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Abstract. 

 

The applicability of Model Based Networked Control Systems (MB-NCS) is often 

limited by the inexact knowledge of the dynamics of the system being controlled. 

On-line identification of system parameters is used in this paper to upgrade the 

model of the system, which is used to control the real system when feedback 

information is unavailable. Background material is offered on the topic of 

parameter identification with emphasis on the Recursive Least Squares algorithm. 

The Extended Kalman Filter (EKF) is analyzed in detail in the context of 

parameter identification and implemented in the Model Based Networked Control 

Systems (MB-NCS) framework. Simulations are included that show the efficiency 

of these tools. 

 

 

 

 

 

 

 

 

 

 

 

E. Garcia and P.J. Antsaklis, Parameter Identification in Model Based Networked Control Systems Using 
Kalman Filters, ISIS Technical Report ISIS-2009-004, June 2009.



ISIS TECHNICAL REPORT ISIS-09-004 JUNE 2009                                                    2 
 

1. Introduction. 

 

In Networked Control Systems (NCS), dynamical systems are controlled by using 

feedback over a communication network. Advantages of NCS are well known, 

and some of them are: NCS reduce wiring, increase reliability, and improve 

reconfigurability of control systems [15]. At the same time, different undesired 

situations are encountered due to communication channel effects such as packet 

dropouts, time delays, and bandwidth restrictions [6], [17]. A type of NCS called 

Model Based Networked Control Systems (MB-NCS) aims to reduce 

communication over the network by incorporating an explicit model of the system 

to be controlled. The state of this model is used for control when no feedback is 

available (open loop). When the loop is closed, the state of the model is updated 

with new information, namely, the state of the real system. The MB-NCS 

framework is able to reduce network communication; consequently, the network 

is available for other uses, reducing time delays and bandwidth limitations.  

For periodic updates of MB-NCS Montestruque and Antsaklis [12], [14] provide 

necessary and sufficient conditions for stability; the amount of reduction in 

network communication that we are able to achieve, i.e. the longer we can wait 

for a new update without compromising stability is directly related to the accuracy 

of the model; indeed, this is one of the most important limitations of this 

framework, namely, the absence of a sufficiently accurate model of the system. 

Even when an accurate model is initially available, in many applications the 

parameters of a system may change slowly over time due to the use and age of the 

physical plant or of its components. 

In this paper we focus on applying identification algorithms in the MB-NCS 

context. Correct knowledge of the plant dynamics will provide an improvement in 

the control action over the network, i.e. we can achieve longer periods of time 

without need for feedback. At the same time, we overcome another important 
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limitation on MB-NCS; the usual assumption in the MB-NCS literature is that the 

controller is designed to stabilize the real system; this may be unrealistic since our 

knowledge of the plant dynamics is limited. As we will see, the identification 

process allows us to update not only the model but the controller itself so it can 

better respond to the dynamics of the real plant being controlled. 

The rest of the paper is organized as follows: in section 2 background on system 

identification is provided along with detailed discussion of the Recursive Least 

Squares (RLS) algorithm, section 3 introduces the Kalman Filter for identification 

of parameters, in section 4 the Extended Kalman Filter (EKF) is presented. The 

main results in this paper are presented in section 5 and 6; the use of Kalman 

filters on Model Based Networked Control Systems (MB-NCS) for parameter 

identification is first discussed in section 5 and different implementations are 

shown in section 6. Finally, some conclusions are offered at the end of the paper. 

 

2. Background material and RLS. 

  

This section is intended to provide a very brief introduction to the broad topic of 

system identification; for an extended treatment see for example [11]. The 

recursive least squares estimation method has been chosen to receive more 

attention because of its simplicity and wide range application and its 

implementation on the Model Based Networked Control Systems framework is 

shown with an example in appendix A. 

There exist two typical approaches for system identification namely, parametric 

and nonparametric [4]. A parametric model may take different forms, the most 

common ones are transfer functions (expressed in polynomial or poles and zeros 

form), state space representations, and differential equations. In these forms there 

exist coefficients (parameters) that specify completely the model. Nonparametric 
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models result generally from the data obtained from frequency response methods. 

In these cases the system is subject to a wide range of inputs in order to find a 

characteristic curve. A frequency response is difficult to obtain while the system 

is in normal operation, limiting the use of nonparametric approaches for on-line 

identification.  

The focus of this paper is to identify the system parameters on-line in order to 

detect any changes on these parameters (abrupt changes or slow variations due to 

aging of the components of the physical plant). The identified parameters are used 

to update an explicit model of the plant and the state of this model is used for 

control when no feedback information from the real plant is available. An explicit 

model means that a parametric model is needed; in order to achieve the described 

goals we will follow the parametric approach in what follows. 

One type of common parametric methods for identification are the gradient 

methods [7]; in general, gradient algorithms use a model of the form ˆz θϕ=

where θ̂  is the estimate of θ  (the unknown parameters) and z and ϕ  are signals 

available for measurement. Some appropriate functional ( )J θ  has to be defined 

and minimized. Different gradient algorithms exist as the consequence of the 

choice of ( )J θ . 

Model Reference Adaptive techniques are usually used for adaptive control but 

Landau used this approach for identification of single input-single output and 

multivariable systems in [10].   

Recursive Least Squares algorithm. 

Least Squares Estimation was initially used to estimate a constant based on a set 

of noisy measurements.  

Let n∈x \  be a vector of constants and m∈y \  the vector of measurements 

defined by:  
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H= +y x v                                                      (1) 

where H is a matrix of appropriate dimensions and m∈v \  is some measurement 

noise. Least squares aims to solve the quadratic minimization problem: 
2ˆmin H−y x . 

The best estimate given by the Least Squares criterion is given by: 

1ˆ ( )T TH H H−=x y                                                   (2)             

It is assumed that the system (1) is overdetermined, i.e. there exist more 

measurements than unknowns; the dimensions of m x nH ∈R  follow m n> . 

This estimate (2) involves matrix inversion, which is numerically sensitive and 

computationally expensive when the number of measurements grows. An 

alternative is the Recursive Least Squares which makes use of the well known 

matrix inversion lemma where no matrix inversion is performed and it is recursive 

in nature. The next set of equations defines the RLS algorithm and its complete 

derivation can be found in [5]. 

Consider the Auto Regressive model: 

1

n

k i k i k
i

x a x w−
=

= +∑
                                                 (3)

 

where ia  i=1…n describe the unknown parameters, kx  is the k-th measurement 

and kw  is inaccessible white noise. The estimate of the unknown parameter vector 

is: 

1 r 1ˆ ˆ ˆP ( )T
r r r r r ra a x a− −= + −x x                                          (4) 
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The above equation yields the vector estimate ˆra  in terms of 1ˆra − , i.e. in terms of 

the previous estimate, and in terms of a correction term which is a function of the 

prediction error 1ˆT
r r rx a −− x  that uses the previous estimate. 

The matrix rP  is given by: 

r 1 r 1
r r 1

r 1

P PP P
1 P

T
r r
T

r r

− −
−

−

= −
+

x x
x x                                              (5)

 

An example of the RLS algorithm implemented over MB-NCS is offered in 

appendix A. 

Limitations of the Recursive Least Squares algorithm. 

Least squares algorithm is an estimation method based on the input and output 

measurements of the system. Two of the limitations of this scheme are: First, the 

input to the system needs to excite all its dynamics, then, some input signals may 

not be useful for identification using least squares including zero-signal, for this 

purpose we need a persistently exciting signal [4], [7]. Second, least squares 

estimation is able to identify all parameters that uniquely characterize a system, 

for example the coefficients of the system transfer function, on the other hand, a 

state space realization is non-unique and it typically involves a larger number of 

parameters than the transfer function. Least squares may work in a state space 

context assuming we know some of the parameters. A canonical form is a typical 

representation that is suitable for least squares application as in eq. (6) where we 

know the value of the parameters in n-1 rows of matrix A.  

1k k kA Bu+ = +x x                                                  (6) 

1 2 naa a
A

I
 ⎤⎡

= ⎥⎢
⎣ ⎦0

…
;  

1b
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦0
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3. Estimation of System Parameters using a Kalman Filter. 

 

Given the large number of applications in which it is necessary to stabilize a 

system from its initial conditions, i.e. under zero input, and the necessity of being 

able to identify a system with general state space representation, not necessarily in 

canonical form as discussed in the last section, we present in this section a 

derivation of the Kalman filter appropriate to identify the parameters of the 

dynamical system in state space form. More details may be found in [18]. 

The Kalman filter is generally used to estimate the states of a system using the 

measured input and output. In this case we will use the Kalman filter to estimate a 

set of unknown parameters p. Consider a discrete time system model in which the 

system matrices depend on the unknown parameter vector p. 

1 ( ) ( ) ( )k k k k k k kF p G p u L p w+ = + +x x                                   (7) 

k k k ky H v= +x  

The noise processes kw  and kv  are white, zero-mean, uncorrelated, and have 

known covariance matrices kQ  and kR , respectively. 

We do not really care about estimating the state, but we are interested in 

estimating p. This is the case, for example, in the aircraft engine health estimation 

problem [9]. In that paper it was assumed that we want to estimate aircraft engine 

health (for the purpose of maintenance scheduling), but we do not really care 

about estimating the states of the engine. 

In order to estimate the parameter p, we first augment the state with the parameter 

vector to obtain an augmented state vector: 

k
k

k

x
x

p
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�  
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1

( ) ( ) ( )
( , , , )k k k k k k k k k

k k k k pk
k pk

F p G p u L p w
f u w w

p w+

+ +⎡ ⎤
= =⎢ ⎥+⎣ ⎦

x
x x� �

               (8)
 

[ ]0 k
k k k

k

y H v
p

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

x
 

Where pkw  is a small artificial noise. Note that ( )f • is a nonlinear function of the 

augmented state kx� ; therefore, we can use a nonlinear filter to estimate kx� . 

 

4. Extended Kalman Filter. 

 

The Extended Kalman Filter is a type of linearized Kalman filter used for 

estimating the states of a nonlinear system; originally, it was proposed by S. 

Schmidt [2]. The derivation here follows [18]. 

Consider a nonlinear system described by: 

1 1 1 1( , , )k k k k kf u w− − − −=x x                                           (9) 

( , )k k k ky h v= x  

The noise processes kw  and kv  are white, zero-mean, uncorrelated, and have 

known covariance matrices kQ  and kR , respectively. A Taylor series expansion is 

performed on the state equation around 1 1ˆk k
+

− −=x x  and 1 0kw − =  

1 1

1 1
1 1 1 1 1 1ˆ ˆ

ˆ ˆ( , ,0) ( )
k k

k k
k k k k k k k

f ff u w
w+ +

− −

+ +− −
− − − − − −

∂ ∂
= + − +

∂ ∂x x
x x x x

x
 

1 1 1 1k k k kF u w− − − −= + +x � �                                                                    (10) 
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Where: 

ˆ ˆ( , , 0)k k k k k ku f u F+ += −x x�  

(0, )T
k k k kw L Q L� ∼  

1

1
1 ˆ k

k
k

fF +
−

−
−

∂
=

∂ xx
 

1

1
1 ˆ k

k
k

fL
w +

−

−
−

∂
=

∂ x
 

Similarly, linearize the measurement equation around ˆk k
−=x x  and 0kv = , the 

mentioned linearization yields: 

k k k k ky H z v= + +x �                                            (11) 

Where: 

ˆ ˆ( ,0)k k k k kz h H− −= −x x  

(0, )T
k k k kv M R M� ∼  

ˆ k

k
k

hH −

∂
=

∂ xx
 

ˆ k

k
k

hM
v −

∂
=

∂ x
 

The Kalman filter equations for the new linearized model are given by: 

1 1 1 1 1 1
T T

k k k k k k kP F P F L Q L− +
− − − − − −= +  

1( )T T T
k k k k k k k k kK P H H P H M R M− − −= +  

1 1 1ˆ ˆ( , ,0)k k k kf u− +
− − −=x x                                            (12) 
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ˆ ˆ ˆ( ( ,0))k k k k k kK y h+ − −= + −x x x  

( )k k k kP I K H P+ −= −  

Where ˆ k
−x  and ˆ k

+x  are the a priori and a posteriori estimates of the state x  at time 

k, kP−  and  kP+  are the a priori and a posteriori covariance of the estimation error 

and kK  is the Kalman filter gain. 

The filter is initialized as follows: 

0 0ˆ [ ]E+ =x x                                                    (13) 

0 0 0 0 0ˆ ˆ[( )( ) ]TP E+ + += − −x x x x  

 

A simple example. 

Consider the discrete-time linear system: 

1k k k kx Ax Bu w+ = + +                                           (14) 

k k ky x v= +  

With: 

10 1 2

40 43

a a
A

aa
δ

δ
+⎡ ⎤

= ⎢ ⎥+ ⎦⎣
;  

1
1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦                                     (15)
 

10 2 3 400, 0.3, 0.5, 0a a a a= = = − = , the unknown parameter disturbances satisfy

1 40.5, 0.7δ δ≤ ≤ , we wish to estimate the real value of the parameters 

1 10 1a a δ= +  and 4 40 4a a δ= + . Initial conditions for the system are random with 

uniform distribution with support on [-1,1].    
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Fig. 1. Kalman filter for system identification with continuous feedback 

 

The real values of the parameters in this simulation were: 

1 0.1853, 2 0.5299a a= − = −  

 

5. Model Based Networked Control Systems (MB-NCS). 

 

As it was mentioned earlier, MB-NCS make use of an explicit model of the plant 

which is added to the controller node to compute the control input based on the 

state of the model rather than on the plant state. Fig. (2) shows a basic MB-NCS 

configuration, where the network exists only on the sensor-controller side while 

the controller is connected directly to the actuator and the plant. 
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Fig. 2. State feedback Networked Control System. 

 

The dynamics of the plant and the model are given respectively by: 

A Bu= +x x�                                                       (16) 

ˆ ˆˆ ˆA Bu= +x x�                                                       (17) 

Where ˆu K= x , and the matrices ˆ ˆ,A B  represent the available model of the system 

matrices A,B. 

Since it is almost impossible to have a model that resembles exactly the real 

system we are trying to control, the model state will not be exactly equal to the 

plant state, thus, generating an error:  

ˆ( ) ( ) ( )e t t t= −x x                                                    (18) 

We are required to update the state of the model with the real one to ensure 

stability. Necessary and sufficient conditions for stability are provided in [12], 

[14] for periodic instantaneous updates i.e. for a single update of the state at time 

kt  and for 1k kt t h−− =  where h is constant and for both continuous and discrete 

time systems. Estrada et. al. [3] showed that an improved performance on MB-

NCS can be reached by using intermittent feedback, in this situation the system 
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works in closed loop for a finite period of time not just a single update for every 

cycle. 

Let us work under this situation, intermittent feedback, and let the filter be 

implemented in the controller node of the MB-NCS configuration. As the 

feedback path from sensor to model-controller (and filter) is closed, the filter will 

use the set of received measurements to estimate the parameters. The data in this 

case consist of noisy measurements of the plant state, where the state and 

measurement equations are given by eq. (14). Once the estimates of the filter 

converge, the parameters of the model will be updated with the estimates of the 

filter and the state of the model will be updated with the last received 

measurement. That is we use intermittent feedback for parameter identification 

and instantaneous feedback for control. 

 

MB-NCS with periodic updates example. 

Consider a stable discrete-time-varying linear system described as in eq. (14), 

with: 

1 2

3 4

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎦⎣

1
1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦                                                  (19)
 

where 1 2 31, 0.3, 0.5a a a= − = = −  are constant and known, and the last parameter,  

4a , is unknown and is time-varying governed by 4 0.5sin(0.1 )a t= .   

Fig (3) shows the estimated values of 4a ; when we close the loop our estimate is 

updated by the arrival of a new set of measured states, the estimate of the 

parameter remains constant for the part of the cycle when the feedback loop is 

open. In this example the loop is closed every 2 seconds and remains closed for a 

finite period of time (until the estimation converges). 
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Fig. 3. Estimation of a time-varying parameter with intermittent feedback and periodic updates. 

 

It is convenient in many applications to drop the periodic update implementation 

in favor of one based on events, for example, the event that the plant-model state 

error is equal to or greater than some predetermined threshold. Event-triggered 

control [19], [20] is a scheme that relies on the measurement of the state of the 

plant to guarantee stability. A sensor node within the network broadcasts its local 

state only when it is necessary, i.e. when a measure of the local subsystem state 

error is above some predetermined threshold, the error, in this case, is defined as 

the difference between the last measured state and the current value of the state of 

the plant:  

( ) ( ) ( )ie t t t= −x x                                                    (20) 
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An extension in this area, self-triggered control [1], avoids the necessity of testing 

the error (20) frequently by computing the next deadline when the state should be 

broadcasted again in order to preserve stability.  

For our purpose we will assume that the sensor measures the plant state frequently 

and computes the error. The error is defined as in (18), where the last measured 

state has been substituted by the state of the model. Another difference in this 

paper is the type of threshold to be used; in event-triggered the threshold is 

relative, that is, it depends on the current value of the state of the plant. In the 

examples shown in this paper we have assumed a fixed threshold for simplicity, 

but the relative threshold can be used as well. A consequence of using a fixed 

threshold is that we are only able to show bounded input-bounded output stability. 

We can rewrite (16) as: 

( )A BK BKe= + +x x�                                              (21) 

where the error (18) has been used. The frequency response to an initial condition 

of (21) is: 

1 1
0( ) ( ( )) ( ( )) ( )s sI A BK x sI A BK BKE s− −= − + + − +X                     (22) 

where 0 (0)x x= < ∞  is the initial state of the plant which is unknown and 

assumed to be finite. From last equation we note that the state of the plant can be 

considered as the output of a system with initial condition 0x  and input E(s).  

Theorem 1. The system described by (22) is BIBO stable if the poles of the 

closed loop plant are in the left hand side of the complex plane. 

Proof. In order to show boundedness of the plant state the L∞  norm is used: 
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1 1
0( ) ( ( )) ( ( )) ( )s sI A BK x sI A BK BKE s− −

∞ ∞
= − + + − +X                   (23)  

                     1 1
0( ( )) ( ( )) ( )sI A BK x sI A BK BK E s− −

∞ ∞ ∞∞ ∞
≤ − + + − +  

where ( )E s
∞

 is bounded by the predefined fixed threshold. The conditions 

offered in this theorem relate to the usual assumptions on the MB-NCS literature; 

that is, a stabilizing and known controller exists for the original non-networked 

system. An accurate identification of the system parameters allow us to relax this 

assumption and design a controller based on the information available on the 

model. The boundedness of a discrete time plant can be shown in a similar way.,  

Under the event triggered scenario it is convenient to revisit some implementation 

issues.  

 

6. A note on implementation. 

 

In the last section we assumed that the filter was implemented in the model-

controller node, as depicted in Fig. (4). Let us analyze the advantages and 

disadvantages of this choice so we can compare it later to a different choice of 

implementation. 

In this configuration the filter in the controller receives a set of measurements 

(intermittent feedback) that uses for estimation of the parameters of interest. 

When the estimation algorithm converges, the model is updated with the new 

value of the parameter and the state of the model is updated using the last 

measurement available. This option is preferred when we work with periodic 

updates since no model of the plant is needed in the sensor node; we have only 

one model whose parameters we need to update. The filter updates directly the 
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model in the controller immediately after its estimates have converged since no 

network exists between filter and model.  

 

Fig 4. MB-NCS with filter implemented on the controller node. 

 

On the other hand the filter does not have access to the measured state at all time; 

it only receives measurements when the feedback loop is closed. For the case 

when we send the measurements based on checking the error in the state 

(comparing the plant state with the model state) we need a copy of the model in 

the sensor node in order to generate the model’s state. For this scenario we require 

the controller node to send back to the sensor node the new estimated parameter 

to update the model in the sensor as it does with the model in the controller. As 

we mentioned earlier we need intermittent feedback to be able to identify 

correctly the parameters, if the loop is closed instantaneously the filter does not 

receive sufficient measurements to perform an accurate estimation. Applications 

with instantaneous feedback are prevented to use this configuration. Convergence 

properties of the filter under this configuration are similar to those of a filter 

receiving continuous measurements, in this work it is assumed that no packets are 

lost when the loop closes and that time delays are negligible. In practice, however, 

we implement a limit on the iterations and if the limit is reached and the filter 
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does not pass the convergence test we choose to keep the last estimated values 

until new measurements arrive. 

 

Example of first implementation with updates based on the state error. 

Consider an unstable system described as in (14) with: 

1 2

3 4

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎦⎣   

1
1

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦                                               (24)
 

where  2 30.3, 1.05a a= = −   are known parameters and 1a  and 4a  are unknown 

constants.  

 

Fig. 5. Estimation of two parameters with intermittent feedback based on events. 
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Fig. (5) shows results from the simulation under the mentioned implementation. 

The estimated parameters 1a  and 4a  converge to values around   -0.985 and -0.7 

respectively, which are the real parameters used in this simulation. Note that 

every time that the controller node receives data from the sensor it uses this data 

to estimate the unknown parameters, update the model, and redesign the 

controller computing a Linear Quadratic Regulator using the improved model. 

The loop needs to be closed for a finite period of time as shown at the bottom of 

fig. (5), which shows when and for how long the feedback loop is closed. 

A second option for the implementation of a Kalman filter in the MB-NCS 

configuration is depicted in Fig. (6). 

 

 

Fig. 6. MB-NCS with filter implemented on the sensor node. 

 

In this configuration the filter is implemented in the sensor node. We assumed a 

copy of the model and controller are contained in the sensor to generate the state 

that is compared with the measured state, and the input that is needed by the filter. 

The sensor will transmit the measured state along with the new value of the 

estimated parameters. 
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This choice of implementation has some advantages over the previous one. The 

filter has access to the measured state at all time so it can generate better 

estimates. There is actually no network between the measurements and the filter 

so the convergence properties of the filter are preserved. In addition, we do not 

necessarily need intermittent feedback, i.e. a single transmitted packet may 

contain the estimated parameters and the measured state; another important and 

useful advantage in this situation is that the sensor can decide to send a smaller 

packet containing only the measured state if no change has been recorded in the 

value of the estimated parameters since the last update. 

There are some disadvantages to consider as well. The sensor has to perform more 

functions: measure the state, run the model to generate the model state, compute 

the error and transmit if it is greater than some threshold, and now, it needs to run 

the filter to find estimates of the parameters, definitely, we are increasing the 

demands on our integrated sensor. Another possible disadvantage is found in the 

periodic updates implementation, if a transmitted packet is lost we do not only 

lose the update for the state but also the update for the estimated parameter and 

we need to wait again for the next cycle, in the case that no acknowledgement 

signals are used. 

The choice of implementation has to be made primarily by considering what kind 

of updates are going to be used and the capacities of the sensor. 

 

Example of second implementation with updates based on the state error. 

Consider the same unstable system described in the last example, which is now   

implemented using the second configuration that was just described. The 

simulation is shown in fig. (7). It can be seen that the estimated parameters are 

more consistent and that we can use instantaneous feedback as shown at the 
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bottom of fig. (7). In this case when the loop closes, the sensor only needs to send 

a single packet of information.  

In both cases the estimates are very close to the real values. The system contains 

process noise and measurement noise, and those perturbations account for the 

main reason in the difference between the real state and the plant state, when this 

difference or error is larger than the fixed threshold, the sensor sends packets of 

information to the controller node.   

 

 

Fig. 7. Estimation of two parameters using a Kalman filter on the sensor node. 
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As it was mentioned earlier, under the last implementation, the sensor sends a 

packet that contains the estimated parameters and the measured state of the plant, 

but it can also choose to send a smaller packet containing only the state if the 

estimated parameters have not changed significantly; this can be seen in the next 

example. Here, the unknown parameters of the plant experience discrete changes 

in their values, and, for the purpose of illustration, we construct a signal that may 

take on any of the next three values: 

0 if no packet is sent 
( ) 1 if only the state is sent

2 if both, parameters and state are sent
r k

⎧
⎪= ⎨
⎪
⎩                             (25)

 

 

 

Fig. 8. Estimation and broadcast of time-varying parameters 

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

M
ea

su
re

d 
st

at
es

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

E
st

im
at

ed
pa

ra
m

et
er

s

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

Time (sec)

N
et

w
or

k
co

m
m

un
ic

at
io

n

 

 

a1est
a4est

r(k)

E. Garcia and P.J. Antsaklis, Parameter Identification in Model Based Networked Control Systems Using 
Kalman Filters, ISIS Technical Report ISIS-2009-004, June 2009.



ISIS TECHNICAL REPORT ISIS-09-004 JUNE 2009                                                    23 
 

 

As it can be seen from the bottom of fig. (8), the sensor node sent a complete 

package (state and parameters) in the first transmission, when 1a  changed its 

value from -0.985 to -1.04, and when 4a  changed from -0.7 to -0.78. As the 

parameters changed the original system became more unstable and the state error 

exceeds the threshold more frequently. 

Remark 1. The use of the Kalman filter to identify parameters of a system in state 

space representation requires a partial knowledge of the plant dynamics, but, in 

contrast to the Recursive Least Squares algorithm, it is not limited to a certain 

form of the matrix A.  

Remark 2. In MB-NCS we rely on the model and its state to stabilize the plant 

when no feedback is available. A better knowledge of the dynamics of the plant 

results in an improvement in the performance of the networked system, in this 

case, longer times between transmissions can be achieved, making the network 

more available for other systems to communicate or for other applications.  

 

7. Conclusions and future work. 

 

In this paper, algorithms for recursive system identification applied to Model 

Based Networked Control Systems are considered. An extension of the Kalman 

filter for identification of parameters is discussed and it is shown that such 

extension utilizes a nonlinear model that requires a nonlinear Kalman filter. One 

type of such filter, the Extended Kalman Filter (EKF), is used in this paper in the 

identification algorithm. The theory that involves the EKF and the identification 

of system parameters using Kalman filters was discussed and the application of 

this identification method to MB-NCS is shown through simulations. Stability 
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using periodic updates follows from prior work [14] on MB-NCS and sufficient 

conditions for stability on the event-triggered case with fixed threshold were 

shown. The robustness properties of this scheme are left for future work. Two 

implementation cases are proposed; the choice of implementation depends on 

factors such the availability of resources in the sensor node and the type of 

updates to be used, periodic or aperiodic based on the state error. 
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Appendix A. Recursive Least Squares on Model Based Networked 

Control Systems. 

 

In section 2, the Recursive Least Squares (RLS) algorithm was studied, now we 

offer an example in which RLS is implemented in the controller node of a MB-

NCS with intermittent feedback with updates based on the state error. The first 

implementation in section 6 has been used for the results shown in fig. A.1. 

Consider the discrete time system: 

1k k kx Ax Bu+ = +                                            (A.1) 

k ky Cx=  

With: 

1 2 3

1 0 0
0 1 0

a a a
A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

     
1

0
0

b
B

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

     ( )1 0 0C =  

The initial parameters are given by 1 2 31.2, 0.6, 0.6a a a= − = − =  and 1 10b = .  It is 

assumed that no prior knowledge of the parameters is available so the initial 

estimate for all the parameters is zero; if some previous estimate exist it can also 

be used for faster convergence. Discrete variations in the value of the parameters 
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were introduced at specific times and successful identification was achieved in the 

controller node as shown in the second graph of fig. A.1. The real parameters 

variations and the times of occurrence are: 

 1 1.02a → −  at t = 3 sec 

2 0.76a → − at t = 8 sec. 

3 0.45a → at t = 15 sec 

 

 

Fig. A.1. RLS implemented over a MB-NCS. 

 

The higher peaks seen in the output of the system correspond to the variations on 

the parameters, the rest are due to very small inaccuracies between the parameters 
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and their estimates. In order to obtain a successful identification using RLS it is 

necessary a sufficiently rich input; for this example a unit step input is used. 

Identification of parameters under a zero-input scenario is not possible, limiting 

the use of RLS for applications in which stabilization from initial conditions is 

needed. 

Implementation of RLS using the second implementation described in section 6 is 

also possible; the identification algorithm is now processed in the sensor node. 

Similar to the Kalman filter case we construct the network communication signal 

(25). System (A.1) is used here with the same parameter variations. 

 

 

Fig. A.2. RLS second implementation over MB-NCS 
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With this implementation is also possible to use instantaneous feedback, a single 

packet updates both the parameters and the state of the model. Note that in both 

implementations of the RLS algorithm we know exactly the remaining parameters 

of the system matrices in addition to the restriction of the use of the canonical 

form. 
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