuming zero
initial conditions.

Estore(t) =

t∫

0

Pindτ =
∫ t

t−T

1
2
u′mum +

1
2
v′svs ≥ 0 (6)

In Fig. 1, the transfer function associated with the master
manipulator is denotedGm(s) and is typically a passive
mass. Furthermore, the slave manipulator is denoted by the
transfer function,Gs(s) and is typically apassivemass. The
passive“proportional-derivative” plant controllerKPD(s) has
the following form:

KPD(s) =
Bs + K

s
(7)
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Fig. 2. Block diagrams depicting the wave variable transformation (simplified
version of Fig. 3 in [20]).

Fig. 3. A delay-insensitive system in which a passive controller commands
a passive plant.

The plant controller is “proportional-derivative” in the sense
that the integral of the flow variablef∗ yields a displacement
variableq∗ which is then multiplied by a proportional gainK
and derivative termB. Since both the plant and controller
are zero-state observable, then: whenrs(s) = ed(s) = 0
the system is stable in regards to the plants velocity and the
velocity equilibrium point= 0 (note that the final position of
the plant is dependent on the systems initial condition) [14,
Proposition 3.4.1, Remark 3.4.3]. This velocity equilibrium
holds in spite of arbitrary fixed delays in the system, ifed(s) =
0 then it can be shown thatK(s) is positive real for∀b > 0
(see [18] for explanation ofK(s)). We may be able to show
that the system isL2 stable whened(s) = 0 using Theorem 2
in [19]. However, we will show that it is sufficient forKPD(s)
andGP (s) to be modified to bestrictly-output passivein order
to satisfyL2 stability for ∀b > 0 and bothed(s) and rs(s)
can be signals inL2. The sufficient proof for bothL2 and l2

stability is given in SectionIII . Although the wave variables
(u∗,v∗) do not need to be associated with a particular direction
as do the power variables, when interconnected with a pair
of effort and flow variables an effective direction is implied.
Fig. 3 shows how to implement the wave transform for both
cases. Fig.1 can be modified to yield the following system
in which a passive controllerKPD(s) is able to command a
passive plantGp(s). The plant will follow the negative flow
set-pointrs(s). If we precede the flow set-point with a causal
derivative filter Gd(s) = s

τs+1 then the plant will track a
desired displacement set-pointqs(s).

The following observations, have been made by simulating
this system: If the plant is apassivemass, then the plant
displacement will equal the negative displacement set-point
at steady state. If the plant ispassiveand stable such as a
mass-spring-damper, then steady state error will occur. So far
the discussion has taken place with respect to the continuous
time domain we have shown that delayed data to and from the
controllerKPD(s) can occur in an isolated manner such that
a passive control system can be designed.

II. PASSIVE CONTROL THEORY

Passive control theory is extremely general and broad in that
it applies to a large class of controllers for linear, non-linear,
continuous and discrete control systems. In [12] control theory
for continuous and discrete passive systems is presented. In
particular, passive control theory has been used in digital
adaptive controltheory to show stability of variousparameter
adaptation algorithms[21]. Additional texts which discuss
non-linear continuous passive control theory are [13]–[15]. In
[22] a comprehensive treatment is dedicated to the passive
control of a class of non-linear systems, known asEuler-
Lagrange Systems. Euler-Lagrange Systemscan be represented
by a Hamiltonianwhich possess a Dirac structure that allows
dissipative and energy storage elements to be interconnected
to ports without causal specification [23, p. 124]. Thus, in
[23] an extensive treatment on intrinsically passive control
using Generalized Port-Controlled Hamiltonian Systems is
presented, in particular as it relates to telemanipulation and
scattering theory. Our presentation of passive control theory
focuses on laying the groundwork for discrete passive control
theorems, mirrors the continuous counterpart results presented
in [14], and is based off of the continuous and discrete
theorems in [12].

A. l2 STABILITY THEORY FOR PASSIVE NETWORKS

Definition 1: The l2 space, is the real space of all bounded,
infinitely summable functionsf(i) ∈ Rn. We note thatRn

could be replaced withCn in (8) without loss of generality.
Denoting 〈·, ·〉 as an inner product space [24], thel2 space
is the set of all functionsf(i) which meet the following
inequality (8).

∞∑

i=0

〈f∗(i), f(i)〉 < ∞ (8)

A truncation operator will be defined as follows:

fN (i) =

{
f(i), if 0 ≤ i < N

0, otherwise
(9)

Likewise the extendedl2 space,l2e , is the set of all functions
f(i) which meet the following inequality (10).

N−1∑

i=0

〈f∗(i), f(i)〉 < ∞, N ≥ 1 (10)

Note thatl2 ⊂ l2e . Typically l2e is defined with the summation
to N and the truncation includesN [21, p. 75] and [12, p. 172],
however, these definitions are equivalent and is convenient for
future analysis. Finally we can define ourl2 norms (11) and
truncation of thel2 norm (12) as follows:

‖f(i)‖2 4= (
∞∑

i=0

〈f(i), f(i)〉) 1
2 (11)

‖f(i)N‖22
4
= 〈f(i), f(i)〉N 4

=
N−1∑

i=0

〈f(i), f(i)〉 (12)

The following definition forl2-stability is similar to the one
given in [25] which refers to [14] in regards to stating that
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finite l2-gain is sufficient forl2-stability, however, in [14] this
is only stated for the continuous time case. We provide a short
proof for the discrete time case and note where it parallels [14]
for completeness.

Definition 2: Let the set of all functionsu(i) ∈ Rn, y(i) ∈
Rp which are either in thel2 space, orl2e space be denoted as
l2(U)/l2e(U) and l2(Y )/l2e(Y ) respectively. Then defineG as
an input-output mappingG : l2e(U) → l2e(Y ), such that it is
l2-stable if

u ∈ l2(U) ⇒ G(u) ∈ l2(Y ) (13)

The mapG hasfinite l2-gain if there exist finite constantsγ
andb such that for allN ≥ 1

‖(G(u))N‖2 ≤ γ‖uN‖2 + b,∀u ∈ l2e(U) (14)

holds. EquivalentlyG has finite l2-gain if there exist finite
constantŝγ > γ and b̂ such that for allN ≥ 1 [14, (2.21)]

‖(G(u))N‖22 ≤ γ̂2‖uN‖22 + b̂,∀u ∈ l2e(U) (15)

holds. IfG hasfinite l2-gain then it is sufficient forl2-stability.
The proof is as simple as lettingu ∈ l2(U) andN →∞ which
leads (17) to

‖(G(u))‖2 ≤ γ‖u‖2 + b, ∀u ∈ l2(U) (16)

which implies (13) and completes the proof.
Lemma 1: [14, Lemma 2.2.13] Thel2-gain γ(G) is given

as
γ(G) = inf{γ̂|∃b̂s.t.(15)holds} (17)

Next we will present definitions for various types of passivity
for discrete time systems.

Definition 3: [12], [14] Let G : l2e(U) → l2e(U) then for
all u ∈ l2e(U) and allN ≥ 1:

I. G is passiveif their exists some constantβ such that
(18) holds.

〈G(u), u〉N ≥ −β (18)

II. G is strictly-output passiveif their exists some constants
β and ε > 0 such that (19) holds.

〈G(u), u〉N ≥ ε‖(G(u))N‖22 − β (19)

III. G is strictly-input passiveif their exists some constants
β andδ > 0 such that (20) holds.

〈G(u), u〉N ≥ δ‖uN‖22 − β (20)
Theorem 1:Let G : l2e(U) → l2e(U) be strictly-output

passive. ThenG hasfinite l2-gain.
Proof: The proof for the discrete case is practically the

same as for the continuous case given in [14, Theorem 2.2.14],
for completeness we denotey = G(u), and rewrite (19)

ε‖yN‖22 ≤ 〈y, u〉N + β

≤ 〈y, u〉N + β +
1
2
‖ 1√

ε
uN −√εyN‖22 (21)

≤ β +
1
2ε
‖uN‖22 +

ε

2
‖yN‖22

thus moving all terms ofy to the left, (21), has the final form
of (15) with l2-gain γ̂ = 1

ε and b̂ = 2β
ε .

The requirement forstrictly-output passiveis a relatively easy
requirement to obtain for apassiveplant with mapG and
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Fig. 4. Illustration showing〈v(i), F (i)〉N = 〈v(t), F (t)〉NT

input u and outputy. This is accomplished by closing the
loop relative to a reference vectorr with a positive definite
feedback gain matrixK > 0 such thatu = r −Ky.

Theorem 2:Given a passivesystem with inputu, output
G(u) = y, a positive definite matrixK > 0, and new reference
vectorr. If the inputu = r−Ky, then the new mappingGcl :
r → y is strictly-output passivewhich impliesl2-stability.

Proof: First we use the definition of passivity forG and
substitute the feedback formula foru.

〈y, u〉N = 〈y, r −Ky〉N ≥ −β (22)

Then we can obtain the following inequality

〈y, r〉N ≥ λm(K)‖y‖22 − β (23)

in which λm(K) > 0 is the mimimum eigenvalue forK.
Hence, (23) has the form of (19) which showsstrictly-output
passiveand impliesl2-stability.
It is important to note that for very small maximum eigen-
values, the system is essentially the nominal passive system
we started with. This is important, for we can design more
general passive digital controllers and modify them with this
simple transform to make themstrictly-output passive.

B. INNER-PRODUCT EQUIVALENT SAMPLE AND HOLD

In this section we prove Theorem3 which shows how a
(non)linear (strictly input or strictly output) passive plant can
be transformed to a discrete (strictly input) passive plant using
a particular digital sampling and hold scheme. This novel zero-
order digital to analog hold, and sampling scheme proposed
by [9] was to yield a combined system such that the energy
exchange between the analog and digital port is equivalent.
This equivalence allows one to interconnect an analog to
a digital Port-Controlled Hamiltonian (PCH) system which
yields an overall passive system. In [10], a correction was
made to the original scheme proposed in [9]. In order to prove
Theorem3, we will restate the sample and hold algorithm
with a slightly modified nomenclature. Fig.5 shows a simple
example of a continuous force,F (t) (solid blue line), being
applied to a damper with damping ratio0.5 (kg/s-m). The
force is updated at a rate ofT seconds, such that att = iT the
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corresponding discrete force,F (i) (circles), updatesF (t) and
is held for an additionalT seconds. The discrete “velocity”,
v(i) (diamonds), is defined asv(i) = (x(i + 1) − x(i)).
The discrete “position”,x(i), is the sampled integral of the
continuous velocity,v(t) (solid magenta line), up to time
t = iT . Likewise x(i + 1) is the sampled integral of the
predicted continuous velocity up to timet + T . Note that
the solid green line,x(t) denotes the integral of the contin-
uous velocity. Finally, the continuous inner-product integral,

〈F (t), v(t)〉NT
4
=

∫ NT

0
〈F (t), v(t)〉, is denoted by the solid

red line. The discrete inner-product summation,〈v(i), F (i)〉N ,
is indicated at each indexi with a blue square, thus showing
equivalence to〈F (t), v(t)〉NT .

Definition 4: [9], [10] Let a continuous one-port plant be
denoted by the input-output mappingGct : L2

e(U) → L2
e(U).

Denote continuous time ast, the discrete time index asi,
the continuous input asu(t) ∈ L2

e(U), the continuous output
as y(t) ∈ L2

e(U), the transformed discrete input asu(i) ∈
l2e(U), and the transformed discrete output asy(i) ∈ l2e(U).
The inner-product equivalent sample and hold(IPESH) is
implemented as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y(i) = x((i + 1)T )− x(iT )
III. u(t) = u(i), ∀t ∈ [iT, i(T + 1))

As a result

〈y(i), u(i)〉N = 〈y(t), u(t)〉NT ,∀N ≥ 1 (24)

holds.
Theorem 3:Using the IPESH given in Definition 4, the

following relationships can be stated between the continuous
one-port plant,Gct, and the discrete transformed one-port
plant, Gd : l2e(U) → l2e(U):

I. If Gct is passivethenGd is passive.
II. If Gct is strictly-input passivethen Gd is strictly-input

passive.
III. If Gct is strictly-output passivethenGd is strictly-input

passive.
This is a general result, in which Theorem3-I was defined
for the special case in which the input was a force and the
output was a velocity [10, Definition 2] and for the special
case when interconnectingPCH systems [9], [26, Theorem 1].
Proof:

I. Since the continuouspassivesystemGct satisfies

〈y(t), u(t)〉τ ≥ −β, ∀τ ≥ 0 (25)

then by substituting (24) into (25) results in

〈y(i), u(i)〉N ≥ −β, ∀N ≥ 1 (26)

which satisfies (18) and completes the proof of Theo-
rem 3-I.

II. Let τ = NT , then since the continuousstrictly-input
passivesystemGct satisfies

〈y(t), u(t)〉τ ≥ δ‖u(t)τ‖22 − β, ∀τ ≥ 0 (27)

and Definition4-III implies

‖u(t)τ‖22 = T‖u(i)N‖22 (28)

Fig. 5. l2-stabledigital control network for cooperative scheduler

substituting (28) and (24) into (27) results in

〈y(i), u(i)〉N ≥ Tδ‖u(i)N‖22 − β, ∀N ≥ 1 (29)

therefore, the transformed discrete systemGd satisfies
(20) and completes the proof of Theorem3-II .

III. Let τ = NT , then since the continuousstrictly-output
passivesystemGct satisfies

〈y(t), u(t)〉τ ≥ ε‖y(t)τ‖22 − β, ∀τ ≥ 0 (30)

however, no direct relationship can be made between
‖y(t)τ‖22 and‖y(i)N‖22. But Definition4-III still implies
(28), and sinceGct is strictly-output passive, which
implies finite l2-gain such that

‖y(t)τ‖22 ≤
1
ε2
‖u(t)τ‖22 +

2β

ε

≤ T

ε2
‖u(i)N‖22 +

2β

ε
(31)

holds. Substituting (31) into (30) results in

〈y(i), u(i)〉N ≥ T

ε
‖u(i)N‖22 − β(1− 2

ε
), ∀N ≥ 1 (32)

therefore, the transformed discrete systemGd satisfies
(20) and completes the proof of Theorem3-III .

Continuous and discrete linear time invariant systems have an
important property in that if they arestrictly-input passive
they havefinite L2/l2-gain and arestrictly-output passive
(Corollary 8).

Corollary 1: Using theIPESHdefined by Definition4, the
following relationships can be stated between the continuous
LTI one-port plant,Gct, and the discrete transformedLTI one-
port plant,Gd : l2e(U) → l2e(U): If Gct is eitherstrictly-input
passiveor strictly-output passivethenGd is bothstrictly-input
passivewith finite l2-gain andstrictly-output passive.

III. MAIN RESULTS

Fig. 5 depicts our proposed control scheme in order to
guaranteel2 stability in which the feedback and control data
can be subject to variable delays between the controller and
the plant. Depicted is a continuous passive plantGp(ep(t)) =
fp(t) which is actuated by a zero-order hold and sampled
by an IPES. Thus Gp is transformed into a discrete passive
plant Gdp(ep(i)) = fop(i). Next, a positive definite matrix
Kp is used to create a discretestrictly-output passiveplant
Gop(eop(i)) = fop(i) outlined by the dashed line. NextGop
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is interconnected in the following feed-back configuration such
that

〈fop, edoc〉N =
1
2
(‖(uop)N‖22 − ‖(vop)N‖22) (33)

holds due to the wave transform. Moving left to right towards
the strictly-output passivedigital controller Goc(foc) = eoc

we first note that

〈fopd, eoc〉N =
1
2
(‖(uoc)N‖22 − ‖(voc)N‖22) (34)

holds due to the wave transform. The wave variables
uoc(i), vop(i) are related to the corresponding wave variables
uop(i), voc(i) and by the discrete time varying delaysp(i), c(i)
such that

uoc(i) = uop(i− p(i)) (35)

vop(i) = voc(i− c(i)) (36)

(35) and (36) hold. Finally the positive definite matrixKc is
used to make thepassivedigital controllerGc(fc(i)) = eoc(i)
strictly-output passive. Typically, roc can be considered the
set-point in whichfopd(i) ≈ −roc(i) at steady state, while
rop(i) can be thought as a discrete disturbance. Which leads
us to the following theorem.

Theorem 4:The system depicted in Fig.5 is l2-stable if

〈fop, edoc〉N ≥ 〈eoc, fopd〉N (37)

holds for allN ≥ 1.
Proof: First, by theorem3-I, Gp is transformed to a

discretepassiveplant. Next, by theorem2 both the discrete
plant and controller are transformed into astrictly-output
passivesystems. Thestrictly-output passiveplant satisfies

〈fop, eop〉N ≥ εop‖(fop)N‖22 − βop (38)

while thestrictly-output passivecontroller satisfies (39).

〈eoc, foc〉N ≥ εoc‖(eoc)N‖22 − βoc (39)

Substituting,edoc = rop − eop andfopd = foc − roc into (37)
yields

〈fop, rop − eop〉N ≥ 〈eoc, foc − roc〉N
which can be rewritten as

〈fop, rop〉N + 〈eoc, roc〉N ≥ 〈fop, eop〉N + 〈eoc, foc〉N (40)

so that we can then substitute (38) and (39) to yield

〈fop, rop〉N + 〈eoc, roc〉N ≥ ε(‖(fop)N‖22 + ‖(eoc)N‖22)− β
(41)

in which ε = min(εop, εoc) and β = βop + βoc. Thus (41)
satisfies (19) in which the input is the row vector of[rop, roc],
and the output is the row vector[fop, eoc] and completes the
proof.

Theorem 5:The system depicted in Fig.5 without the
IPESH in which i and t denote continuous time isL2-stable
if

〈fop, edoc〉τ ≥ 〈eoc, fopd〉τ (42)

holds for allτ ≥ 0.

Proof: With the exception that theIPESH is no longer
involved and the discrete time delays are replaced with con-
tinuous time delays. The proof is completely analogous to the
proof given for Theorem4.
In order for (37) to hold, the communication channel/ data-
buffer needs to remainpassive. It has been proved in [26] that
the discrete communication channel is passive for both fixed
delays [26, Proposition 1] and variable time delays including
loss of packets [26, Proposition 2], as we will show with a
different and straight forward proof.

Lemma 2: If the discrete time varying delays are fixed
p(i) = p, c(i) = c and/or data packets are dropped then (37)
holds.
Before we begin the proof, we denote the partial sum from
M to N of an extended norm as follows

‖x(M,N)‖22
4
= 〈x∗, x〉(M,N) =

N−1∑

i=M

〈x∗, x〉 (43)

Proof: In order to satisfy (37), (33) minus (34) must be
greater than zero, or

(‖(uop)N‖22 − ‖(vop)N‖22)− (‖(uoc)N‖22 − ‖(voc)N‖22) ≥ 0
(‖(uop)N‖22 − ‖(uoc)N‖22) + (‖(voc)N‖22 − ‖(vop)N‖22) ≥ 0

(‖(uop)N‖22 − ‖(uop(i− p(i))N‖22)+
(‖(voc)N‖22 − ‖(voc(i− c(i))N‖22) ≥ 0

(44)

holds. Clearly (44) holds when the delays are fixed, as (44)
can be written to show

(‖(uop)((N−p),N)‖22 + ‖(voc)((N−p),N)‖22) ≥ 0 (45)

the inequality always holds for all0 ≤ p, c < N . Note if p
andc equal zero, then inequality in (45) becomes an equality.
If all the data packets were dropped then,‖(uoc)N‖22) = 0
and‖(vop)N‖22) = 0, such that (37) holds and all the energy
is dissipated. If only part of the data packets are dropped, the
effective inequality described by (44) serves as a lower bound
≥ 0; hence dropped data packets do not violate (37).
[26, Proposition 2] is to broad in stating that the commu-

nication channel is passive in spite of variable time delays
when only the transmission of one data packet per sample
period occurs. For instance, a simple counter example is to
assumep(i) = i, then (44) will not hold if N‖(uop)1‖22 >
(‖(uop)N‖22 + ‖(voc)N‖22). Clearly other variations can be
given such thatp(i) eventually becomes fixed and never
changes after sending oldduplicate samples, and still (37)
will not hold. Therefore, we state the following lemma:

Lemma 3:The discrete time varying delaysp(i), c(i) can
vary arbitrarily as long as (44) holds. Thus, the main assump-
tion (37) will hold if:

1) we changep(i) = (i+1), which setsuoc(i) = uop(−1) =
0, when ever a duplicateuop(i−p(i)) would be received
(ie. we eliminate duplicate transmissions). We also need
to changec(i) = (i+1), which setsvop(i) = voc(−1) =
0, when ever a duplicatevoc(i− c(i)) would be received.

2) we changep(i) = (i+1) and/orc(i) = (i+1) in order that
(44) holds. This requires us to track the current energy
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storage in the communication channel. A similar energy-
storage audit is discussed in [27, Section IV] without
using wave-variables. In [6] a similar audit is described
for the continuous time case.

A. PASSIVE DISCRETE LTI SYSTEM SYNTHESIS

In [28], using dissipative theory and a longer proof than we
will provide, it was shown how to synthesize a discrete passive
plant from a linear time invariant (LTI) plant. The advantage of
such a result is that one does not need to measure an integrated
output from the passive plant. However, if one is concerned
with controlling the integrated output such as position, one will
probably have this measurement as well as the corresponding
passive output such as velocity. We will also show how an
observer, based on the integrated output measurement can still
be used. Such an observer maintains passivity and eliminates
the need to directly measure the actual passive output such as
the velocity. The proof for the observer will follow a similar
proof by [29].

A passive continuous timeLTI system, H(s), which
is described by the following state space representation
{A ∈ Rn×n,B ∈ Rn×p,C ∈ Rp×n,D ∈ Rp×p} is cascaded
in series with a diagonal matrix of integrators,HI(s), de-
scribed by{AI = 0,BI = I,CI = I,DI = 0}. The combined
system,Ho(s) = H(s)HI(s), is described by{Ao,Bo,Co}.
Where

Ao =
[
A 0
C 0

]
∈ R(n+p)×(n+p) (46)

Bo =
[
B
D

]
∈ R(n+p)×p (47)

Co =
[
0 I

] ∈ Rp×(n+p) (48)

Applying a zero-order-hold, the system is described by [30]

x(k + 1) = Φox(k) + Γou(k)
p(k) = Cox(k) (49)

in which

Φo = eAoT

Γo =
∫ T

0

eAoηdηBo (50)

.
Proposition 1: A passive continuous time LTI system,

H(s), can be converted to a discrete passiveLTI system,Gp(z)
at a sample rateT in which the discrete state equations are

x(k + 1) = Φox(k) + Γou(k)
y(k) = Cpx(k) + Dpu(k) (51)

in which Cp = Co(Φo − I), andDp = CoΓo.
Proof: From Definition 4 it is a simple exercise to

compute the passive outputy(k) = p(k+1)−p(k) as follows

x(k + 1) = Φox(k) + Γou(k)
y(k) = Co(Φo − I)x(k) + CoΓou(k) (52)

henceCp = Co(Φo − I), andDp = CoΓo which completes
the proof.
Using Proposition1 and Theorem2 the following corollary
can be shown:

Corollary 2: Given a positive definite matrixKx > 0 and
discretepassivesystem described by (51), the system

x(k + 1) = Φspx(k) + Γspu(k)
y(k) = Cspx(k) + Dspu(k) (53)

is strictly-output passiveor strictly positive real. Here

Φsp = Φo − ΓoKx(I + DpKx)−1Cp

Γsp = Γo(I−Kx(I + DpKx)−1Dp)

Csp = (I + DpKx)−1Cp

Dsp = (I + DpKx)−1Dp (54)
With our discretestrictly-output passivesystem we can scale
the gain so that its steady state gain matches thestrictly-output
passivecontinuous systems steady state gain.

Corollary 3: Given a diagonal matrixKs > 0 and discrete
strictly-output passivesystem described by (53), the following
system isstrictly-output passiveor strictly positive real

x(k + 1) = Φspx(k) + Γspu(k)
y(k) = KsCspx(k) + KsDspu(k) (55)

in which each diagonal element

ks(i) =

{
yc(i)/yd(i)∀i ∈ {1, . . . , p} if yc(i) andyd(i) 6= 0;
1
T otherwise

(56)
The vectorsyc/yd correspond to the respective steady state
continuous/discrete output of astrictly-output passiveplant
given a unit step input. These vectors can be computed as
follows:

yc = (−CcAc
−1Bc + Dc)1

yd = Hsp(z = 1)1, Hsp(z) = Csp(zI−Φsp)−1Γsp + Dsp

(57)

where

Gx = I + DKx

Cc = Gx
−1C

Dc = Gx
−1D

Ac = A−BKxCc

Bc = B(I−KxDc) (58)
Next, the following corollary provides a method to compute
uop(k), fop(k) given rop, vop, b. We can also synthesize the
digital controller from a continuous model using theIPESwith
ZOH as well, so an additional corollary will show how to
computevoc(k), eoc(k) given uoc(k), roc(k).

Corollary 4: The following state equation describes the
relationship between the inputsrop, vop and scattering gain
b to the outputsuop(k), fop(k).

x(k + 1) = Φefx(k) + Γef (
√

2bvop(k) + rop(k))

fop(k) = Cefx(k) + Def (
√

2bvop(k) + rop(k))

uop(k) =
√

2bfop(k)− vop(k) (59)
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Here

G = I + bKsDsp

Cef = G−1KsCsp

Def = G−1KsDsp

Φef = Φsp − bΓspCef

Γef = Γsp(I− bDef ) (60)
Corollary 5: The following state equation describes the

relationship between the inputsroc, uoc and scattering gain
b to the outputsvoc(k), eoc(k).

x(k + 1) = Φfex(k) + Γfe(

√
2
b
uoc(k) + roc(k))

eoc(k) = Cfex(k) + Dfe(

√
2
b
uoc(k) + roc(k))

voc(k) = uoc(k)−
√

2
b
eoc(k) (61)

Where

G1 = I +
1
b
KsDsp

Cfe = G1
−1KsCsp

Dfe = G1
−1KsDsp

Φfe = Φsp − 1
b
ΓspCfe

Γfe = Γsp(I− 1
b
Dfe) (62)

In order to prove that a state observer can be used in astrictly-
input passivemanner, we require the following lemma.

Lemma 4: [31] The discreteLTI system (51) is strictly-
input passive(strictly-positive real(SPR)) if and only if a
symmetric positive definite matrixP exists and satisfies the
following LMI:
[

Φo
TPΦo −P (Γo

TPΦo −KsCp)T

Γo
TPΦo −KsCp −(KsDp + Dp

TKs
T − Γo

TPΓo)

]
< 0

(63)
Therefore by Theorem3-(II ,III ) any continuousstrictly-input
passiveor strictly-output passive LTIsystem which is sampled
and actuated by anIPESHwill satisfy (63). Note that we added
Ks in order to show that any positive diagonal matrix can be
used to scale the outputy(k) as is done with our observer
described by (64).
We now propose the following state observer, based on the
sampled integrated output of thestrictly-input passiveor
strictly-output passiveplant and the corresponding output
estimateŷ(k):

x̂(k + 1) = Φox̂(k) + Γou(k)−Ke(p̂(k)− p(k))
p̂(k) = Cox̂(k)
ŷ(k) = KsCpx̂(k) + KsDpu(k) (64)

This observer is along similar lines to the observer proposed
in [29] except that our observer is based on the sampled
integrated output and we specifically focus on how it applies to
strictly-input passiveandstrictly-output passiveplants. Defin-

ing the error in the state estimate ase(k)
4
= x̂(k)− x(k) and

the augmented observer state vector asxob(k)
4
= [x(k), e(k)]

the system dynamics are

xob(k + 1) = Φobxob(k) + Γobu(k)
ŷ(k) = KsCobxob(k) + KsDpu(k) (65)

where

Φob =
[
Φo 0
0 Φo −KeCo

]

Γob =
[
Γo

0

]

Cob =
[
Cp Cp

]
(66)

Proposition 2: If the sampledLTI system is eitherstrictly-
input passiveor strictly-output passiveand Ke is chosen so
that the eigenvalues ofΦo −KeCo are inside the unit circle
the observer described by (64) is both strictly-input passive
with finite l2-gain andstrictly-output passive.

Proof: First by choosing the eigenvalues to be inside the
unit circle there exists two matricesQ2 > 0 andPo > 0 such
that the following Lyapunov inequality is satisfied

−Q2 = (Φo −KeCo)TPo(Φo −KeCo) < 0 (67)

In order to satisfy the requirements of Lemma4 we consider
the following symmetric positive definite matrix

Pob =
[
P 0
0 µPo

]
> 0 (68)

and show that there exists aµ > 0 that satisfies (72). Note
the following inequalities hold from our originalstrictly-input
passivesystem.

−Q1 = Φo
TPΦo −P < 0

−Q3 = −(KsDp + Dp
TKs

T − Γob
TPobΓob)

= −(KsDp + Dp
TKs

T − Γo
TPΓo) < 0 (69)

To simplify the expression we define

C1
4
= Γo

TPΦo −KsCp (70)

Therefore the proposed passive system described by (65) has
to satisfy




Q1 0 −CT
1

0 µQ2 −Cp
TKs

T

−C1 −KsCp Q3


 > 0 (71)

Using a similarity transformation, (71) is equivalent to



Q1 −CT
1 0

−C1 Q3 −KsCp

0 −Cp
TKs

T µQ2


 > 0 (72)

The following upper block matrix,O, satisfies (63) due to
Proposition1, Theorem3-(II ,III ), and Lemma4.

O =
[

Q1 −CT
1

−C1 Q3

]
> 0 (73)
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SinceO > 0, andQ2 > 0, then from using Proposition 8.2.3-
v in [32] which is based on the Schur Complement Theory
we need to show that

O > 0, and (74)

µQ2 −
[
0 −Cp

TKs
T
]
O−1

[
0

−KsCp

]
> 0

µQ2 −Cp
TKs

TO−1KsCp > 0 (75)

Thus denotingλm(·)/λM (·) as the minimum/maximum eigen-
values for a matrix, noting that the similarity transform of

Q2 = P2Λ2P2
T, and definingM

4
= Cp

TKs
TO−1KsCp, µ

needs to satisfy

µ >
λM (P2

T(M + MT)P2)
2λm(Q2)

(76)

Therefore µ exists and satisfies (72) which completes the
proof.
The proof emphasizes the fact that the one given in [29] only
showssufficiencyfor passivesystems and implicitly assumes
that their discrete sampled plant isstrictly-input passive.
Furthermore, their results can not be applied for our desired
design of an observer which uses the integrated output of a
strictly-input passiveor strictly-output passiveplant.

Since we are using the observer on continuousLTI systems
which are eitherstrictly-input passivewith finite L2-gain, or
strictly-output passiveand the corresponding discrete observer
is both strictly-input passivewith finite l2-gain and strictly-
output passivewe can simplify our implementation by setting
the feedback gainKp = 0 in Fig. 5. We note thatKp

may still be helpful in converting a continuous passive signal
into a discretestrictly-output passivesignal with an observer,
however we found the analysis to be quite difficult. Similar
to Corollary 4 we state for the observer of astrictly-output
passiveplant.

Corollary 6: If using an observer for either aLTI system
which is strictly-input passivewith finite gain or isstrictly-
output passive, the following state equation describes the
relationship between the inputsrop, vop and scattering gain
b to the outputŝuop(k), f̂op(k).

x̂(k + 1) = Φefox̂(k) + Γefo(
√

2bvop(k) + rop(k)) + Kep(k)

f̂op(k) = Cefox̂(k) + Defo(
√

2bvop(k) + rop(k))

ûop(k) =
√

2bf̂op(k)− vop(k) (77)

In which

G = I + bKsDp

Cefo = G−1KsCp

Defo = G−1KsDp

Φefo = Φo −KeCo − bΓoCefo

Γefo = Γo(I− bDefo) (78)
Note that Corollary6 describes a standard observer not con-
nected to a wave junction whenb = 0.

Corollary 7: If using an observer for either aLTI system
which is strictly-input passivewith finite gain or isstrictly-
output passive, the following state equation describes the

relationship between the inputsroc, uoc and scattering gain
b to the outputŝvoc(k), êoc(k).

x̂(k + 1) = Φfeox̂(k) + Γfeo(

√
2
b
uoc(k) + roc(k)) + Kep(k)

êoc(k) = Cfeox̂(k) + Dfeo(

√
2
b
uoc(k) + roc(k))

v̂oc(k) = uoc(k)−
√

2
b
êoc(k) (79)

In which

G1 = I +
1
b
KsDp

Cfeo = G1
−1KsCp

Dfeo = G1
−1KsDp

Φfeo = Φo −KeCo − 1
b
ΓoCfeo

Γfeo = Γo(I− 1
b
Dfeo) (80)

B. STABLE CONTROL WITH A COOPERATIVE SCHED-
ULER

SOSis an operating system which uses a high priority and
low priority queue with timers which signal a task through the
queue in order to implement the soft real time scheduler (note
that most other operating systems such asTinyOSwhich use
just a single FIFO message queue could be used to notify the
control task as well) [2]. For simplicity we will useSOSto
discuss one possible implementation for ourl2-stablecontrol
system illustrated in Fig.5. As a future project, we will write
a device driver which does the following:

1) Provide an interface for the controller to register a func-
tion to enable the device driver to senduop(i) to. Also
allow the controller to specify a desired sample timeT ,
wave impedanceb, andKp (noteKp does not need to be
a matrix, it could be a scalar to modify all parts offop(i)
equally. Note that the driver will buffervoc(i) while the
controller will buffer uop(i).

2) Provide an interface for the controller to send outgoing
voc(i) to.

3) Calculatefop(i) based on theIPESgiven in Definition4-
I,II .

4) Calculate the correspondinguop(i), andedoc(i) based on
the bufferedvoc(i), the servicing of the buffer is where
thevop(i−c(i)) delay comes in effect. Since data can be
popped directly from the buffer, we do not need to worry
about counting duplicate data. For simplicity if the buffer
begins to get full we can safely drop data.

5) With the new edoc(i) and fop(i), calculate ep(i) =
−edoc(i)−Kpfop(i) and apply toZOH.

The controller, is notified by the driver through the high-
priority queue and implements the right side of Fig.5.
Note, that the lower-priority queue can be used for more
time-consuming tasks, such as changing control parameters
and loading new modules. This may cause temporary de-
lays, however,l2-stability will be maintained. Note that old
data does not have to be simply dropped (which satisfies
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Lemma 2) in order for the system to recover from these
longer periodic delays. Using Lemma3-2 we can calculate
the two-norm of all M , in which i = 0, 1, ..., M − 1 of
the non-processed inputss(uop,M) = ‖uop(i)‖2 and mul-
tiply it by the sign of the sum of the non-processed inputs
sn(uop,M) = sgn(

∑M−1
i=0 uop(i)) such that the input for

uoc(i) = sn(uop,M)s(uop,M). This will improve tracking
and highlights why we split the buffers appropriately. The
driver can do a similar calculation in order to calculatevop(i).

IV. SIMULATION

We shall control a motor with an ideal current source, which
will allow us to neglect the affects of the motor inductance
and resistance for simplicity. The fact that the current source
is non-ideal, leads to a non-passive relationship between the
desired motor current and motor velocity [20]. There are ways
to address this problem using passive control techniques by
controlling the motors velocity indirectly with a switched volt-
age source and a minimum phase current feedback technique
[33], and more recently incorporating the motors back voltage
measurement which provides an exact tracking error dynamics
passive output feedback controller [34].

The motor is characterized by its torque constant,Km > 0,
back-emf constantKe, rotor inertia,Jm > 0, and damping
coefficientBm > 0. The dynamics are described by

ω̇ = −Bm

Jm
ω +

Km

Jm
i (81)

and are in a (strictly) positive real form which is a neces-
sary and sufficient condition for (strict input) passivity [35,
Section V.A.2)] [31, Defintion 1]. We choose to use the
passive “proportional-derivative” controller described by (7)
and defineτ = B

K in order to factor outK and yield

KPD(s) = K
τs + 1

s
(82)

Using loop-shaping techniques we chooseτ = Jm

Bm
and choose

K = Jmπ
10KmT . This will provide a reasonable crossover fre-

quency at roughly a tenth the Nyquist frequency and maintain
a 90 degree phase margin. We choose to use the same motor
parameter values given in [34] in whichKm = 49.13mV rad
sec,Jm = 7.95 × 10−3kgm2, and Bm = 41µNmsec. With
T = .05 seconds, we use Corollary5 to synthesize astrictly-
output passivecontroller from our continuous model (82),
and Corollary 6 to implement the observer. We also use
Corollary 3 in order to compute the appropriate gains for
both the controllerKsc = 1 and thestrictly-output passive
plant Ksp = 20. Note that by arbitrarily choosingKsc =
1
T = 20 would have led to a incorrectly scaled system in
which the crossover frequency would essentially equal the
Nyquist frequency (only because a zero exists extremely close
to −1 in the z-plane). Fig.6, Fig. 7, and Fig. 8 indicates
that our baseline system performs as expected. We chose
Ke = [16.193271, 1.799768]T for our observer in which the
poles are equal to a tenth of the poles of the discretepassive
plant synthesized by Proposition1, this by definition forces
all the poles inside the unit circle. Since the plant isstrictly-
output passivewe choseKp = 0. For the controller we
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Fig. 6. Bode plot depicting crossover frequency for baseline plant with
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andstrictly-output passiveobserver as depicted in Fig.5 with delays.

choseKc = 0.001 in order to make itstrictly-output passive.
Fig. 9 shows the step response to a desired position set-point
θd(k) which generates an approximate velocity reference for
roc(z) = −Ht(z)θd(z). Ht(z) is a zero-order hold equivalent
of Ht(s), in which ωtraj = 2π andζ = .9.

Ht(s) =
ω2

trajs

s2 + 2ζωtraj + ω2
traj

(83)

Note, that it is important to use a second order filter in
order to achieve near perfect tracking, a first order filter
resulted in significant steady state position errors for relatively
slow trajectories. Finally in Fig.10 we see that the proposed
control network maintains similar performance as the baseline
system. Note that by increasingb = 5 significantly reduced
the overshoot caused by a half second delay (trianglesb =
1/squaresb = 5). Also note that even a two second delay
(large circlesb = 5) results in only a delayed response nearly
identical to the baseline system.

V. CONCLUSIONS

We have presented the necessary theory to design a digital
control network which maintainsl2−stability in spite of time
varying delays caused by cooperative schedulers. We presented

a fairly complete, and neededl2 stability analysis, in particular
the results in Theorem1, and Theorem2 (for the discrete-time
case) appeared to be lacking from the open literature and were
necessary in order to complete our proof. The other new results
(not available in the open literature) which led to al2-stable
controller design are as follows:

1) Theorem3-I is an improvement which captures allpas-
sivesystems (not justPCH) systems.

2) Theorem3-II , and Theorem3-III are completely original
(the latter forced us to require that the driver had to
implement the additional feedback (Kp) calculation to
obtain passivity for the non-linear case).

3) Corollary 1 allows us to setKp = 0 if the continuous
LTI plant is eitherstrictly-input passiveor strictly-output
passive.

4) Theorem4 is a new and general theorem to interconnect
continuous non-linear passive plants which we hope will
lead to more elaborate networks interconnected in the
discrete time domain. Theorem5 is also new, in which
no knowledge of the energy storage function is required
to show stability of the network.

5) Proposition1 shows how to synthesize a discretepassive
LTI system from a continuous one.

6) Corollary 2 and Corollary3 show how to respectively
make the discretepassiveplant strictly-output passive
(strictly-positive real) and scale the output so that it
will match the steady state output for its continuous
counterpart.

7) Corollary4 and Corollary5 show how to implement the
strictly-output passivenetwork depicted in Fig.5.

8) Proposition2 shows how to implement a discretestrictly-
output passive LTIobserver for either astrictly-input
passiveor strictly-output passivecontinuousLTI system.

9) Corollary6 and Corollary7 show how to implement the
observer when attached to a scattering junction.

We are excited about Theorem2 because it allows us to di-
rectly designlow-sensitivity strictly-output passivecontrollers
using thewave-digital filtersdescribed in [11]. We plan on ex-
tending this networking theory as it applies to multiple plants
controlled by either a single or possibly multiple controllers.
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APPENDIX I
STRICTLY POSITIVE REAL AND STRICTLY INPUT/OUTPUT

PASSIVE LTI SYSTEMS

In our research related topassivity theory, as it relates to
LTI systems, it is not clear that anyone has formally stated
that if a LTI system isstrictly-input passiveit is alsostrictly-
output passive. Possibly this was implicitly understood in the
earlier literature forLTI systems [12], [31], [35] in which the
definition for astrictly-input passivesystem (Definition3) was
termedstrictly passive. Although there is an emphasis in the
literature that astrictly passive(strictly-input passive) systems
may or may not have afinite l2-gain which is necessary for a
strictly-output passivesystem. There is no specific statement
that astrictly-input passive LTIsystems hasfinite l2-gain. This
is emphasized by the fact that both [36, Corollary 1] [37,
Corollary 2] note that discreteSPR LTIsystems are indeed
stable.

Definition 5: [37], [38] Let H(s) be a square rational
transfer matrix ins. H(s) is said to beSPRif

a) All elements ofH(s) are analytic inRe(s) ≥ 0;
b) H(jω) + HT(−jω) > 0, ∀ω ∈ R
c) i. ω2[H(jω)+HT(−jω)]>0

lim
ω→∞

, if |D + DT| = 0

ii. [H(jω)+HT(−jω)]>0
lim

ω→∞
, if |D + DT| 6= 0

Definition 6: [37], [38] Let Hd(z) be a square rational
transfer matrix inz. Hd(z) is said to beSPRif

a) All elements ofHd(z) are analytic in|z| ≥ 1
b) Hd(ejθ) + HT

d (e−jθ) > 0, ∀θ ∈ [0, 2π]
Note that both definitions are slightly more restrictive than
those given by [38], however they are consistent with previous
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statements relatingSPRto strictly-input passivesystems [12],
[35], [37]. Thus by definitions5,6 continuous and discrete
SPR LTIsystems are stable which implies thatstrictly-input
passiveor strictly-output passivesystems are also stable. It has
already been shown thatstrictly-output passivesystems have
finite l2-gain, it remains to be shown thatLTI strictly-input
passivesystems also havefinite l2-gain.

Theorem 6: [39] TheL2/l2-gainof aLTI system described
by a transfer matrixH(p) equals theH∞ norm of H defined
by

||H||∞ = sup
p∈Ω

||H(p)|| (84)

whereΩ is the right half planeΩ = C0 for the continuous
time (CT) case, and the exterior of the unit circleΩ = D1 in
the discrete time (DT) case. Moreover, for rational transfer
matrices with no poles inΩ (such asSPR systems), the
supremum can be calculated on the boundary ofΩ (the
imaginary axis in theCT case and the unit circle in theDT
case).
Therefore, from Theorem6 a continuous/discreteLTI strictly-
input passivesystem which isSPR has finite L2/l2-gain
which implies theLTI system isstrictly-output passive[14,
Remark 2.3.5].

Corollary 8: Every continuous/discreteLTI system which
is strictly-input passivehasfinite L2/l2-gain, therefore it also
strictly-output passive.

APPENDIX II
OBSERVERSIMULATION EQUATIONS

In order to simulate an observer for a contin-
uous LTI plant in which the actual state space
matrices for the actual passive plant are denoted
{Aa ∈ Rn×n,Ba ∈ Rn×p,Ca ∈ Rp×n,Da ∈ Rp×p}. The
actual discrete equivalent matrices for a passive system are
computed appropriately as described by (46), (47), (48), (49),
and (50), and denoted as{Φoa,Γoa,Coa}. If the observer is
implemented on the plant side for aLTI strictly-input passive
or strictly-output passiveplant as depicted in Fig.5 and
described by Corollary6, then the system can be described
by

[
x̂(k + 1)
x(k + 1)

]
=

[
Φefo KeCoa

−bΓoaCefo Φoa

] [
x̂(k)
x(k)

]

+
[
Γefo

Γefoa

]
(
√

2bvop(k) + rop(k))
[
f̂op(k)
p(k)

]
=

[
Cefo 0
0 Coa

] [
x̂(k)
x(k)

]

+
[
Defo

0

]
(
√

2bvop(k) + rop(k)) (85)

in which

Γefoa = Γoa(I− bDefo) (86)

. Similarly, if we implement the observer for a continuous plant
on the “controller side” (i.e. when the plant is more accurately
depicted as having a flow input and corresponding effort

output) as depicted in Fig.5 and described by Corollary7
then the system can be described by

[
x̂(k + 1)
x(k + 1)

]
=

[
Φfeo KeCoa

− 1
bΓoaCfeo Φoa

] [
x̂(k)
x(k)

]

+
[
Γfeo

Γfeoa

]
(

√
2
b
uoc(k) + roc(k))

[
êoc(k)
p(k)

]
=

[
Cfeo 0
0 Coa

] [
x̂(k)
x(k)

]

+
[
Dfeo

0

]
(

√
2
b
uoc(k) + roc(k)) (87)

in which
Γfeoa = Γoa(I− 1

b
Dfeo) (88)

.


