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Abstract

This technical report summarizes various key relationships in regards to continuous time and discrete timepassivesystems.
It includes relationships for both the linear time invariant case and the non-linear case. For the linear time invariantcase we
specifically discuss relationships between minimal causalpositive real strictly-positive real extended strictly-positive realsystems
andpassivesystems.
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Time Domain and Frequency Domain Conditions
For Passivity

I. INTRODUCTION

Passivesystems can be thought of as systems which only
store or release energy which was provided to the system.
Passivesystems have been analyzed by studying their input
output relationships. In particular the definitions used tode-
scribepositiveandstrongly positivesystems [1] are essentially
equivalent to the definitions used forpassiveandstrictly-input
passivesystems in which the available storageβ = 0 [2,
Definition 6.4.1].

II. K EY RESULTS FORPASSIVE, DISSIPATIVE, AND

POSITIVE REAL SYSTEMS

A. Passive Systems

Let T be the set of time of interest in whichT = R
+ for

continuous time signals andT = Z
+ for discrete time signals.

Let V be a linear spaceRn and denote by the spaceH of all
functionsu : T → V which satisfy the following:

‖u‖2
2 =

∫ ∞

0

uT(t)u(t)dt < ∞, (1)

for continuous time systems(Lm
2 ), and

‖u‖2
2 =

∞
∑

0

uT(i)u(i) < ∞, (2)

for discrete time systems(lm2 ).
Similarly we will denote byHe as the extended space of

functions asu : T → V by introducing the truncation operator:

xT (t) =

{

x(t), t < T,

0, t ≥ T

for continuous time, and

xT (i) =

{

x(i), i < T,

0, i ≥ T

for discrete time. The extended spaceHe satisfies the follow-
ing:

‖uT ‖2
2 =

∫ T

0

uT(t)u(t)dt < ∞; ∀T ∈ T (3)

for continuous time systems(Lm
2e), and

‖uT‖2
2 =

T−1
∑

0

uT(i)u(i) < ∞; ∀T ∈ T

for discrete time systems(lm2e). The inner product over the
interval [0, T ] for continuous time is denoted as follows:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

similarly the inner product over the discrete time interval
{0, 1, . . . , T − 1} is denoted as follows:

〈y, u〉T =
T−1
∑

0

yT(i)u(i).

For simplicity of discussion we note the following equivalence
for our inner-product space:

〈(Hu)T , uT 〉 = 〈(Hu)T , u〉 = 〈Hu, uT 〉 = 〈Hu, u〉T .

The symbol,H denotes a relation onHe, and if u is a given
element ofHe, then the symbolHu denotes an image ofu
under H [1]. FurthermoreHu(t) denotes the value ofHu

at continuous timet and Hu(i) denotes the value ofHu at
discrete timei.

Definition 1: A dynamic systemH : He → He is Lm
2

stable if
u ∈ Lm

2 =⇒ Hu ∈ Lm
2 .

Remark 1:A proper LTI system described by the square
transfer function matrixH(s) ∈ R

m×m(s) is Lm
2 stable if and

only if all poles have negative real parts [3, Theorem 9.5 p.488]
(uniform BIBO stability) combined with [4, Theorem 6.4.45
p.301]. Therefore a systemH(s) with a corresponding mini-

mal realizationΣ
△
= {A, B, C, D} described by (4) and (5)

will also be asymptotically stable.

ẋ = Ax(t) + Bu(t), x ∈ R
n (4)

y(t) = Cx(t) + Du(t) (5)

H(s) = C(sI − A)−1 + D (6)

Definition 2: A dynamic systemH : He → He is lm2 stable
if

u ∈ lm2 =⇒ Hu ∈ lm2 .

Remark 2:An LTI system described by the square transfer
function matrixH(z) ∈ R

m×m(z) is lm2 stable if and only
if all poles are inside the unit circle of the complex plain
[3, Theorem 10.17 p.508] (uniform BIBO stability) combined
with [4, Theorem 6.7.12 p.366]. Therefore a systemH(z) with

a corresponding minimal realizationΣz
△
= {A, B, C, D}

described by (7) and (8) will also be asymptotically stable.

x(k + 1) = Ax(k) + Bu(k), x ∈ R
n (7)

y(k) = Cx(k) + Du(k) (8)

H(z) = C(zI − A)−1 + D (9)

Definition 3: Let H : He → He. We say thatH is

i) passiveif ∃β > 0 s.t.

〈Hu, u〉T ≥ −β, ∀u ∈ He, ∀T ∈ T
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ii) strictly-input passiveif ∃δ > 0 and∃β > 0 s.t.

〈Hu, u〉T ≥ δ‖uT ‖2
2 − β, ∀u ∈ He, ∀T ∈ T

iii) strictly-output passiveif ∃ǫ > 0 and∃β > 0 s.t.

〈Hu, u〉T ≥ ǫ‖(Hu)T‖2
2 − β, ∀u ∈ He, ∀T ∈ T (10)

iv) non-expansiveif ∃γ̂ > 0 and∃β̂ s.t.

‖(Hu)T‖2
2 ≤ β̂ + γ̂2‖uT ‖2

2, ∀u ∈ He, ∀T ∈ T
Remark 3: In [2] strictly-input passivewas referred to

as strictly passive. Furthermore the definition for (strictly)
positivegiven in [1] is equivalent to the definition for (strictly-
input) passivewith β = 0 for the continuous time case. We
also note that [5] chose to define passive systems for the
case whenβ = 0. However, we will follow the definition
given in [2] and only consider a system as (strictly) positive
using (Definition 3-ii) Definition 3-i in whichβ = 0 and
T = ∞. NB, strictly-positive or strictly-input-passive systems
are not equivalent to the strictly-positive-real systems whose
definitions will be recalled later in the text. Strictly-positive-
real systems, as they shall be defined, implicitly require
all poles to be strictly in the left-half-plane. For example,
H(s) = 1

s
+ a, in which 0 < a < ∞ is obviously strictly-

positive and obviously not strictly-positive-real in which their
exists no0 < ǫ < ∞ such thatH(s − ǫ) is analytic for all
Re[s] > 0 (the first condition required in order forH(s − ǫ)
to be positive-real).

Remark 4: If H is linear thenβ can be set equal to zero
without loss of generality in regards topassivity. If H is
causal then (strictly) positive and (strictly-input) passiveare
equivalent (assumingHu(0) = 0) [2, p.174, p.200].

Remark 5:A non-expansivesystemH is equivalent to any
system which has finiteLm

2 (lm2 ) gain in which there exists
constantsγ andβ s.t. 0 < γ < γ̂ and satisfy

‖(Hu)T ‖2 ≤ γ‖uT‖2 + β, ∀u ∈ He, ∀T ∈ T . (11)

Furthermore anon-expansivesystem impliesLm
2 (lm2 ) stability

[6, p.4] ( [7, Remark 1]).
Theorem 1: [2, p.174-p.175] Assume thatH is a linear

time invariant system which has a minimal realizationΣ (Σz)
that is asymptotically stable:

(i) then for the continuous time case:
(a) H is passiveiff H(jω) + H∗(jω) ≥ 0, ∀ω ∈ R.
(b) H is strictly-input passiveiff

H(jω) + H∗(jω) ≥ δI, ∀ω ∈ R. (12)

(ii) and for the discrete time case:
(a) H is passiveiff H(ejθ)+H∗(ejθ) ≥ 0, ∀θ ∈ [0, 2π].
(b) H is strictly-input passiveiff

H(ejθ) + H∗(ejθ) ≥ δI, ∀θ ∈ [0, 2π]. (13)

Remark 6:The theorem stated was left as exercises for the
reader to solve in [2, p.174-p.175]. The assumption that the
system is a minimal realization and is asymptotically stable is
based on their assumption that the impulse response ofH is
in Lm

1 for continuous time orlm1 for discrete time [2, p.83]
and [4, p.353,p.297,p.301].

Theorem 2:Given a single-input single-outputLTI strictly-
output passivesystem with transfer functionH(s) (H(z)), real
impulse responseh(t) (h(k)), and corresponding frequency
response:

H(jω) = Re{H(jω)} + jIm{H(jω)} (14)

in which Re{H(jω)} = Re{H(−jω)} for the real part of the
frequency response andIm{H(jω)} = −Im{H(−jω)} for the
imaginary part of the frequency response. The constantǫ for
(10) satisfies:

0 < ǫ ≤ inf
ω∈[0,∞)

Re{H(jω)}
Re{H(jω)}2 + Im{H(jω)}2

(15)

for the continuous time case. Similarly

H(ejω) = Re{H(ejω)} + jIm{H(ejω)} (16)

in which Re{H(ejω)} = Re{H(e−jω)} in which 0 ≤ ω ≤ π

for the real part of the frequency response andIm{H(ejω)} =
−Im{H(e−jω)} for the imaginary part of the frequency re-
sponse. The constantǫ for (10) satisfies:

0 < ǫ ≤ min
ω∈[0,π]

Re{H(ejω)}
Re{H(ejω)}2 + Im{H(ejω)}2

(17)

for the discrete time case.
Proof: Since astrictly-output passivesystem has a finite

integrable (summable) impulse response (ie.
∫ ∞

0 h2(t)dt < ∞
(
∑∞

i=0 h2[i] < ∞)) then (10) can be written as:
∫ ∞

−∞

H(jω)|U(jω)|2dω ≥ ǫ

∫ ∞

−∞

|H(jω)|2|U(jω)|2dω

(18)
for the continuous time case or

∫ π

−π

H(ejω)|U(ejω)|2dω ≥ ǫ

∫ π

−π

|H(ejω)|2|U(ejω)|2dω

(19)
for the discrete time case. (18) can be written in the following
simplified form:

∫ ∞

−∞

Re{H(jω)}|U(jω)|2dω ≥

ǫ

∫ ∞

−∞

(Re{H(jω)}2 + Im{H(jω)}2)|U(jω)|2dω (20)

in which (15) clearly satisfies (20). Similarly (19) can be
written in the following simplified form:

∫ π

−π

Re{H(ejω)}|U(ejω)|2dω ≥

ǫ

∫ π

−π

(Re{H(ejω)}2 + Im{H(ejω)}2)|U(ejω)|2dω (21)

in which (17) clearly satisfies (21).

B. Dissipative Systems

Dissipative systems are concerned with relatingβ to an
appropriatestorage functions(u(t), y(t)) based on the internal
statesx ∈ R

n of the systems ((4),(5)) or ((7),(8)) such that
β(x) : R

n → R
+. The discussion can be generalized for non-

linear systems, however for simplicity we will focus on the
linear time invariant cases.
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Definition 4: A state space systemΣ is dissipative with
respect to the supply rates(u, y) if there exists a matrix
P = PT > 0, such that for allx ∈ R

n, all t2 ≥ t1, and
all input functionsu

xT(t2)Px(t2) ≤ xT(t1)Px(t1) +

∫ t2

t1

s(u(t), y(t))dt, holds.

(22)
By dividing both sides of (22) byt2 − t1 and lettingt2 → t1
it follows that ∀t ≥ 0

˙xT(t)Px(t) ≤ s(u(t), y(t))

ẋT(t)Px(t) + xT(t)P ẋ(t) ≤ s(u(t), y(t))

xT(t)[ATP + PA]x(t) + 2xT(t)PBu(t) ≤ s(u(t), y(t))(23)

therefore (23) can be used as an alternative definition for a
dissipative system.

Remark 7:We chose an appropriate storage function
β(x) = xTPx and substitute it into [6, (3.3)] which results in
(22). Sinceβ(x) ∈ C1 we can derive (23) as was shown for
the nonlinear case [8, (5.83)].
We note that sinceΣ is a minimal realization ofH(s)
then from [6, Corollary 3.1.8] we can state theequivalent
definitions forpassivitybased onP andΣ.

Definition 5: Assume thatΣ is a dissipative system with a
storage functions(u(t), y(t)) of the following form:

s(u(t), y(t)) = yT(t)Qy(t)+2yT(t)Su(t)+uT(t)Ru(t) (24)

thenΣ:
i) is passiveiff

Q = R = 0, andS =
1

2
I (25)

ii) is strictly-input passiveiff ∃δ > 0 and

Q = 0, R = −δI, andS =
1

2
I (26)

iii) is strictly-output passiveiff ∃ǫ > 0 and

Q = −ǫI, R = 0, andS =
1

2
I (27)

iv) is non-expansiveiff ∃γ̂ > 0 and

Q = −I, R = γ̂2I, andS = 0 (28)

Remark 8:The reason that these conditions are necessary
and sufficient is that the systemΣ is a minimal realization of
H(s) which is controllable and observable and satisfies either
[9, Theorem 1] or [5, Theorem 16] for theLTI case.
From the above discussion the following corollary can be
stated.

Corollary 1: A necessary and sufficient test for Definition 5
to hold is that there∃P = PT > 0 such that the following
LMI is satisfied:

[

ATP + PA − Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

]

≤ 0 , (29)

in which

Q̂ = CTQC (30)

Ŝ = CTS + CTQD (31)

R̂ = DTQD + (DTS + STD) + R. (32)

An analogous discussion can be made for the discrete time
case similar to that given in [10, Appendix C].

Definition 6: A state space systemΣz is dissipative with
respect to the supply rates(u, y) iff there exists a matrixP =
PT > 0, such that for allx ∈ R

n, all l > k ≥ 0, and all input
functionsu

xT(l)Px(l) ≤ xT(k)Px(k) +

l−1
∑

i=k

s(u[i], y[i]), holds. (33)

Lemma 1:A state space systemΣz is dissipative with
respect to the supply rates(u, y) iff there exists a matrix
P = PT > 0, such that for allx ∈ R

n, all k ≥ 0, and
all input functionsu(k) such that

xT[k + 1]Px[k + 1] − xT[k]Px[k] ≤ s(u[k], y[k])(34)

{Ax[k] + Bu[k]}TP{Ax[k] + Bu[k]}−
xT[k]Px[k] ≤ s(u[k], y[k])

xT[k]{ATPA − P}x[k] + 2xT[k]ATPBu[k]+

uT[k]BTPBu[k] ≤ s(u(k), y(k))(35)

holds.
Proof: (33) =⇒ (34) can be shown be settingl = k+1.

(34) =⇒ (33):
Taking (34) we can write

l−1
∑

i=k

(xT[i + 1]Px[i + 1] − xT[i]Px[i]) ≤
l−1
∑

i=k

s(u[i], y[i])

which can then be expressed as

l
∑

i=k+1

xT[i]Px[i] −
l−1
∑

i=k

xT[i]Px[i] ≤ ∑l−1
i=k s(u[i], y[i])

xT[l]Px[l] − xT[k]Px[k] ≤ ∑l−1
i=k s(u[i], y[i]).

We note that sinceΣz is a minimal realization ofH(z)
then a similar argument can be made as was done in [6,
Corollary 3.1.8] for the discrete time which allows us to state
the equivalentdefinitions forpassivitybased onP andΣz .

Definition 7: Assume thatΣz is a dissipative system with
a storage functions(u[k], y[k]) of the following form:

s(u[k], y[k]) = yT[k]Qy[k]+2yT[k]Su[k]+uT[k]Ru[k] (36)

thenΣz:

i) is passiveiff

Q = R = 0, andS =
1

2
I (37)

ii) is strictly-input passiveiff ∃δ > 0 and

Q = 0, R = −δI, andS =
1

2
I (38)

iii) is strictly-output passiveiff ∃ǫ > 0 and

Q = −ǫI, R = 0, andS =
1

2
I (39)

iv) is non-expansiveiff ∃γ̂ > 0 and

Q = −I, R = γ̂2I, andS = 0 (40)
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Therefore the following corollary can be stated.
Corollary 2: [10, Lemma C.4.2] A necessary and sufficient

test for Definition 7 to hold is that there∃P = PT > 0 such
that the followingLMI is satisfied:

[

ATPA − P − Q̂ ATPB − Ŝ

(ATPB − Ŝ)T −R̂ + BTPB

]

≤ 0 , (41)

in which

Q̂ = CTQC (42)

Ŝ = CTS + CTQD (43)

R̂ = DTQD + (DTS + STD) + R. (44)

C. Positive Real Systems

Positive real systemsH(s) have the following properties:
Definition 8: [11, p.51] [8, Definition 5.18] Ann × n

rational and proper matrixH(s) is termedpositive real(PR)
if the following conditions are satisfied:

i) All elements ofH(s) are analytic inRe[s] > 0.
ii) H(s) is real for real positives.

iii) H∗(s) + H(s) ≥ 0 for Re[s] > 0.

furthermoreH(s) is strictly positive real (SPR) if there∃ǫ > 0
s.t.H(s− ǫ) is positive real. Finally,H(s) is strongly positive
real if H(s) is strictly positive real andD + DT > 0 where

D
△
= H(∞).

The test for positive realness can be simplified to a frequency
test as follows:

Theorem 3: [11, p.216] [8, Theorem 5.11] LetH(s) be a
square, real rational transfer function.H(s) is positive real iff
the following conditions hold:

i) All elements ofH(s) are analytic inRe[s] > 0.
ii) H∗(jω) + H(jω) ≥ 0 for ∀ω ∈ R for which jω is not a

pole for any element ofH(s).
iii) Any pure imaginary polejωo of any element ofH(s)

is a simple pole, and the associated residue matrixHo
△
=

lims→jωo
(s−jωo)H(s) is nonnegative definite Hermitian

(i.e. Ho = H∗
o ≥ 0).

A similar test is given for strict positive realness.
Theorem 4: [8, Theorem 5.17] LetH(s) be an × n, real

rational transfer function and supposeH(s) is not singular.
ThenH(s) is strictly positive real iff the following conditions
hold:

i) All elements ofH(s) are analytic inRe[s] ≥ 0.
ii) H∗(jω) + H(jω) > 0 for ∀ω ∈ R.

iii) Either D + DT > 0 or both D + DT ≥ 0 and
limω→∞ ω2QT[(H∗(jω) + H(jω)]Q > 0 for every
Q ∈ R

n×(n−q), where q = rank(D + DT), such that
QT(D + DT)Q = 0.

Remark 9:The following theorem suggest that (12) and
strong positive realnessare equivalent. Which we will now
show.

Lemma 2:Let H(s) (with a corresponding minimal realiza-
tion Σ) be an×n, real rational transfer function and suppose
H(s) is not singular. Then the following are equivalent:

i) H(s) is strongly positive real

ii) Σ is asymptotically stable and

H(jω) + H∗(jω) ≥ δI, ∀ω ∈ R (45)

Proof: ii =⇒ i:
Since Σ is asymptotically stable then all poles are in the
open left half plane, therefore Theorem 4-i is satisfied. Next
(45) clearly satisfies Theorem 4-ii. Also, (45) implies that
D + DT > δI > 0 which satisfies 4-iii which satisfies the
final condition to bestrictly-positive realand alsostrongly
positive realas noted in Definition 8.
i =⇒ ii:
First we note that Theorem 4-i impliesΣ will be asymptot-
ically stable. Next, from Definition 8 we note that∃δ1 > 0
s.t.

H∗(j∞) + H(j∞) = DT + D ≥ δ1I > 0

Lastly, we assume that∃δ2 ≤ 0 s.t.

H∗(jω) + H(jω) ≥ δ2I, ∀ω(−∞,∞) (46)

however this contradicts Theorem 4-ii therefore∃δ2 > 0 s.t.
(46) is satisfied which implies (45) is satisfied in whichδ =
min{δ1, δ2} > 0.

Remark 10:Note that Lemma 2-ii is equivalent toΣ being
asymptotically stable andH(s) beingstrictly-input passiveas
stated in Theorem 1-ib.
Finally, we state the Positive Real Lemma and the Strictly
Positive Real Lemmas for the continuous time case.

Lemma 3: [11, p.218] LetH(s) be ann×n matrix of real
rational functions of a complex variables, with H(∞) < ∞.
Let Σ be a minimal realization ofH(s). ThenH(s) is positive
real iff there existsP = PT > 0 s.t.

[

ATP + PA PB − CT

(PB − CT)T −(DT + D)

]

≤ 0 (47)

Lemma 4: [12, Lemma 2.3] LetH(s) be ann×n matrix of
real rational functions of a complex variables, with H(∞) <

∞. Let Σ be a minimal realization ofH(s). Then H(s) is
strongly positive real iff there existsP = PT > 0 s.t. Σ is
asymptotically stable and

[

ATP + PA PB − CT

(PB − CT)T −(DT + D)

]

< 0. (48)

Discrete time positive real systemsH(z) have the following
properties:

Definition 9: [8, Definition 13.16] [13, Definition 2.4] A
square matrixH(z) of real rational functions is apositive real
matrix if:

i) all the entries ofH(z) are analytic in|z| > 1 and,
ii) Ho = H(z) + H∗(z) ≥ 0, ∀|z| > 1.

FurthermoreH(z) is strictly-positive realif ∃0 < ρ < 1 s.t.
H(ρz) is positive real. Unlike for the continuous time case
there is no need to denote thatH(z) is strongly positive real
whenH(z) is strictly positive real and(D + DT) > 0 where

D
△
= H(∞). For the discrete time case(D + DT) > 0 is

implied as is noted in [14, Remark 4].
The test for apositive real system can be simplified to a
frequency test as follows:
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Theorem 5: [8, Theorem 13.26] LetH(z) be a square, real
rationaln × n transfer function matrix.H(z) is positive real
iff the following conditions hold:

i) No entry of H(z) has a pole in|z| > 1.
ii) H(ejθ)+ H∗(ejθ) ≥ 0, ∀θ ∈ [0, 2π], in which ejθ is not

a pole for any entry ofH(z).
iii) If ejθ̂ is a pole of any entry ofH(z) it is at most a simple

pole, and the residue matrixHo
△
= lim

z→ejθ̂ (z−ejθ̂)G(z)
is nonnegative definite.

The test for astrictly-positive realsystem can be simplified
to a frequency test as follows:

Theorem 6: [13, Theorem 2.2] LetH(z) be a square, real
rationaln×n transfer function matrix in whichH(z)+H∗(z)
has rankn almost everywhere in the complexz-plane.H(z)
is strictly-positive realiff the following conditions hold:

i) No entry of H(z) has a pole in|z| ≥ 1.
ii) H(ejθ) + H∗(ejθ) ≥ ǫI > 0, ∀θ ∈ [0, 2π], ∃ǫ > 0.
Remark 11:Note that sinceθ ∈ [0, 2π] in the definition for

strictly-positive real, then the stronger inequality withǫ can
be used as well. The following theorem suggest that (13) and
strictly-positive realare equivalent which we now show.

Lemma 5:Let H(z) (with a corresponding minimal real-
ization Σz) be a square, real rationaln × n transfer function
matrix in whichH(z)+H∗(z) has rankn almost everywhere
in the complexz-plane. Then the following are equivalent:

i) H(z) is strictly positive real
ii) Σz is asymptotically stable and

H(ejθ) + H∗(ejθ) ≥ δI, ∀θ ∈ [0, 2π] (49)

Proof: ii =⇒ i:
Since Σz is asymptotically stable then all poles are strictly
inside the unit circle, therefore Theorem 6-i is satisfied. Next
(49) clearly satisfies Theorem 6-ii.
i =⇒ ii:
First we note that Theorem 6-i impliesΣz will be asymptoti-
cally stable. Finally Theorem 6-ii clearly satisfies (49).
Finally, we state the Positive Real Lemma and the Strictly
Positive Real Lemmas for the discrete time case.

Lemma 6: [13, Theorem 3.7] LetH(z) be ann×n matrix
of real rational functions and letΣz be a stable realization of
H(z). ThenH(z) is positive realiff there existsP = PT > 0
s.t.

[

ATPA − P ATPB − CT

(ATPB − CT)T −(DT + D) + BTPB

]

≤ 0. (50)

Lemma 7: [14, Corollary 2] LetH(z) be ann×n matrix of
real rational functions and letΣz be an asymptotically stable
realization of H(z). Then H(z) is strictly-positive real iff
there existsP = PT > 0 s.t.

[

ATPA − P ATPB − CT

(ATPB − CT)T −(DT + D) + BTPB

]

< 0. (51)

III. M AIN RESULTS

We now state the main result in regards topassiveand
positive realsystems.

Lemma 8:Let H(s) be ann × n matrix of real rational
functions of a complex variables, with H(∞) < ∞. Let Σ

be a minimal realization ofH(s). Furthermore we denoteH(t)
as ann × n impulse response matrix ofH(s) in which the
outputy(t) is computed as follows:

y(t) =

∫ t

0

H(t − τ)u(τ)dτ

Then the following statements are equivalent:

i) H(s) is positive real.
ii) There∃P = PT > 0 s.t. (47) is satisfied.
iii) With Q = R = 0, S = 1

2I there∃P = PT > 0 s.t. (29)
is satisfied.

iv)
∫ ∞

0

yT(t)u(t)dt ≥ 0, wheny(0) = 0

Proof: i ⇔ ii:
Shown in Lemma 3.
iii ⇔ iv:
iv is an equivalent test forpassivity (see Remark 4) and
Corollary 1 provides the necessary and sufficient test for
passivity.
iii =⇒ ii:
A passivesystemH(s) is alsopassiveiff kH(s) is passive
for ∀k > 0. Therefore (29) forkH(s) in which Σ =
{A, B, kC, kD} and Q = R = 0, S = 1

2I, Q̂ = 0, Ŝ =
k
2CT, R̂ = k

2 (DT + D):
[

ATP + PA PB − k
2CT

(PB − k
2CT)T −k

2 (DT + D)

]

≤ 0 , (52)

which for k = 2 satisfies (47).
ii =⇒ iii:
The converse argument can be made in which apositive real
systemH(s) is positive realiff kH(s) is positive real∀k > 0
in which we choosek = 1

2 .
Remark 12:This theorem appears as [8, Theorem 5.], how-

ever, a different proof is provided which appears only valid
when there are no poles on the imaginary axis in order to
invoke Parseval’s theorem. This stresses the importance which
the dissipative definition forpassivityallows us to make such
a strong connection to apositive realsystem.

Lemma 9:Let H(s) be ann × n matrix of real rational
functions of a complex variables, with H(∞) < ∞. Let Σ
be a minimal realization ofH(s). Furthermore we denoteH(t)
as ann × n impulse response matrix ofH(s) in which the
outputy(t) is computed as follows:

y(t) =

∫ t

0

H(t − τ)u(τ)dτ

Then the following statements are equivalent:

i) H(s) is strongly positive real.
ii) There∃P = PT > 0 s.t. (48) is satisfied.
iii) Σ is asymptotically stable, and forQ = 0, R = −δI

,S = 1
2I there∃P = PT > 0 s.t. (29) is satisfied (strictly-

input passiveandnon-expansive).
iv) Σ is asymptotically stable, and ify(0) = 0 then

∫ ∞

0

yT(t)u(t) ≥ δ‖u(t)‖2
2
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in which δ = inf−∞≤ω≤∞ Re{H(jω)} for the single
input single output case.

Furthermore, iii implies that forQ = −ǫI, R = 0, andS = 1
2I

there∃P = PT > 0 s.t. (29) is also satisfied (strictly-output
passive). Thus if y(0) = 0 then

∫ ∞

0

yT(t)u(t)dt ≥ ǫ‖y(t)‖2
2

Remark 13:In order for the equivalence betweenstrongly
positive realandstrictly-input passiveto be stated, thestrictly-
input passivesystem must also have finite gain (i.e.Σ is
asymptotically stable). For example the realization forH(s) =
1 + 1

s
, Σ = {A = 0, B = 1, C = 1, D = 1}, δ = 1 is

strictly-input passivebut is not asymptotically stable. However
H(s) = s+b

s+a
, Σ = {A = −a, B = (b − a), C = D = 1}, δ =

min{1, b
a
} is both strictly-input passiveand asymptotically

stable for alla, b > 0.
Proof: i ⇔ ii:

Is stated in Lemma 4.
ii ⇔ iv:
The equivalence between asymptotic stability,strictly-input
passiveandstrongly positive realis noted in Remark 10.
iii ⇔ iv:
As noted in Definition 5.

Remark 14:It is well known that anon expansivesystem
which is strictly-input passive =⇒ that H is also strictly-
output passive[6, Remark 2.3.5] [8, Proposition 5.2], the
converse however, is not always true (i.e.inf∀ω Re{H(jω)}
is zero for strictly proper (strictly-output passive) systems).
It has been shown for the continuous time case [6, The-
orem 2.2.14] and discrete time case [7, Theorem 1] [10,
Lemma C.2.1-(iii)] that astrictly-output passivesystem =⇒
non expansivebut it remains to be shown if the converse is
true or not true. Indeed, we can show that an infinite number
of continuous-time and discrete-time linear-time invariant sys-
tems do exists which are both passive andnon expansiveand
are neitherstrictly-output passive(nor strictly-input passive).

Theorem 7:Let H : He → He (in which y = Hu, y(0) =
0, and for the case when a state-space-description exists for
H that it is zero-state-observable (y = 0 implies that the state
x = 0) and there exists a positive definite storage function
β(x) > 0, x 6= 0, β(0) = 0) have the following properties:

a) ‖(y)T ‖2 ≤ γ‖(u)T ‖2

b) 〈y, u〉T ≥ −δ‖(u)T ‖2
2

c) There exists a non-zero-normed inputu such that〈y, u〉T =
−δ‖(u)T‖2

2 in which ‖(y)T ‖2
2 6= δ2‖(u)T ‖2

2.

Then the following systemH1 in which the outputy1 is
computed as follows:

y1 = y + δu (53)

has the following properties:

I. H1 is passive,
II. H1 is non-expansive,

III. H1 is neitherstrictly-output passive(nor strictly-input
passive).

Proof: 7-I
Solving for the inner-product betweeny1 andu we have

〈y1, u〉T = 〈y, u〉T + δ‖(u)T ‖2
2

〈y1, u〉T ≥ (−δ + δ)‖(u)T ‖2
2 ≥ 0.

7-II
Solving for the extended-two-norm fory1 we have

‖(y1)T ‖2
2 = ‖(y + δu)T ‖2

2

‖(y1)T ‖2
2 ≤ ‖(y)T ‖2

2 + δ2‖(u)T ‖2
2

‖(y1)T ‖2
2 ≤ (γ2 + δ2)‖(u)T ‖2

2.

7-III
Recalling, from our proof for passivity, and our solution for
the inner-product betweeny1 andu, and substituting our final
Assumption-c we have:

〈y1, u〉T = (−δ + δ)‖(u)T ‖2
2 = 0.

It is obvious that no constantδ > 0 exists such that

〈y1, u〉T = 0 ≥ δ‖(u)T ‖2
2

since it is assumed that‖(u)T‖2
2 > 0, henceH1 is notstrictly-

input passive. In a similar manner, noting that with the added
restriction that the following rare-case‖(y)T ‖2

2 = δ2‖(u)T ‖2
2

does not occur for the same input functionu when〈y, u〉T =
−δ‖(u)T‖2

2 holds, it is obvious that no constantǫ > 0 exists
such that

〈y1, u〉T = 0 ≥ ǫ‖(y1)T ‖2
2

0 ≥ ǫ
(

‖(y)T ‖2
2 + 2δ〈y, u〉T + δ2‖(u)T ‖2

2

)

0 ≥ ǫ
(

‖(y)T ‖2
2 − δ2‖(u)T ‖2

2

)

holds.
Corollary 3: The following continuous-time-systemH(s)

H(s) =
ω2

n

s2 + 2ωns + ω2
n

, 0 < ωn < ∞ (54)

satisfies the assumptions listed in Theorem 7 required of
systemH in which δ = 1

8 and an input-sinusoidu(t) =

sin(
√

3ωnt) is a null-inner-product sinusoid such that:

H1(s) =
1

8
+ H(s) =

1

8
+

ω2
n

s2 + 2ωns + ω2
n

, 0 < ωn < ∞

is both passive and non-expansive but neitherstrictly-output
passivenor strictly-input passive.
We now conclude with main results in regards to discrete time
passiveand positive real systems (the proofs follow along
similar lines for the continuous time case).

Lemma 10:Let H(z) be ann × n matrix of real rational
functions of variablez. Let Σz be a minimal realization of
H(z) which is Lyapunov stable. Furthermore we denoteH [k]
as ann × n impulse response matrix ofH(z) in which the
outputy[k] is computed as follows:

y[k] =

k
∑

i=0

H [k − i]u[i]

Then the following statements are equivalent:
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i) H(z) is positive real.
ii) There∃P = PT > 0 s.t. (50) is satisfied.

iii) With Q = R = 0, S = 1
2I there∃P = PT > 0 s.t. (41)

is satisfied.
iv) If y[0] = 0 then

∞
∑

i=0

yT(i)u(i) ≥ 0

Lemma 11:Let H(z) be ann × n matrix of real rational
functions of variablez. Let Σz be a minimal realization of
H(z) which is Lyapunov stable. Furthermore we denoteH [k]
as ann × n impulse response matrix ofH(z) in which the
outputy[k] is computed as follows:

y[k] =

k
∑

i=0

H [k − i]u[i]

Then the following statements are equivalent:

i) H(z) is strictly-positive real.
ii) There∃P = PT > 0 s.t. (51) is satisfied.

iii) Σz is asymptotically stable, and forQ = 0, R = −δI,
S = 1

2I there∃P = PT > 0, and∃δ > 0 s.t. (41) is
satisfied.

iv) Σz is asymptotically stable, and ify[0] = 0 then
∞
∑

i=0

yT(i)u(i) ≥ δ‖u(i)‖2
2

IV. CONCLUSIONS

Figure 2 (Figure 3) summarize many of the connections
between continuous (discrete) timepassivesystems andpos-
itive real systems as noted in Section III. We believe all
the results in Section III are original and unified (clarified
many implicit assumptions in various statements) which are
distributed around in the literature on this topic. For example
the equivalence between apassiveand bounded real system
(Lemma 8) has been conjectured for years in which we note
most recently the incomplete proof given in [8, Theorem 5.13]
where Parseval’s relation is to be used whenH(s) has poles

Fig. 2. Venn Diagram relating continuousLTI systems topositive real
systems.

Fig. 3. Venn Diagram relating discreteLTI systems topositive realsystems.

only in the open left half complex plane. Many have made
reference to [11] for such an equivalent statement however
we find thatpassivity implied H(s) to be positive real [11,
Theorem 2.7.3] (there is also a necessary and sufficient test
for a lossless system [11, Theorem 2.7.4]). We believe that [11,
p.230, Time-Domain Statement of the Positive Real Property]
could be what others are referring to, we offer our proof as
a vastly simpler way of showing equivalence between the
two systems. We note how much confusion can arise from
statements such as those given in [15, Definition 1, Lemma 1,
and Lemma 3] which fail to mention the implicit assumption
that the strictly-input passivesystem is alsonon-expansive
(or its minimal realization is asymptotically stable). Most
importantly, Theorem 7 (Corollary 3) demonstrate how to
construct an infinite number of (LTI) systems which are finite
gain stable systems andpassivebut are neitherstrictly-output
passivenor strictly-input passive.
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