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Abstract

This technical report summarizes various key relatiorssliipregards to continuous time and discrete tipassivesystems.
It includes relationships for both the linear time invatiaase and the non-linear case. For the linear time invadase we
specifically discuss relationships between minimal capseaitive real strictly-positive real extended strictlgsitive realsystems
and passivesystems.
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Time Domain and Frequency Domain Conditions
For Passivity

. INTRODUCTION similarly the inner product over the discrete time interval
Passivesystems can be thought of as systems which oni{» 1: -+, 7 — 1} is denoted as follows:
store or release energy which was provided to the system. T—1
Passivesystems have been analyzed by studying their input (youyr = >y (i)uli).
output relationships. In particular the definitions usediés 0

scribepositiveandstrongly positivesystems [1] are essentially For simplicity of discussion we note the following equivade
equivalent to the definitions used fpassiveandstrictly-input  for our inner-product space:

passivesystems in which the available storage= 0 [2,

Definition 6.4.1]. (Hu)r,ur) = (Hu)r,u) = (Hu,ur) = (Hu, u)r.
The symbol,H denotes a relation of., and if u is a given
Il. KEY RESULTS FORPASSIVE, DISSIPATIVE, AND element ofH., then the symboH v denotes an image af
POSITIVE REAL SYSTEMS under H [1]. FurthermoreHu(t) denotes the value offu
A. Passive Systems at continuous time and Hu(i) denotes the value affu at

discrete time;.

. . . o
Let 7 be the set of time of interest in which = R™ for Definition 1: A dynamic systemH : H, — H, is L

continuous time signals aril = Z* for discrete time signals.

Let V be a linear spac®” and denote by the spaéé of all stable if m m
functionsu : 7 — V which satisfy the following: u€ Ly — Huely
) Remark 1:A proper LTI system described by the square
lull3 = / u' (t)u(t)dt < oo, (1) transfer function matridf (s) € R™>™(s) is L1 stable if and
0 only if all poles have negative real parts [3, Theorem 9.88]4
for continuous time systemd.;*), and (uniform BIBO stability) combined with [4, Theorem 6.4.45
oo p.301]. Therefore a systerH (s) with a corresponding mini-
Jull3 = T (i)uli) < oo, (2) mal realizations 2 {4, B, C, D} described by (4) and (5)
0

will also be asymptotically stable.
for discrete time system@3*).

Similarly we will denote byH,. as the extended space of & = Ax(t) + Bu(t), z € R (4)
functions as: : 7 — V by introducing the truncation operator: y(t) = Cu(t) + Du(t) (6)
H(s =C(sI—-A)~'+D 6
o).t <. (5) (sT — 4) ®)
wr(t) = 0. +>T Definition 2: A dynamic systenH : H. — H,. is l3* stable
T if
for continuous time, and u el = Huely.
or(i) = x(i), i <T, Remark 2: An LTI system described by the square transfer
nv= 0,i>T function matrix H(z) € R™*™(z) is I5* stable if and only

) ) o if all poles are inside the unit circle of the complex plain
for discrete time. The extended spake satisfies the follow- [3, Theorem 10.17 p.508] (uniform BIBO stability) combined

Ing: . with [4, Theorem 6.7.12 p.366]. Therefore a systHftr) with
lurl3 :/ u' (tyu(t)dt < oo; VT € T (3) a corresponding minimal realization, 2 {4, B, C, D}
0 described by (7) and (8) will also be asymptotically stable.
for continuous time systemd.5?), and wh+1) = As(k) + Bu(k), z € R? @
T-1
N k) = Cz(k) + Du(k 8
lurl3 = 3" uT(Du(i) < o0; VT € T y(k) =(k) + Du(k) ®)
o H(z) = C(zI-A)'+D 9)
for discrete time system@3.). The inner product over the Definition 3: Let H : H. — H.. We say thatH is
interval [0, T'] for continuous time is denoted as follows: i) passiveif 38 > 0 s.t.

T
(y, uyp = / o (tyu(t)dt (Hu,u)r > =3, Yu € He, VT € T
0
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ii) strictly-input passivef 36 > 0 and35 > 0 s.t. Theorem 2:Given a single-input single-outpuf| strictly-

2 output passiveystem with transfer functioH (s) (H(z)), real
(Hu,w)r 2 dllurll; — 6, Vu € He, VI €T impulse responsé(t) (h(k)), and corresponding frequency

i) strictly-output passivéf Je > 0 and33 > 0 s.t. response:
(Hu,u)r > e||(Hu)7 |3 — B, Yu € H, VT € T (10) H(jw) =Re{H(jw)} + jIn{H (jw)} (14)
iv) non-expansivéf 35 > 0 and 3 s.t. in whichRe{H (jw)} = Re{H(—jw)} for the real part of the

. frequency response ana{ H (jw)} = —Im{H(—jw)} for the
I(Hw)rllz < 8+ 3*|lur |3, Yu € He, ¥T € T imaginary part of the fre%uénci}responie. (The c):i)nsﬁetnt

Remark 3:In [2] strictly-input passivewas referred to (10) satisfies:
as strictly passive Furthermore the definition forsfrictly) 0 < Re{H (jw)} 15
ioosmvegwe_n |n_[1] is equivalent to the_ deﬂmUo_n fosffictly- <€es wel[IOl,oo) Re{H (j)}2 + In{H (jw)}? (15)
inpuf) passivewith 3 = 0 for the continuous time case. We . . o
also note that [5] chose to define passive systems for g the continuous time case. Similarly
case whens = 0. However, we will follow the definition H(e’) = Re{H (e’*)} + jIm{H (¢’*)} (16)
given in [2] and only consider a system astrictly) positive . , o )
using (Definition 3-ii) Definition 3-i in which3 = 0 and in which Re{H (e/*)} = Re{H(e™/*)} in which0 < w <
T = co. NB, strictly-positive or strictly-input-passive system for the real part of the frequency response am@H (e’*)} =
are not equivalent to the strictly-positive-real systems whose In{# (¢”7*)} for the imaginary part of the frequency re-
definitions will be recalled later in the text. Strictly-pioge- SPonse. The constaatfor (10) satisfies:
real systems, as they shall be defined, implicitly require . Re{H (ei*)}
all poles to be_strlct_ly in the Ieft—ha_lf—plan_e. For e>_<amp|e 0<e< wgl[(l)flﬁ] Re{H (e/*)}2 + In{ H(e/*)}2
H(s) = 14 a,in which0 < a < oo is obviously strictly-
positive and obviously not strictly-positive-real in whitheir
exists no0 < € < oo such thatH (s — €) is analytic for all
Re[s] > 0 (the first condition required in order fat (s — ¢)
to be positive-real).

Remark 4:If H is linear theng can be set equal to zero

OO . . 2 . 2 . 2
without loss of generality in regards tpassivity If H is /_OO H(ju)lU(jw)|"dw = 6/ [H (jw)[*|U(jw)["dw

— 00

(17)

for the discrete time case.

Proof: Since astrictly-output passiveystem has a finite
integrable (summable) impulse response (€. h?(t)dt < co
(>-i2, h?li] < o0)) then (10) can be written as:

oo

causal thengtrictly) positive and 6trictly-inpuf) passiveare (18)
equivalent (assumin@/«(0) = 0) [2, p.174, p.200]. for the continuous time case or

Remark 5: A non-expansiveystemH is equivalent to any n " o 4 12 1o
system which has finitd.* (i) gain in which there exists H()|U (™) "dw > E/ [H (e’*)[7|U(e”)|"dw
constantsy and 3 s.t.0 < v < 4 and satisfy - - (19)

(11) for the discrete time case. (18) can be written in the folfayvi

H < v e, VI'€T. L
[(Hu)rl2 < vllur|2+ B8, YueH € simplified form:

Furthermore aon-expansiveystem implied.5* ({3*) stability 0o
[6, p.4] ([7, Remark 1]). / Re{H (jw)}|U (jw)|*dw >
Theorem 1: [2, p.174-p.175] Assume thall is a linear - -
time .invariant system which has a minimal realizatorfx.,) 6/ (Re{H (jw)}? + In{ H(jw)}*)|U(jw)|?dw  (20)
that is asymptotically stable: —o0
(i) then for the continuous time case: in which (15) clearly satisfies (20). Similarly (19) can be
(@) H is passiveiff H(jw)+ H*(jw) >0, Vw € R. written in the following simplified form:
(b) H is strictly-input passiveff ™ _ _
[ rette (et o =
H(jw) + H*(jw) > 01, Yw € R. (12) -
(i) and for the discrete time case: e/ (Re{H (e7*)}? + Im{H (’)}?)|U (') ?dw  (21)
(@) H ispassiveff H(e/?)+H*(el%) >0, V0 € [0,27]. o o

70 x50
H(e™) + H™(e”7) 2 01, Vo € [0,27].  (13) g pissipative Systems

Remark 6: The theorem stated was left as exercises for the Dissipative systems are concerned with re|atiﬁg0 an
reader to solve in [2, p.174-p.175]. The assumption that tA@propriatestorage functiors(u(t), y(t)) based on the internal
system is a minimal realization and is asymptotically #tabl statesz € R” of the systems ((4),(5)) or ((7),(8)) such that
based on their assumption that the impulse respondé f B(z) : R* — R*. The discussion can be generalized for non-
in L" for continuous time ot" for discrete time [2, p.83] |inear systems, however for simplicity we will focus on the
and [4, p.353,p.297,p.301]. linear time invariant cases.



Definition 4: A state space systerl is dissipative with An analogous discussion can be made for the discrete time
respect to the supply rate(u,y) if there exists a matrix case similar to that given in [10, Appendix C].
P = PT > 0, such that for allx € R”, all t; > ¢;, and Definition 6: A state space systern, is dissipative with
all input functionsu respect to the supply ratdu, y) iff there exists a matrix° =
to PT >0, such that for all: € R™, all [ > k > 0, and all input
zT (t) Px(ts) S:Z:T(tl)P:r(tl)—i—/ s(u(t),y(t))dt, holds. functionsu
t1 (22) . . -1 . .
By dividing both sides of (22) by, — t; and lettingty — ¢, @ (DPz(l) <a'(k)Px(k)+ > s(uli],y[i]), holds. (33)
it follows thatVvt > 0 i=k
Lemma 1:A state space syster, is dissipative with

.
- xT(t)Px.(t) < s(u(t), y(1)) respect to the supply rate(u,y) iff there exists a matrix
& () Px(t) + 2 (OP(t) < s(u(t),y(t)) P = PT > 0, such that for allz € R*, all k£ > 0, and

zT ()[ATP + PAJz(t) + 22T (t)PBu(t) < s(u(t),y(t){23) all input functionsu(k) such that

therefore (23) can be used as an alternative definition for a x [k + 1)Pz[k + 1] — 2" [k]Px[k] < s(u[k], y[k](34)

dissipative system. {Az[k] + Bulk]} " P{Az[k] + Bulk]}—

Remark 7:We chose an appropriate storage function T
B(x) = 2™ P and substitute it into [6, (3.3)] which resultsin @ [Palk] < s(ulk], ylk)
(22). Sinced(z) € C* we can derive (23) as was shown for [k][{A" PA — P}a[k] + 2z [k]A" PBulk]+
the nonlinear case [8, (5.83)]. o u' [k)B"PBulk] < s(u(k),y(k|B5)
We note that sinceX is a minimal realization ofH(s)
then from [6, Corollary 3.1.8] we can state tleguivalent holds.

definitions forpassivitybased onP and x. Proof: (33? = (34) can be shown be settitig= k + 1.
Definition 5: Assume that: is a dissipative system with a(34)_ = (33): .
storage functions(u(t), y(t)) of the following form: Taking (34) we can write
-1 -1
thenX: i=k i=k
i) is passiveiff which can then be expressed as
1 l -1
=R=0,andS==1 25 ) . ) ) _ qr
< 2 @) S~ TPl = 3 T Pel] < Sk s(uli, yli)
ii) is strictly-input passiveff 30 > 0 and i=k+1 i=k

Q=0 n=—or amas=Lr @9 ST IPoll) - e HIPel] < S s(ull i)

iii) is strictly-output passivéff Je > 0 and We note that since®. is a minimal realization ofH (z)
then a similar argument can be made as was done in [6,
Corollary 3.1.8] for the discrete time which allows us totsta
iv) is non-expansivéff 35 > 0 and the equivalentdefinitions forpassivitybased on” andX..
5 Definition 7: Assume that:, is a dissipative system with
Q=-I, R=%T,and5 =0 (28) storage functios(u[k], y[k]) of the following form:

Remark 8:The reason that these conditions are necessar T T T
and sufficient is that the systekis a minimal realization of Q/(u[k]’ ylk]) =y [K1Qy[k]+2y " [k]Sulk] +u”[k] Rulk] (36)
H (s) which is controllable and observable and satisfies eithgren X,
[9, Theorem 1] or [5, Theorem 16] for tHeT| case. i) is passiveiff
From the above discussion the following corollary can be 1
stated. Q=R=0, andS =1 (37)

Corollary 1: A necessary and sufficient test for Definition 5 2
to hold is that theredP = PT > 0 such that the following i) is strictly-input passiveff 35 > 0 and

Q= —el, R:O,andS:%I (27)

LMI is satisfied: 1
ATP+P4—Q PBTS‘ - 9) Q=0 R=-4I, andS=§I (38)
(PB—-S)T -R |~ i) is strictly-output passivéff Je > 0 and
in which Q=—cI, R=0,andS = ~1 (39)
Q= cTQC CON g 2
G CTS+CTOD (31) iv) is non-expansivéff 35 > 0 and
R= D'QD+(D'S+STD)+R. (32) Q=-I, R=4%I,and5 =0 (40)
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Therefore the following corollary can be stated.

Corollary 2: [10, Lemma C.4.2] A necessary and sufficient
test for Definition 7 to hold is that theréP = PT > 0 such
that the followingLMI is satisfied:

ATPA-P-(Q ATPB-8§

i) ¥ is asymptotically stable and
H(jw)+ H"(jw) > 61, Vw €R (45)

Proof: ii = i
Since X is asymptotically stable then all poles are in the

(ATPB—3)T —R+BTPB <0, (41) open left half pl_an_e, therefore The__orem 4-i is sz?\tisfi_ed.tNex
_ _ (45) clearly satisfies Theorem 4-ii. Also, (45) implies that
in which D+ D" > 61 > 0 which satisfies 4-iii which satisfies the
0= CcTQC (42) flna! .condltlon to bes_trlctly-p9§|t|ve realand alsostrongly
- positive realas noted in Definition 8.
S = CcTs + CTQD (43) i = i
R= D'QD+ (D'S+STD)+R. (44) First we note that Theorem 4-i implies will be asymptot-

ically stable. Next, from Definition 8 we note that; > 0

C. Positive Real Systems S.t.

iy , : H*(j H(joo)=D" +D >61>0
Positive real system#& (s) have the following properties: (joo) + H (joc) tEzol>

Definition 8: [11, p.51] [8, Definition 5.18] Ann x n
rational and proper matri¥/(s) is termedpositive real(PR)

Lastly, we assume thatj, < 0 s.t.

if the following conditions are satisfied:

i) All elements of H(s) are analytic inRe[s] > 0.

i) H(s) is real for real positives.

iy H*(s)+ H(s) > 0 for Re[s] > 0.
furthermoreH (s) is strictly positive real $PR if there3e > 0
s.t. H(s—¢) is positive real. FinallyH (s) is strongly positive
real if H(s) is strictly positive real and) + DT > 0 where
D 2 H(co).

H*(jw) + H(jw) > 021, Yw(—00,00) (46)

however this contradicts Theorem 4-ii therefa® > 0 s.t.
(46) is satisfied which implies (45) is satisfied in whi¢h=
min{51, 52} > 0. u

Remark 10:Note that Lemma 2-ii is equivalent £ being
asymptotically stable anff (s) beingstrictly-input passiveas
stated in Theorem 1-ib.

Finally, we state the Positive Real Lemma and the Strictly

The test for positive realness can be simplified to a frequeniZ0Sitive Real Lemmas for the continuous time case.

test as follows:

Theorem 3: [11, p.216] [8, Theorem 5.11] Lel (s) be a
square, real rational transfer functiafi(s) is positive real iff
the following conditions hold:

i) All elements of H(s) are analytic inRe[s] > 0.

i) H*(jw)+ H(jw) > 0 for Yw € R for which jw is not a
pole for any element ofd (s).

iil) Any pure imaginary polejw, of any element ofH(s)
. . . : A
is a simple pole, and the associated residue mafix=

Lemma 3: [11, p.218] LetH (s) be ann x n matrix of real
rational functions of a complex variabke with H(c0) < co.
Let > be a minimal realization off (s). ThenH (s) is positive
real iff there existsP = PT > 0 s.t.

ATP+PA PB-CT

(PB—CT)T —(DT+D)| =Y

(47)

Lemma 4: [12, Lemma 2.3] LefH (s) be ann xn matrix of
real rational functions of a complex variablewith H (co) <
oo. Let ¥ be a minimal realization o (s). Then H(s) is

lim, . ju,, (s —jw,) H (s) is nonnegative definite Hermitian strongly positive real iff there exist® = PT > 0 s.t. ¥ is

(.,e.H,=H} >0).
A similar test is given for strict positive realness.
Theorem 4: [8, Theorem 5.17] LetH (s) be an x n, real
rational transfer function and suppo$#g(s) is not singular.

asymptotically stable and

ATP 4+ PA
(PB—CTT

PB-CT

~"+p) <"

(48)

Then H (s) is strictly positive real iff the following conditions Discrete time positive real systenis(z) have the following

hold:

i) All elements of H(s) are analytic inRe[s] > 0.
i) H*(jw)+ H(jw) > 0 for Yw € R.
iii) Either D + DT > 0 or both D + DT > 0 and
limy oo w?QT[(H*(jw) + H(jw)]Q > 0 for every
Q € R**(»=9) whereq = rank(D + D7), such that
QT(D+D"NHQ =0.

properties:

Definition 9: [8, Definition 13.16] [13, Definition 2.4] A
square matrixd (z) of real rational functions is positive real
matrix if:

i) all the entries ofH(z) are analytic in|z| > 1 and,
iy H,=H(z)+ H*(2) >0, V|z| > 1.
FurthermoreH (z) is strictly-positive realif 30 < p < 1 s.t.

Remark 9:The following theorem suggest that (12) andy(,.) is positive real Unlike for the continuous time case
strong positive realnesare equivalent. Which we will now there is no need to denote thelt(z) is strongly positive real
show. when H (z) is strictly positive real andD + DT) > 0 where

Lemma 2:Let H(s) (with a corresponding minimal realiza-D 2 H(o). For the discrete time cas@ + DT) > 0 is
tion X)) be an x n, real rational transfer function and SuPposﬁnplied as ié noted in [14, Remark 4]

H(s) is not singular. Then the following are equivalent:

) i - The test for apositive real system can be simplified to a
i) H(s) is strongly positive real

frequency test as follows:



Theorem 5: [8, Theorem 13.26] Let/ (=) be a square, real be a minimal realization off (s). Furthermore we denotd (¢)
rationaln x n transfer function matrixX (z) is positive real as ann x n impulse response matrix d(s) in which the

iff the following conditions hold: outputy(¢) is computed as follows:
i) No entry of H(z) has a pole inz| > 1. ¢
i) H(e’?)+ H*(e’?) >0, V0 € [0,27], in which 7% is not y(t) = / H(t — 7)u(r)dr
0

a pole for any entry o (z).
iii) If 7% is a pole of any entry off(z) it is at most a simple Then the following statements are equivalent:

pole, and the residue matriX, 2 lim___;6(2—€e’?)G(2) i) H(s) is positive real
is nonnegative definite. i) There3dP = PT > 0 s.t. (47) is satisfied.
The test for astrictly-positive realsystem can be simplified iii) With Q = R =0, S = 1 there3P = PT > 0 s.t. (29)
to a frequency test as follows: is satisfied.
Theorem 6: [13, Theorem 2.2] Le# (z) be a square, real V) .
rationaln x n transfer function matrix in whicti (z) + H*(z) / yT(t)u(t)dt > 0, wheny(0) = 0
has rankn almost everywhere in the complexplane. H(z) 0
is strictly-positive realiff the following conditions hold: Proof: i < ii:
i) No entry of H/(z) has a pole injz| > 1. Shown in Lemma 3.
i)y H(e’?)+ H*(e??) > el >0, V0 €[0,2x], Je > 0. il < iv:

Remark 11:Note that sincé € [0, 27| in the definition for iv is an equivalent test fopassivity (see Remark 4) and
strictly-positive real then the stronger inequality with can Corollary 1 provides the necessary and sufficient test for
be used as well. The following theorem suggest that (13) apdssivity
strictly-positive realare equivalent which we now show. i = i

Lemma 5:Let H(z) (with a corresponding minimal real- A passivesystemH (s) is also passiveiff kH(s) is passive
ization X,) be a square, real rational x n transfer function for Vk > 0. Therefore (29) forkH(s) in which ¥ =
matrix in which H(z) + H*(z) has rank: almost everywhere {A, B,kC,kD} and@Q = R = 0, S = 11, Q=0
in the complexz-plane. Then the following are equivalent: gCT, R= g(DT + D):

i) H(z) is strictly positive real

028
I

ATP+ PA PB—EtCT

i) X, is asymptotically stable and 2
) y p‘ y . (PB—5CT)T _L(DT% D) <0, (52)
H(e%) + H*(e7%) > 61, VO € [0, 27] (49) _ o
which for k = 2 satisfies (47).
Proof: i = i i = iii:

Since X, is asymptotically stable then all poles are strictlyhe converse argument can be made in whigiositive real
inside the unit circle, therefore Theorem 6-i is satisfiedxN systemH (s) is positive realiff kH(s) is positive realvk > 0
(49) clearly satisfies Theorem 6-ii. in which we choosés = 1. m

I = ii: Remark 12:This theorem appears as [8, Theorem 5.], how-
First we note that Theorem 6-i implies, will be asymptoti- ever, a different proof is provided which appears only valid
cally stable. Finally Theorem 6-ii clearly satisfies (49). B when there are no poles on the imaginary axis in order to
Finally, we state the Positive Real Lemma and the Strictlyoke Parseval’s theorem. This stresses the importanahwh

Positive Real Lemmas for the discrete time case. ~the dissipative definition fopassivityallows us to make such
Lemma 6: [13, Theorem 3.7] Let{(z) be ann x n matrix a strong connection to positive realsystem.

of real rational functions and lef. be a stable realization of | emma 9:Let H(s) be ann x n matrix of real rational
H(z). ThenH (2) is positive realiff there existsP = PT >0 functions of a complex variable, with H(c0) < co. Let &
st be a minimal realization off (s). Furthermore we denoté (t)

ATPA—P ATPB-CT <0 ) @S anmxmn impulse response matrix df (s) in which the
(ATPB-C"T —(D"+D)+B"PB| — (50) outputy(t) is computed as follows:
Lemma 7: [14, Corollary 2] LetH (=) be ann xn matrix of t
real rational functions and I€f., be an asymptotically stable y(t) = /0 H(t = 7)u(r)dr
realization of H(z). Then H(z) is strictly-positive realiff ) )
there exists? = PT > 0 s.t. Then the following statements are equivalent:
ATPA_ P ATPB—CT i) H(s) is strongly positive real
[(ATPB —CTT _(DT4D)+ BTPB:| <0. (51) i) TheredP = PT > 0 s.t. (48) is satisfied.

iii) X is asymptotically stable, and fap = 0, R = —4I
. MAIN RESULTS ,S = 11 there3P = PT > 0 s.t. (29) is satisfiedsgrictly-
input passiveand non-expansive

We now state the main result in regards pgassiveand iv) 3 is asymptotically stable, and §f(0) = 0 then

positive realsystems.
Lemma 8:Let H(s) be ann x n matrix of real rational R .- 9
functions of a complex variable, with H(cc) < oc. Let & . (Bu(t) = dllu(®)llz
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in which 6 = inf_<,<c Re{H(jw)} for the single Proof: 7-I
input single output case. Solving for the inner-product betwegn andu we have
Furthermore, iii implies that fof) = —cI, R = 0, andS = %I Wy = (g w) + 6l (w) 7|12
theredP = PT > 0 s.t. (29) is also satisfieds{fictly-output (w1, >T> (y(; >§ It 2T>|20
passivé. Thus if y(0) = 0 then (i, i 2 (=0 + 0)[(w)rll2 = 0.
00 7-1
/ y'T (Hu(t)dt > e|ly@®)||3 Solving for the extended-two-norm fg we have
0
2 2
= + ou
Remark 13:In order for the equivalence betwestrongly H(y12)T<H2 H(y2 62)T”2 2
positive realandstrictly-input passiveo be stated, thstrictly- Iy)7lz < @)z llz + 67l (w)rll3
input passivesystem must also have finite gain (i.E. is 1(y)zll3 < (v? +6%)|[(u)2]]3.
asymptotically stable). For example the realizationf{s) = yan
1+, 9 ={A=0B=1C=1D=1}, d=1Is

Recalling, from our proof for passivity, and our solutiorr fo

strictly-input passivéut is not asymptotically stable. However, fthe inner-product between andu, and substituting our final

H(s)=2 Yy ={A=—-a,B=(b—a),C=D=1},0=

. L . ) , ) Assumption-c we have:
min{1, 2} is both strictly-input passiveand asymptotically
stable for alla, b > 0. (y1, u)r = (=04 8)[|(w)7[|5 = 0.
Proof: e It is obvious that no constant> 0 exists such that
Is stated in Lemma 4.
i < iv: (y1, u)yr = 0> 6]\ (u)r|3

The equivalence between asymptotic stabil#rictly-input

passiveand strongly positive reals noted in Remark 10.

il < iv:

As noted in Definition 5. [ |
Remark 14:1t is well known that anon expansivesystem

which is strictly-input passive =—- that H is also strictly-

since it is assumed th#itu)r||3 > 0, henceH, is notstrictly-
input passiveln a similar manner, noting that with the added
restriction that the following rare-casgy)r||2 = 62| (u)r |3
does not occur for the same input functiorwhen (y, u)r =
—d|(u)||3 holds, it is obvious that no constaat- 0 exists

output passivels, Remark 2.3.5] [8, Proposition 5.2], theSUch that
converse however, is not always true (iiefy, Re{H (jw)} (yr,u)r = 0 > €||(y1)T||§
is zero for strictly properdtrictly-output passivesystems). ) )
+26(y, u)r + 6
It has been shown for the continuous time case [6, The- ( (y TH? {y >2T ||2(U)T||2)
orem 2.2.14] and discrete time case [7, Theorem 1] [10, 0> e€(lw)rl3 —l(w)rl3)
Lemma C.2.1-(iii)] that astrictly-output passiveystem —  no|ds. =

non expansivéut it remains to be shown if the converse is Corollary 3: The following continuous-time-systei (s)
true or not true. Indeed, we can show that an infinite number
w

of continuogs-time_ and discrete-time_ linear-time inva_riays- H(s)= 5—"—— 0<w, <0 (54)
tems do exists which are both passive awh expansivand 5% 4 2wns + wy

are neithesstrictly-output passivénor strictly-input passive  satisfies the assumptions listed in Theorem 7 required of
Theorem 7:Let H : H. — H. (in whichy = Hu, y(0) = systemH in which § = % and an input-sinusoidi(t) =
0, and for the case when a state-space-description exists §@f(/3w,,t) is a null-inner-product sinusoid such that:

H that it is zero-state-observablg £ 0 implies that the state

2

2
x = 0) and there exists a positive definite storage functionyy, (s) = 1 + H(s) = 1 + %’ 0 < w, < oo
B(z) > 0, z # 0, 3(0) = 0) have the following properties: 8 8 57+ 2wns +wy
a) (W)l < v (wW)rlls is both passive and non-expansive but neitsteictly-output

b) (y,u)r > —o||(w)r|2 passivenor strictly-in_put pgssive _ _ _
c) There exists a non-zero-normed inpguch thaty, u)y = We now concluo!e_ with main results in regards to discrete time
—58||(w) 7|12 in which || (y)7]|2 # 62||(w)7|3- p_as_swegnd positive real_system§ (the proofs follow along
similar lines for the continuous time case).
Lemma 10:Let H(z) be ann x n matrix of real rational
functions of variablez. Let ¥, be a minimal realization of
H(z) which is Lyapunov stable. Furthermore we denbig|

Then the following systemH; in which the outputy; is
computed as follows:

b=yt ou (53) as ann x n impulse response matrix @ (z) in which the
has the following properties: outputyl[k] is computed as follows:
I. Hy is passive, .
Il. H; is non-expansive, ylk] = Z Hlk — i]uli]

lll. H; is neitherstrictly-output passivegnor strictly-input
passive. Then the following statements are equivalent:
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Imaginary Axis
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2
)
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Fig. 1. Nyquist plot forH; (s) = % +

Fig. 2. Venn Diagram relating continuousT| systems topositive real

systems.
i) H(z) is positive real
i) TheredP = PT > 0 s.t. (50) is satisfied.
is satisfied.

iv) If y[0] =0 then Passive &
o Positive Real -
Z yT(z)u(z) >0 Lyapunov Stable
=0 z+1

Z=1l

Lemma 11:Let H(z) be ann x n matrix of real rational
functions of variablez. Let X, be a minimal realization of
H(z) which is Lyapunov stable. Furthermore we denftg:|
as ann x n impulse response matrix dff (z) in which the
outputy[k] is computed as follows:

Strictly Input
Passive (SIP)

z+1
& o+ -1
y[k] =Y Hik — iJuli
i=0
Then the following statements are equivalent: 0<6,e,a,b,w,<o0
) H(z) is strictly-positive real Fig. 3. Venn Diagram relating discretd | systems tqositive realsystems
i) TheredP = PT > 0 s.t. (51) is satisfied. o :

iif) >, is asymptotically stable, and f@p = 0, R = —d1,
S = 1I there3P = PT > 0, anddd > 0 s.t. (41) is
satisfied.

. . . ) only in the open left half complex plane. Many have made
iv) X, is asymptotically stable, and if[0] = 0 then

reference to [11] for such an equivalent statement however
o0 we find thatpassivityimplied H(s) to be positive real[11,
ZyT(i)U(i) > 0lu(@)]3 Theorem 2.7.3] (there is also a necessary and sufficient test
=0 for a lossless system [11, Theorem 2.7.4]). We believe it [
p.230, Time-Domain Statement of the Positive Real Property
could be what others are referring to, we offer our proof as

Figure 2 (Figure 3) summarize many of the connectiors vastly simpler way of showing equivalence between the
between continuous (discrete) tippassivesystems anghos- two systems. We note how much confusion can arise from
itive real systems as noted in Section Ill. We believe aktatements such as those given in [15, Definition 1, Lemma 1,
the results in Section Ill are original and unified (clarifiedind Lemma 3] which fail to mention the implicit assumption
many implicit assumptions in various statements) which atieat the strictly-input passivesystem is alsanon-expansive
distributed around in the literature on this topic. For epéan (or its minimal realization is asymptotically stable). Mos
the equivalence betweenpassiveand bounded real systemimportantly, Theorem 7 (Corollary 3) demonstrate how to
(Lemma 8) has been conjectured for years in which we natenstruct an infinite number of TI) systems which are finite
most recently the incomplete proof given in [8, Theorem b.18ain stable systems anphssivebut are neithestrictly-output
where Parseval's relation is to be used whéfs) has poles passivenor strictly-input passive

IV. CONCLUSIONS
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