
Synthesis of Concurrent Programs Based on Supervisory Control

Marian V. Iordache Panos J. Antsaklis
School of Engineering and Eng. Tech. Department of Electrical Engineering

LeTourneau University University of Notre Dame
Longview, TX 75607, USA Notre Dame, IN 46556, USA

E-mail: MarianIordache@letu.edu E-mail: Antsaklis.1@nd.edu

Technical Report

September 2009

Abstract–This document describes an application of the supervisory control (SC) methods to
the synthesis of concurrent programs and presents current work on this topic of research. In
particular, special attention is given to the development of software that applies SC to program
synthesis. This work is motivated by the difficulties encountered in writing correct programs in
the context of concurrency. Writing correct programs is essential for the development of software
applications as well as for all other engineering applications in which formal languages are used
for system design. In the context of concurrency, SC can be help by addressing issues such as
mutual exclusion, liveness, and fairness. In the approach proposed here, SC is applied to Petri
net (PN) models of concurrent processes. Then, the resulting control logic is converted to code.
PNs are formal models developed in Computer Science for the modeling of concurrent systems.
In Control Systems, PNs have been used in the context of the SC of discrete event systems
and powerful theoretical results have been developed. However, these results have not yet been
applied to Computer Science problems for which PNs were created. The main objective of this
research work is to apply SC tools to the automatic synthesis of programming code based on a
high-level program specification. The goal is to reduce the programming effort by having more
of the higher level requirements implemented automatically. On one hand, the automatically
generated code is correct by construction and on the other hand, the programmer has only to
manage simpler high-level specifications.

1 Overview

Programming is essential in the design of contemporary engineering system. However, the devel-
opment of correct programs is known to be difficult and expensive, especially in the context of
concurrency. Thus, tools that can automate the programming process to a higher degree are of in-
terest, in order to reduce the programming effort and increase the number of features of the product
that are correct by construction. This document introduces a project dealing with the application
of supervisory control methods to the synthesis of programs that are correct by construction.

The supervisory control (SC) theory has been developed in the context of control systems, for
discrete event systems (DESs). Given a DES model, called the plant, and a specification, SC
methods are applied to design a supervisor that restricts the operation of the plant so that the
specification is enforced. The supervisor ensures that the operation of the plant satisfies at all times
the specification, subject to the constraints imposed by the plant. Typically, these constraints refer
to the events that can be controlled or observed by the supervisor.

Petri nets (PNs) represent a class of DES models, that along with automata have been used in the
context of the SC. PNs are used here as the DES models of the specifications and of the plant.
PNs are a natural choice for the modeling of concurrency and there are numerous results on the
SC of PNs. Moreover, it is also possible to benefit from the SC results obtained for automata, as
automata are a special case of PNs.

The approach of this project is to apply the SC in order to generate automatically segments of
programming code. The approach is illustrated in Figure 1. First, the plant and specification of
the SC are extracted from a higher level specification, written in a high level specification language
(HLL). Next, the SC is applied to generate the supervisor. Finally, the plant and the supervisor are
translated to programming code. All these steps are carried out transparently and automatically,
based on the higher level specification. The benefit of this approach is that the programmer would
focus on concise high level descriptions, instead of the details of the more complex lower level
implementation. Of course, not every type of specifications can be handled by a SC approach.
However, the problem of automating to a higher degree program synthesis raises issues intrinsically
related to SC, since various high level requirements, such as fairness, absence of deadlocks, and
mutual exclusion, can be seen as SC specifications.

Concerning the application of SC methods, we note that many of the problems that SC addresses are
of considerable difficulty. Moreover, sometimes there are no known algorithms that are satisfactory
in every respect. For instance, by searching all states reached by a PN it is possible to design
supervisors that are optimal with respect to various criteria. However, optimality comes to the
expense of high computational complexity, due to the fact that the number of reachable states
could be extremely large, if finite. Thus, it may be of interest to use instead methods that do
not search the reachable states but analyze the structure of PNs. However, such methods may be
suboptimal. Moreover, they may only be applicable to certain special classes of PNs. Thus, one of
the long term objectives of this project is to implement various SC methods and determine criteria
to select between methods depending on context. In spite of such difficulties, in view of the relation
of SC type problems to program synthesis, this work appears to be necessary in order to achieve a
high degree of automation in the development of software.

The paper is organized as follows. Related literature results are discussed in section 2. The PN
representation of programs is described in section 3. Issues related to the design of the high level

Synthesis of Concurrent Programs Based on SC 2

HLL

Supervisory

Control

DES and

supervisor (HW, SW, Ladder, etc.)

Code Generation

SC specs

DES model
(plant)

Specification

Analysis

Figure 1: A DES plant and an SC specification are extracted from the user specification. The
SC specification describes the objective of the supervision. After the SC tools are applied, the
resulting closed-loop DES can be transformed into programming code. While focusing here on
program synthesis, the same approach could also be used in other contexts, such as to generate
code for hardware implementation or ladder logic for manufacturing applications.

specification language are addressed in section 4. An example is given in section 5. Supervisory
control methods are discussed in section 6. Finally, an approach to code generation is described in
section 7. Additional information on this project can be found in [1]. The reader is referred to the
appendix for an introduction to PNs.

2 Literature Review

Due to the popularity of multicore microprocessors, concurrent programming is a topic of growing
importance. There are tools that can be used to accelerate code execution on multicore processors,
such as [44]. Nonetheless, the development of concurrent programs is still considered to be difficult.
The application of the SC, as proposed here, could help by automating certain aspects of the
development of concurrent programs, especially the aspects related to the coordination of concurrent
tasks. Note that the development of concurrent specifications remains necessary even when there
are good tools for the efficient execution of sequential code on multiprocessor systems. To illustrate
this necessity, consider the example of the dining philosophers1. A possible sequential solution
would be to implement a token ring protocol in which the philosopher that has the token may eat.
A tool converting sequential code to parallel code could make very efficient implementations of the
processes associated with a philosopher taking the forks or eating or thinking. However, it will
not change the protocol: the generated program would still allow only one philosopher to eat at a
time. In contrast, if a parallel specification is developed, two philosophers may be allowed to eat
at the same time. Further, tools converting sequential code to parallel code would remain very
useful, as they could improve the execution time of the sequential segments of code (such as those
dealing with picking up the forks, eating, and thinking). Note that the our project deals with the
development of concurrent specifications and not with the conversion of sequential code to parallel
code.

1In this classic synchronization problem five philosophers sit around a circular table. A philosopher can either

eat, think, or be hungry. There is a fork between each two adjacent philosophers. In order to eat, each philosopher

needs the two forks at his left and right. He may take a fork only if it is not already taken by a neighbor. When

hungry, a philosopher may begin to eat only when he has both forks. When he is done eating, he puts down the forks

to his right and left. The problem is to find a strategy allowing the philosophers to think and eat without reaching

deadlock or starvation.

Synthesis of Concurrent Programs Based on SC 3

In the literature, closely related to the SC theory is the approach for program synthesis for reactive
systems, as in [69, 90] and the references therein. The problem is to synthesize a program based on
a specification described in temporal logic. The specification must be satisfied for all possible inputs
of the environment. In terms of the SC terminology, a program would correspond to a supervisor.
For the most part, this work on program synthesis has not yet been reduced to practice [68]. In
this project we use PNs instead of temporal logic for the SC specifications. However, in the longer
term, other types of methods could also be incorporated, as appropriate, to increase the area of
applicability of this project.

A significant amount of work has been done on the modeling and analysis of concurrent programs
using PNs, such as in [14] and references therein. A software tool PEP has been created for the
development, verification, and simulation of parallel programs [2, 45, 99]. The structure of the
PEP tool has been described at three levels: the development level, the net level, and the analysis
level. At the development level user input is accepted in the form of programs written in one of
the languages B(PN)2 [16] and SDL [39] or as a parallel finite automata [46]. At the net level,
specifications are represented as high level nets, Petri box calculus expressions [14], and low-level
PNs. M-nets [15, 17] represent the high level nets and safe2 PNs the low-level PNs. At the
analysis level, model checking and other verification methods can be applied to the low-level PNs.
Comparing our approach with the approach of the PEP tool, note that the input is described by
a specification language in our work and by a low-level language in PEP. Our approach could be
used to assist the programmer in writing a low-level specification, while the PEP tool can be used
to verify a low-level specification.

The scheduling problem, dealing with the execution order of tasks based on a concurrent specifica-
tion, has been approached based on PN models in [33, 32, 55, 73, 77, 78, 95, 96, 103, 114]. Typically
the results are on the sequential execution of concurrent programs, as it is the case in platforms
with a single execution resource. However, the parallel execution has also been considered [33, 73].
There are also results for real-time specifications, based on an approach for hybrid controller syn-
thesis [7] and heuristics [55]. Typically reachability analysis is used for synthesis, though there
are also structural results, such as in [78]. Note that a schedule can be seen as the supervisory
policy enforced by a DES supervisor, such as in [100]. Thus, these results could be applied in the
SC framework of our project. However, note that in our project SC is to be used to assist the
programmer in writing concurrent programs, not just in solving the scheduling problem based on a
given concurrent program. Further, the intent is to focus on structural SC methods, in an attempt
to avoid the state explosion problem of reachability based methods.

There is also work on the tasking analysis of programs written in the Ada language. Verification
based on PN modeling appears in [13, 20, 82]. There are both structural methods [13] as well as
reachability based approaches [82, 83, 108]. Methods that could be used to model concurrent pro-
grams with PNs appear in [97, 109]. Note that our project is on correct-by-construction synthesis,
not on verification.

Related is also the work on hardware/software codesign of [9, 10]. There, the specification is
written in a language such as Esterel [49], from which a network of codesign finite state machines
(CFSMs) [29] is extracted. It is interesting to notice that networks of CFSMs could be modeled by
safe PNs. Compared to our project, while individual processes will be modeled by state machines,
the parallel composition of the process models will be a PN not necessarily safe. Moreover, we intend

2A safe PN is a PN in which all markings are less or equal to one.

Synthesis of Concurrent Programs Based on SC 4

to use specifications at a higher level. In our project, the specification language is to allow some
declarative language features, since part of the lower level code is to be generated automatically.

Recently, research work has been done on detecting and correcting deadlock situations in software
based on PN models and methods for liveness enforcement in PNs [110]. The approach can be
described as follows. Given a program, a PN model is extracted. Then, a liveness enforcing
supervisor is generated. Finally, the liveness enforcement supervisor is implemented by additional
lines of code in the original program. This approach has been implemented in the software tool
GADARA. Just as in our approach, SC methods for liveness enforcement are applied. However, in
our project we deal with program synthesis instead of programs that are already written. Thus, in
our project SC is applied not only for liveness enforcement but also to automate code generation
for other requirements that can be expressed in terms of SC specifications.

While program synthesis is in general a difficult topic, real-time constraints present an additional
challenge for embedded applications. The time issue is perceived as a potential obstacle in the
development of the next generation of networked embedded systems [72]. The SC framework
of our work appears to be suitable for programming with real-time constraints. However, we
currently focus on untimed specifications and postpone real-time specifications for future work. In
the literature, timed PNs have been used for verification [7, 21, 41] and also for SC [27, 42, 94, 93].

Numerous SC methods have been proposed for the supervision of PNs. Survey papers have been
published [52, 61]. The SC methods differ in the assumptions they make, the type of specifications
they consider, and the complexity of the computations. Thus, the context determines which are
the most appropriate methods. Therefore, in order to better exploit the power of the SC results,
the SC step in our approach (Figure 1) will not be limited to only one SC approach. While our
current focus is on the SC approaches of [62], incorporating also other SC methods is of interest
for the future.

To some extent, the application of SC methods to software engineering has been considered for
some time [74, 75]. Some of the methods proposed in CS, such as predicate control for distributed
computations [106] and the aforementioned scheduling approaches, can be seen as SC methods [64].
Moreover, some of the approaches used to generate control software are related to the SC. Thus,
an approach for the generation of control software based on condition system models appears
in [8, 51, 98]. Given a condition system model and a specification language describing a sequence
of states that the system should follow, control software is automatically generated [4]. Specific
SC problems in this context are addressed in [48]. Control software can also be generated using
the tool Supremica [65, 5] based on finite automata specifications and methods. Note that in our
project, by using PN models, it is possible to take advantage of both PN methods and automata
methods, as automata represent the reachability space of PNs. Further, compared to [8, 51, 98],
we intend to use more general specifications.

Among the software tools developed for SC, the following could be mentioned. Of special interest
for this project is the SC toolbox [57] developed in Matlab, containing SC methods for PNs. This
toolbox has been converted to C and has been included in the software developed for this project.
There is also other work on software tools for the SC of PNs [3, 40]. Further, the condition system
tool of [51, 4] can also be seen as a PN software tool, due to the relation of condition systems to
P/T nets. Some of the SC tools relying on automata models are TCT [111], UMDES [70], and
Supremica [5]. Controller synthesis based on temporal logic specifications can also be done [47].

Synthesis of Concurrent Programs Based on SC 5

3 Petri Net Representation of Programs

Since this project involves SC methods for PNs, of special interest here is the precise way in which
programs are represented using PNs. Subsection 3.1 describes several ways in which PNs could
represent programs. A comparison of PNs and automata is included in subsection 3.2. Then the
specific way in which programs are represented in our project is described in section 3.3.

3.1 Possible Approaches to PN Modeling

There are several ways in which PN models could be obtained.

1. Extract a PN model of a low-level program.

(a) Extract a complete PN model of a program.

(b) Extract only the structure of the program as a PN structure.

2. Start with a PN model.

(a) Start with a PN structure in which program segments are associated with each place.

(b) Develop a specification language compatible with a PN structure.

The approach 2(b) is the one we intend to follow. The approach 2(a) is also of interest, as will
be seen later. Next, we discuss in more detail these four approaches and their relationship to this
project.

Concerning the approach 1(a), note that finite PNs cannot completely model arbitrary programs,
as they do not have the power of a Turing machine. Programs with a bounded number of states,
as well as some programs with an unbounded number of states, can be modeled by finite PNs.
For certain programming languages, an approach allowing to convert programs to safe PNs is
available [14] and implemented in the PEP tool [2]. The PN is finite if the variables are defined
on a finite domain [16]. The approach 1(a) should not be confused with the approach 2(b), which
deals with a high level specification language (HLL), not with a low-level programming language.
Recalling the distinction between the two, an HLL describes objectives (the what), while a low-level
language describes objective implementations (the how to).

Less complex PN models are obtained if only the structure of the program is extracted. This is the
approach 1(b). In this approach, we deal with a high-level PN (HPN) in which the places and/or
transitions are labeled by the operations they represent. Both sequential and concurrent execution
of programs could be represented, where the latter may be obtained from the precedence graph.
(Precedence graphs are discussed, for instance, in [89].) This modeling approach has been used to
represent concurrent C programs in [77] and the tasking behavior of Ada programs in [13, 82, 97].
An example of an HPN is shown in Figure 2.

Still another possibility is to write from the beginning the program in an HPN format in which the
places are associated with program segments. This is the approach 2(a). For state machines, this
idea has been implemented to some extent in tools such as Stateflow of Matlab and in specification
languages such as SDL and UML. This idea is attractive because some problems are easily solved
by first defining states and transitions between states. For instance, such problems may arise in

Synthesis of Concurrent Programs Based on SC 6

else

for ...

if i>= n else

call f(i)

call h(i)call g()

if i == 5

call p(); i++

call z(i, n)call g()

if ... then ... else ...

. . .

. . .

1

0p

p

9t

7p

4t

8t7t

5t 6t

3t2t

6p5p

4

2

p1

p

3p

t

Figure 2: Example of an HPN.

the context of communication protocols. Note that not only state machines but also PNs are of
interest in communication protocol problems [34, 105, 87, 18].

This project uses the approach 2(b). Based on a specification written in an HLL, a PN model
and SC specification are extracted (Figure 1). As mentioned in section 4, the HLL may contain
segments of lower-level code. Such segments of code will be associated with places of the extracted
PN. In this sense, the PN model can be seen as one of the HPNs of the approach 2(a). A detailed
description of the PN representation used in this project is given in section 3.3.

3.2 Other DES Models

This project involves using PN models for the SC. Most literature on the SC uses automata for
the DES models. The choice of PNs for this project has several advantages. First, PNs are natural
models of concurrent processes. Further, by using PNs, it is possible to take advantage not only
of efficient automata methods but also of PN methods. A PN model can be converted to an
equivalent automaton by means of the reachability graph. Conversely, automata can be seen as a
particular type of safe PNs. However, PNs typically are considerably more compact representations
of systems than automata. Indeed, for some PNs the equivalent automata are not even finite. Thus,
in principle, it may be possible to have an exponential complexity PN method that is faster than
a polynomial complexity method on the equivalent automaton. It should also be mentioned that
typically PN models are easier to obtain than automata models, as the composition of automata
components could be seen as the generation of the reachability graph of a PN.

Synthesis of Concurrent Programs Based on SC 7

Safe PNs are PNs for which the the marking vector is a binary vector (has only 0 and 1 elements).
Any automata or collection of automata can be seen as a safe PN. Rather than using safe PNs, the
more general P/T nets are used in this project. In this way the marking of the PN could be used
to model nonnegative integer variables, where the variables do not have to be bounded. In safe
PNs the modeling of bounded variables is more complex and the modeling of unbounded variables
is not possible. For instance, a variable that equals the difference between the number of parts
entering a manufacturing system and the number of parts successfully processed is unbounded.
Such a variable cannot be modeled in a safe PN or a finite automaton, though it can be easily
represented by the marking of a place of a PN.

3.3 Internal Representation of Programs

This subsection describes the precise way in which PNs are used to represent programs in this
project. In this project, a program consists of a number of processes running concurrently. The
structure of each process is represented by a PN. The places of the PN correspond to operations
performed by the process. The transitions may be labeled by conditions, indicating which transition
should be taken when there is a choice. Each PN token corresponds to a process and indicates
the current state of the process. As a token moves from one place to another, the execution of
the process progresses from one set of operations to another. Thus, the various places of the PN
correspond to different stages in the execution of the process. Throughout this paper an HPN
(high level PN) will denote a PN in which places are labeled with instructions and transitions with
conditions. An illustration of an HPN is shown in Figure 2.

In general, PN transitions may have multiple input places and multiple output places. The effect
of firing such transitions is made precise by describing the PN structure by means of tuples of the
form (p1, t, p2), (p, t), and (t, p), where p1, p2, and p stand for places and t for a transition.

• A (p1, t, p2) tuple indicates that the PN has one arc from p1 to t and of one arc from t to p2.
Further, when the transition t is fired, a process in the stage p1 continues with the stage p2.

• A (p, t) pair indicates that the PN has one arc from p to t. Further, when the transition t is
fired, a process in the stage p terminates.

• A (t, p) pair indicates that the PN has one arc from t to p. Further, when the transition t is
fired, a new process is created and the process begins in the stage p.

The description above can be applied to PNs with arbitrary weights, since repeated arcs could be
used to indicate weights greater than one. For instance, if a transition t involves the tuples (p1, t),
(p1, t, p2), (p1, t, p2), then the arc (p1, t) has the weight 3 and the arc (t, p2) has the weight 2.

Note that when a place p has multiple output transitions, if the transitions are labeled with con-
ditions, a process in the stage p will select the next transition to be fired based on the conditions
labeling the transitions. On the contrary, if the transitions do not have conditions and there is no
code associated with p to select the next transition, the place p is said to be nondeterministic. For
a nondeterministic place the choice of the next transition is made by the supervisor.

Transitions with a single input place are fired immediately, unless controlled by a supervisor process.
However, transitions controlled by a supervisor or involving more than one input place cannot be
fired immediately. Rather, a process sends a request to fire such a transition and then waits for
permission. After permission is granted, the process goes on with the next stage.

Synthesis of Concurrent Programs Based on SC 8

e

g

f

c

a

g
b

e

d

b

a

b

c d

e

g

f

hh

(b) (c)(a) (d)

p8
p7

p4 p5

p

2p p3

p5

p7 6

p

p8

2pp1 p31

p4

p6

Figure 3: PNs that represent programs are a composition of state machine components. Note that
the transitions with the same label are composed.

Note that a PN may have more than one token. Each token of the PN corresponds to a different
instance of the program associated with the PN. Note also that multiple tokens in the same place
are allowed. This situation corresponds to multiple processes in the same execution stage.

By examining the way PNs are used to represent programs, it becomes clear that the possible stages
and transitions of any process form a state machine. That is, for any given initial position of a token
in the PN, a state machine will describe the possible stages and transitions of the process associated
with the token. Moreover, the PN can be seen as a parallel composition of state machines. For a
formal definition of parallel composition the reader is referred to the appendix A, at page 29. An
example of composition of state machine components into a PN is shown in Figure 3.

Without loss of generality, it will be assumed that the PNs describing the processes have a state
machine structure. Unlike to the typical definition of state machines, note that here arbitrary
markings and arbitrary arc weights are allowed. Moreover, note that the parallel composition of
state machines can result in an arbitrary PN, which is not necessarily a state machine.

4 The Specification Language

As previously mentioned, in our approach (Figure 1) the specification is given in a high level
specification language (HLL). This section describes objectives, constraints, and work related to
the design of an HLL.

First, note that the result of software synthesis consists of a number of application processes and
a coordinator process (Figure 4). In Figure 4, the coordinator process represents the supervisor
generated by means of SC. Further, the M processes correspond to process definitions given in the
specification. The supervisor (coordinator) exchanges messages with the other processes to ensure
that their operation respects the constraints given in the specification file. The number of processes
is variable. Some processes may terminate and new processes may be created, as described in the
specification. The application is started by starting the supervisor. Then, the supervisor starts
other child processes, as determined by the specification. While Figure 4 shows a single coordinator
process, a decentralized or distributed approach is possible by using the corresponding SC methods.

Note that a distinction is made here between processes and process types. Several processes may

Synthesis of Concurrent Programs Based on SC 9

PROCESS 2

. .
 .

. .
 .

signals

. .
 .

. . .

PROCESS 1

COORDINATOR PROCESS

. .
 .

PROCESS M

. .
 .

. .
 .

Figure 4: Implementation of the specification.

have the same process type, that is, the same executable code. The code of the supervisor and the
code of the process types is generated as shown in Figure 5. While the approach proposed here
is not limited to a particular operating system or low level language, the programs are currently
developed for Unix using C for the low level language. Note that the files are generated using the
architecture shown in Figure 6.

As shown in Figure 6, based on the specification, a number of high level PNs (HPNs) and a supervi-
sory control (SC) specification are extracted. Note that using HPNs instead of place transition nets
(P/T nets) is necessary due to the fact that the latter do not have the power of Turing machines.
Thus, processes are represented by PNs in which places are associated with low level code and
transitions with conditions. However, this means that only the part of the specification expressed
by PNs is addressed by the synthesis tools. Thus, the SC tools would only guarantee correctness
for the subproblem associated with the PN structure extracted from the HLL program. This is
because the SC tools do not take in account the low level code sections. The low level code sec-
tions embedded in the specification are simply copied, as appropriate, to the output files. In this
respect our approach resembles the approach taken in other program synthesis tools, such as lexical
analyzer generators and parser generators [6, 76].

While the HLL will allow sections of low level code, the HLL has to provide other ways to specify the
software parts that are difficult to write manually, so that they are generated automatically. Thus,
in the context of concurrent programming, the HLL has to address the various synchronization
constraints that may be needed.

The role of the HLL is to allow for programs that are both compact and very readable. The HLL
should allow users not familiar with PNs to easily generate correct code. Further, a specification
written in the HLL is expected to be considerably more compact than the PN representation of
the specification and much more compact than the result of the SC and code generation steps.
Indeed, the high level specification would not detail how to implement requirements such as mutual
exclusion or liveness. Such details would be handled by the SC tools. Thus, the user would focus
more on what needs to be done and less on how it should be done. Moreover, since the high level

Synthesis of Concurrent Programs Based on SC 10

.

.. ..
.

MAKE FILE

MAKE

SUPERVISOR.C

LIBRARIES

SPECS FILE

PROC−TYPE−1.EXEPROC−TYPE−1.C

PROC−TYPE−N.C

SUPERVISOR.EXE

SOFTWARE
SYNTHESIS
TOOLS

PROC−TYPE−N.EXE

Figure 5: How the software synthesis tools are applied.

specification is more compact, the programmer would have less code to check for errors.

To describe explicitly the PN representation of a program, a low level specification language (LLS)
was defined. The LLS describes how specification programs are internally represented in our soft-
ware. Moreover, the LLS is important for debugging purposes. It also provides a way to include
low level descriptions in HLL specifications. Compared to the HLL, the LLS provides an explicit
description of the HPNs representing the specification and an explicit description of the constraints.
Thus, an HLL specification should be considerably more compact than an LLS specification. Likely,
HLL specifications will be translated to LLS specifications. The relationship between the HLL and
the LLS is similar to the relationship between a high level language and assembly language.

A simplified description of the LLS is shown in Figure 7. The user defines the process types, where
a process type may be external or internal. Note that code is generated only for internal processes.
External processes describe constraints on the operation of the application, such as constraints
imposed by hardware. Defining all constraints is important. On one hand, this can simplify the
operations performed by the SC methods. On the other hand, it enables SC to provide solutions
that avoid all deadlock possibilities, as it is known that constraints can create deadlock states.

Each process type is described by a high level Petri net (HPN) structure. In this structure, places
are associated with operations (such as function calls). Moreover, when a place has multiple output
transitions, the transitions are associated with conditions (such as conditions in an if-then-else
statement).

The LLS allows processes or process groups to be declared. In a process group, each process shares
the same HPN. Note that each process of a process group is a token in the HPN. Thus, a process
declaration involves an HPN with a single token and a process group declaration involves an HPN
with several tokens. The initial markings of the HPNs are defined explicitly. While threads are
not used in this paper, it is possible to implement a process group as a single process consisting of
several threads.

As previously mentioned, the PN structure of a process type is described by an enumeration of
tuples of the form (p1, t, p2), (p, t), and (t, p). An example of a specification described in the low

Synthesis of Concurrent Programs Based on SC 11

..
..

. ..

.

.

SPECS FILE CODE

GENERATION

HPN 1

HPN 2

HPN N

SUPERVISORY

CONTROL SUPERVISOR

SUPERVISOR.C

PROC−TYPE−1.C

PROC−TYPE−N.C

PROC−TYPE−2.C

SC SPECS

ANALYSIS

Figure 6: Internal structure. HPN stands for high level PN.

level language is given in the Appendix B at page 31. Note that by describing PNs structures as
an enumeration of tuples (p1, t, p2), (p, t), and (t, p), the PN is described as a composition of state
machine components (e.g. Figure 3).

5 Example

Assume that the HLL describes control software for an assembly process in a manufacturing ap-
plication. In this process two components A and B are assembled into a component C, as follows.
A robot takes a part A and places it on a conveyor, if the conveyor is stopped and no other part
A is on the conveyor. Another robot takes a part B and places it on the conveyor at the same
location if the conveyor is stopped and no other part B is there. Then, the two parts A and B are
assembled. Then, after the conveyor is turned on and the assembled product is removed, a new
cycle may begin. The conveyor should not move from the time a part A or B is placed until the
time when the parts are assembled.

Referring to Figure 1, the SC specification corresponds to the re- Issue Command

Command Executed

Figure 9: A possible way to
model processing delays.

quirements that only one part A (B) is placed on the conveyor, that
the parts are placed when the conveyor is stopped, and that the con-
veyor should not move from the time a part A or B is placed until
the time when the parts are assembled. For the rest, the specification
describes the processing sequence and corresponds to the description
of the plant.

The role of the analysis tool is to extract a PN model of the plant and
the SC specification based on a formal description of the specification
above. A possible solution is the PN model of the plant is shown in Figure 8 and the SC specification
given in the inequalities (1)–(4). In the plant model of Figure 8, the processing sequence is shown
to the left and the states of the conveyor to the right. To incorporate the effect of processing delays,

Synthesis of Concurrent Programs Based on SC 12

<specs> ::= <types> <definitions> <processes> <constraints>

<types> ::= <process type> | <types> <process type>

<process type> ::= <external type> | <internal type>

<definitions> ::= <HPN> | <definitions> <HPN>

<HPN> ::= <proc-type name> <places> <transitions> <place code> <arcs>

<arcs> ::= | <arcs> <arc> <condition>

<arc> ::= <place> <tran> | <tran> <place> | <place> <tran> <place>

<constraints> ::= <synchronizations> <group constraints>

<group constraints> ::= |

<group constraints> <process group> <local constraints>

<local constraints> ::= | <local constraints> <constr>

<constr> ::= <controllability> | <observability> | <liveness> |

<inequalities>

Figure 7: Simplified BNF of the LLS.

a processing step is modeled by one controllable transition, one uncontrollable transition, and one
place, as shown in Figure 9. The controllable transition is fired when the command is issued and the
uncontrollable transition is fired after the command has been executed. For instance, in Figure 8,
t1 is fired when the command to turn on the conveyor is issued and t2 is fired when the conveyor
is on.

The following inequalities on the marking of the PN express the remaining requirements of the
specification.

µ6 + µ9 + µ10 ≤ 1 (1)

µ6 + µ9 + µ2 + µ3 + µ4 ≤ 1 (2)

µ8 + µ9 + µ10 ≤ 1 (3)

µ8 + µ9 + µ2 + µ3 + µ4 ≤ 1 (4)

The inequality (1) expresses the requirement that only one part A should be placed on the conveyor.
Further, (2) describes the requirement that the conveyor should not move from the time a part A is
placed until the time when the parts A and B are assembled. The inequalities (3) and (4) expresses
the similar requirements for the parts B.

Synthesis of Concurrent Programs Based on SC 13

Stop

B brought

Assemble C

C assembled

C removed

Bring BBring A

CONVEYOR

Stopped

Run

Running

uncontrollable

controllable

A brought

1 t

t 4

3

p8

p9

p10

t 9

t 10

t 11

t 5

t 8t 6

t 7

p6

p7p5

p1

2p

p4

p3

t 2

t

Figure 8: Plant model.

The inequalities (1)–(4) correspond to the PN specification shown in Figure 10. The PN rep-
resenting the specification has the property that the parallel composition of the plant with the
specification satisfies the desired requirements. Note that the transitions of the specification and
the plant that are marked with the same symbol correspond to the same event.

Note that the inequalities (1)–(4) are not the only way to express the SC specification. The following
system of inequalities is equivalent. However, it is more complex and results in a considerably more
complex PN representation, due to disjunctions [63].

µ6 + µ9 + µ10 ≤ 1 (5)

µ8 + µ9 + µ10 ≤ 1 (6)

[µ6 + µ9 ≤ 0] ∨ [µ1 ≥ 1] (7)

[µ8 + µ9 ≤ 0] ∨ [µ1 ≥ 1] (8)

A long term direction of research in the development of the analysis tool is on how to obtain the
most efficient representation of the SC specifications.

An LLS description of a version of this example is given in Appendix B at page 31. There, the
plant is described as the parallel composition of five state-machine components, each corresponding
to one process.

Synthesis of Concurrent Programs Based on SC 14

t 11

t 10

t 4

t 1

t 8

t 6

Figure 10: PN representing the SC specification.

6 Supervisory Control

In supervisory control (SC), a supervisor is designed based on a plant model and a specification.
The supervisor ensures that the operation of the plant satisfies at all times the specification, subject
to the constraints imposed by the plant. In its simplest form, the supervision of PNs involves a
plant PN, such as the PN of Figure 8, and a specification given in terms of marking inequalities,
such as the inequalities (9)–(12). The specification is written compactly in the form Lµ ≤ d, where
L is a matrix, µ is the marking vector, and d is a column vector. Then, if D is the incidence matrix
of the PN, the supervisor is a PN of incidence matrix Ds = −LD. For instance, assuming the plant
of Figure 8 and the specification given by the inequalities (9)–(12), the supervisor implementing the
specification is shown in Figure 11, where the supervisor consists of the places C1, C2, C3, and C4.
In general, the SC problem is considerably more difficult due to constraints imposed by the plant
and complex specifications. Typically, the constraints imposed by the plant refer to the events that
can be controlled or observed by the supervisor.

The dining philosophers problem could be used as an example. From the viewpoint of an agent
controlling the access to the forks, a transition between the states “think” and “hungry” is un-
controllable and unobservable. Further, a transition between “eat” and “think” is uncontrollable
but observable. Moreover, a transition modeling access to a “fork” can be seen as controllable
and observable. The specification to the dining philosophers problem could be that “starvation” is
impossible, that is, any hungry philosopher eventually gains access to the forks.

Uncontrollable and/or unobservable transitions may be needed in any of the following contexts:

- A decentralized environment, in which the transitions of one entity are unobservable and
uncontrollable to the other entities.

- An embedded system environment in which transitions are controllable when they can be
controlled by actuators and observable when they can be detected based on sensor informa-
tion.

- A transition associated with an interrupt can be considered uncontrollable (such as in [31]).

- For certain SC problems (such as liveness enforcement), transitions labeled by conditions have
to be considered uncontrollable.

Various types of specifications may be necessary, such as enforcing liveness or reversibility, ensuring
mutual exclusion, formal language constraints, and others. The SC problem is usually easy to solve

Synthesis of Concurrent Programs Based on SC 15

when all transitions are controllable and observable and no liveness or reversibility requirements
are given. Therefore, most research effort has been directed towards the SC problems involving
liveness specifications and/or partial controllability and partial observability.

6.1 Supervisory Control Methods

Significant effort has been spent in developing methods for the SC of PNs and automata. Note
that finite automata are a special case of PNs and that the reachability graph of a PN is a (not
necessarily finite) equivalent automaton. Thus, methods developed for automata are important for
the reachability analysis of PNs. The reachability graph of a PN may not be finite and when finite
it may have a size that is exponentially related to the size of the PN. For this reason, much work
has been done on SC methods that avoid direct reachability analysis of PNs. Such SC methods are
said to be structural, as they rely on the structure of the PN rather than the reachability graph.
A description of available structural methods can be found in the survey papers [52, 61]. For this
class of methods, there are results on the following types of specifications:

- liveness (at any reachable state any transition should be eventually fireable)

- safety constraints: (generalized) mutual exclusion, language constraints (requiring the words
generated by the plant to belong to the specified language), state-based constraints (a for-
bidden set of states is to be avoided)

- certain types of safety constraints for decentralized/distributed supervision.

Concerning liveness, there is a considerable amount of work on methods for deadlock avoidance,
prevention, and recovery. Several of the main approaches appear in [113]. In the context of PNs,
most methods for liveness enforcement were proposed for special classes of PNs, modeling resource
allocation systems, such as in [71, 104, 11, 112, 37, 85, 86, 107, 92]. Among these, [86] can also be
used for partial controllability. For general PN models and/or partial controllability and partial
observability the method of [62, 58] is of interest. This approach consists of a procedure that
iteratively identifies and removes deadlock situations. However, its termination is not guaranteed.

The research on safety constraints has resulted in methods for the representation of the specifi-
cations by PNs and in methods of enforcement of safety constraints under partial controllability
and partial observability. Many of the methods for the enforcement of safety constraints deal
with generalized mutual exclusion specifications. In such specifications the marking µ of a PN
is required to satisfy a number of inequalities lµ ≤ b, where b is an integer and l is an integer
vector. Some methods address the general problem but are suboptimal [79, 80, 26]. Suboptimal
methods may generate supervisors that are not least restrictive. Moreover, suboptimal methods
may not be able to find solutions for certain problems, even when solutions exist. Then, there are
other methods intended for special classes of PNs and specifications, which are optimal, such as
in [28, 25, 35, 43, 54, 67, 101, 102]. Among the methods designed for different types of forbidden
sets we mention [19, 53]. A suboptimal approach for PN language constraints appears in [61, 62].

For decentralized/distributed supervision, the supervision methods of [62, 60] can be used. Based
on the given (centralized) specification, decentralized supervisors are obtained that operate au-
tonomously. The approach can be used for decentralized settings that exclude communication
between supervisors and for distributed settings in which communication is allowed. When the

Synthesis of Concurrent Programs Based on SC 16

supervisors rely on communication to operate correctly, distributed synchronization is necessary.
Nonetheless, a distributed solution may involve less communication than a centralized solution.

6.2 Application of SC methods

Referring to the SC step of our approach (see Figure 1), the implementation work has begun
with the family of structural methods of [62]. This family of methods is general in terms of
both plant description and class of specifications. Further, the synthesis can be carried out under
general settings of uncontrollability and unobservability and many of the results can be adapted
to the decentralized/distributed settings. However, note that a long term goal for this project is
to take advantage of all available methods, including reachability based methods. Therefore, of
special interest for future work is to develop algorithms that identify special cases for which an
optimal approach is available. Future work should address also strategies to select between various
approaches based on their estimated completion time.

Among the specifications considered in the SC of PNs, language type specifications are especially
important, due to their generality. A language specification is represented by a PN that generates
the specified language. The specification PN introduces constraints on the sequence in which the
plant events may occur. These constraints can be described algebraically. It has been shown [59]
that each place of a PN describes a constraint of the form hq + cv ≤ b, where b is an integer, h and
c are integer vectors, and q and v are parameters related to the transition firings. They are called
firing vector (q) and Parikh vector (v). It has been shown also that the constraints of the form
lµ + hq + cv ≤ b are as expressive as the constraints of the form hq + cv ≤ b, where l is another
integer vector and µ is the marking of the PN. Note that under some boundedness assumptions,
PN languages can describe disjunctions

∨

i[liµ + hiq + civ ≤ bi] [63].

In [62], which describes the SC approaches we have focused on, the language enforcement problem
is seen as the problem of enforcing a set of constraints lµ + hq + cv ≤ b. The solution is found
based on the solution to a supervision problem involving a transformed PN and a transformed set
of constraints l′µ ≤ b. Thus, the methods for the constraints lµ ≤ b discussed in the previous
subsection are very important for general specifications.

Fairness is an important issue in programming applications. Starvation refers to the situation in
which one or more processes may have to wait indefinitely. The constraints lµ+hq+cv ≤ b could be
used to describe fairness constraints. Alternatively, fairness could be considered in the lower level
code. In this case a lower level code segment included with the HLL specification would describe
which of the transitions enabled by the SC code should be fired.

Note that DES controllers, as opposed to supervisors, appear to be of greater interest in program-
ming applications. While a supervisor disables events that may lead to unacceptable behavior of
the plant, a controller selects the events that should be fired next, while ensuring the specification
stays satisfied. Thus, controllers can be easily derived from supervisors. In this context the issue
of whether a supervisor design method is optimal or not is not important, as long as the method is
able to find a solution when one exists. Indeed, controllers would enforce a specification regardless
of whether they are derived from least restrictive supervisors or from suboptimal supervisors. Work
on the problem of obtaining DES controllers appears for instance in [12, 23, 24, 38, 56].

Synthesis of Concurrent Programs Based on SC 17

 2
C 4

t 11

C 3C 1

p8

p9

p10

t 9

t 5

t 8t 6

t 7

p6

p7p5

t 10

t 2

t 1 t 3

t 4

p1

2p p3

p4

C

Figure 11: Plant and supervisor.

6.3 Example

Considering the example of section 5, the SC specification of Figure 10 cannot be used as a super-
visor, as it does not account for the partial uncontrollability of the plant. By taking in account
the uncontrollable transitions of the plant, the SC step changes the inequalities (1)–(4) to (9)–(12),
which can be implemented as shown in Figure 11.

µ5 + µ6 + µ9 + µ10 ≤ 1 (9)

µ5 + µ6 + µ9 + µ2 + µ3 + µ4 ≤ 1 (10)

µ7 + µ8 + µ9 + µ10 ≤ 1 (11)

µ7 + µ8 + µ9 + µ2 + µ3 + µ4 ≤ 1 (12)

7 Code Generation

7.1 Problem Formulation and Possible Approaches

Referring to Figure 1, note that the role of code generation is to implement both the plant and the
supervisor into code. The implementation of the plant involves the following operations.

• Writing the code associated with the places of the HPN and implementing the if-then-else
statements associated with conditions that label transitions.

• Writing code for communication with the supervisor.

Synthesis of Concurrent Programs Based on SC 18

(f)

22

3

(a) (b) (c) (d) (e)

2P(S) V(S) 1 2P(S , S) 1 2P(S , S)
1V(S , S)2 P(S)

Figure 12: Regular P and V operations represented at (a) and (b). Next, (c) corresponds to
a simultaneous P. Simple extensions are necessary for the operations shown at (d–f). Note the
integer arc weights.

• Writing code for transitions involving multiple input and output places. Such code may
implement synchronization, process creation, and process termination.

The supervisor is used to restrict the operation of a plant PN. The role of the supervisor is to identify
transitions that can be fired without violating the given specification. Note that a supervisor does
not force transition firings. It only indicates which transitions may be fired. Once a transition is
enabled by both plant and supervisor, it can be immediately fired. A software implementation of
the supervisor involves writing the code associated with plant events, such as transition firings or
requests for permission to fire certain transitions.

The implementation in software of the supervisor could be done in more than one way. One possibil-
ity would be to use semaphores or other synchronization mechanisms to implement the supervisory
policy. Another possibility would be to implement the supervisory policy as a coordinating task.

Semaphores are a natural choice for the representation of supervisor places [50, 52, 66, 115]. Since
the code is automatically generated, difficulties arising in programming with semaphores are not
relevant for this application. It should be noticed that some simple extensions of the semaphore
operations are necessary, beyond that of the simultaneous P/AND synchronization [84]. Some
necessary extensions are shown in Figure 12.

Semaphores would allow tasks to decide autonomously which transition to fire and when. However,
a supervisor may involve more than just a number of places connected to plant transitions. Thus,
a more general solution is to use a coordinating process to implement the supervisor. In this case
the supervisor places could be modeled by integer variables. These variables would be tested each
time a decision is made to fire a transition. Currently, this project implements the coordinating
process approach. Future work may consider also a semaphore approach.

The semaphore and coordinating process approaches are illustrated on an example in subsection 7.2.
Then, the details of code generation are considered in subsection 7.3.

7.2 Example

Referring to the example of section 6.3, the code generation step is to generate the programming
code based on the PN plant and supervisor shown in Figure 11. A semaphore implementation could
be done as follows. Four semaphores S1. . . S4 are needed, one for each of the four supervisor places
C1. . . C4. P-type operations on semaphores would be executed before firing any of t1, t5, and t7,
and V-type operations after firing t4, t10, and t11. For instance, P (S1, S2) is executed before firing

Synthesis of Concurrent Programs Based on SC 19

t5 and V (S1) and V (S3) after firing t11. Note that the simultaneous P/AND synchronization [84]
is used for the P operation.

Alternatively, a coordinator process could be used to implement the supervisor instead of the
semaphores. The coordinator would use four variables, m1. . .m4, each corresponding to the marking
of the supervisor places C1. . .C4. In this approach the conveyor process notifies the coordinator
each time t4 is fired and the assembly process each time t10 and t11 are fired. The conveyor and
assembly processes request permission to fire t1, t5, and t7 to the coordinator. The coordinator
enables/disables t1, t5, and t7 based on the supervisory solution shown in Figure 11. For instance,
t1 is enabled by the coordinator when m2 ≥ 1 and m4 ≥ 1. Further, if permission to fire t1 is
granted, m2 and m4 are decremented. Similarly, if the firing of t4 or t10 is announced, m2 and m4

are incremented.

7.3 A Coordinator Based Approach

Here we present a possible code generation approach involving a coordinator process. Recall that in
this project the specification describes a number of processes as well as constraints on the operation
of the processes. The processes defined in the specification are called application processes. PNs are
used to model the operation sequence of application processes, where a process is represented by
a PN token and stages in the operation of the process are represented by PN places. Further, the
operation of application processes is controlled by a supervisor process, which may inhibit or enable
various PN transitions. The objective of code generation is to obtain the programs implementing
the application processes as well as the coordination code.

The code generation algorithms described here are developed under the following assumptions.
While these assumptions do not seem to be restrictive for practical applications, they can simplify
the code generation algorithms.

A1. The PNs associated with application processes are state machines. (However, their parallel
composition does not have to be a state machine.)

A2. The PNs associated with application processes have distinct labels. (However, PNs of different
processes may have common labels and the supervisor process does not have to have distinct
labels.)

As mentioned in the first assumption, the PNs used to represent the structure of a program are a
composition of state machine (SM) components. Each SM component corresponds to the possible
stages of a process. For an example, consider Figure 3. In the figure, by composing the transitions
with the same label of the SMs (a), (b), and (c), the PN (d) is obtained. Each SM component
represents a process type, where the number of tokens of an SM component equals the number
of processes of that type. Transitions are used to move a process from one stage to another, to
terminate a process, or to begin a process. For instance, when the transition of label b is fired, a
new process of type (c) is created. Moreover, when the transition of label d is fired, a process of
type (c) terminates.

In code generation, special attention is given to transition synchronization. Synchronization is
implemented by a coordinator process. When an application process is ready to fire a transition t
that is synchronized with other transitions, the process requests the coordinator permission to fire

Synthesis of Concurrent Programs Based on SC 20

t. Permission is granted when all other processes involved in the synchronization are ready. Each
synchronization involves two or more processes, where one of the processes may be the supervisor
process.

Transitions that are not synchronized can be fired immediately. However, it may still be necessary
to notify the supervisor process when they occur. Depending on their relationship to the supervisor,
transitions are classified as follows.

• A transition is controlled if the supervisor may inhibit its firing. A process cannot fire a
controlled transition without permission from the supervisor.

• A transition is observed if the supervisor monitors its firings in order to update internal
variables. A process will notify the supervisor after firing an observed transition.

Note that the two properties defined above are independent. However, most often a controlled
transition will be also observed. In terms of the PN representation of supervisors, the controlled
transitions have one or more supervisor places as inputs and the observed transitions are connected
to one or more supervisor places. However, a transition with input supervisor places is not neces-
sarily controlled. This happens when for all reachable states it is never the case that the transition
is plant enabled and supervisor disabled. Moreover, a transition connected to supervisor places may
not be observed. This may happen when the supervisor places are controlled by means of self-loops.
A reachability based algorithm could be used to determine the transitions that are controlled and
observed. However, this would be rather computationally expensive. By overapproximating the
sets of controlled and observed transitions, the performance of the resulting code might be some-
what affected, since the amount of communication between processes and supervisor is increased.
However, since no significant performance degradation is expected, Algorithm 7.1 will be used to
overapproximate the sets of controlled and observed transition. The algorithm is correct because a
supervisor would never attempt to control an uncontrolled transition or to observe an unobservable
transition.

The following PN notation is convenient for the further developments. If x is a place or a transition,
let x• be the set of output places or output transitions of x and let •x be the set of input places
or input transitions of x. Moreover, let |X| denote the number of elements of the set X. Since the
PNs representing processes are state machines, for all transitions | • t| ≤ 1 and |t • | ≤ 1. Note that
while state machines are usually represented by ordinary PNs (PNs in which all arcs have unity
weight), here we do allow arbitrary integer weights.

In addition to controlled and observed transitions, the following classes of transitions are defined.
A transition t of a process type is a synchronization transition if it satisfies at least one of the
following properties.

• t has an input arc of weight greater than one.

• t has an input place and there is a transition t′ of a different process type such that t′ has an
input place and t and t′ have the same label.

Moreover, if two transitions of two application processes have the same label, one of them has one
output place but no input place, and none is a synchronization transition, then they are action

transitions. Note that transitions with one output place and no input place create new processes.
Thus, when an action transition takes place, the coordinator process should be notified in order to
generate the corresponding new processes.

Synthesis of Concurrent Programs Based on SC 21

Algorithm 7.1 Finding Controlled and Observed Transitions

Input: The PNs Ni = (Pi, Ti,D
+
i ,D−

i , ρi), i = 1 . . . n, associated with each of the n pro-
cesses; the supervisor PN Ns = (Ps, Ts,D

+
s ,D−

s , ρs).

Output: Tc, the set of controlled transitions, and To, the set of observed transitions.

/* Pi (Ps) and Ti (Ts) denote the sets of places and transitions, respectively; D+
i (D+

s) and
D−

i (D−

s) denote the input and output matrices, respectively; ρi : Ti → Σ (ρs : Ts → Σ)
denotes the labeling function. */

1. Tc = ∅ and To = ∅.

2. For i = 1 . . . n

3. For all transitions t ∈ Ti {

4. Let Ts(t) = {ts ∈ Ts : ρs(ts) = ρi(t)}. /* This is the set of supervisor transitions
with the same label as t. */

5. If Ts(t) 6= ∅ {

6. If D−

s (·, ts) 6= 0 for all ts ∈ Ts(t) /* D−

s (·, ts) 6= 0 means that the column ts of
D−

s has at least one nonzero element. */

7. Tc = Tc ∪ {t}.

8. If D−

s (·, ts) = D+
s (·, ts) for all ts ∈ Ts(t)

9. To = To ∪ {t}.

10. }

11. }

An outline of the operations performed when a process (token) enters the stage (place) p is as
follows.

1. The functions associated with p are executed.

2. The next transition t is selected.

3. If applicable, the process requests and waits for permission to fire t.

4. If applicable, the process notifies the supervisor that t is fired.

5. The transition t is fired. There are two possible outcomes:

• The process terminates if t has no output place.

• The process continues with the next stage p′, where p′ is an output place of t.

Note that if a place p has several output transitions, the next transition t can be selected based
on conditions associated with the transitions or based on internal operations performed by the
functions associated with the place p. If permission to fire t is to be obtained from a supervisor, a
function call of the form

RequestToFire(t)

Synthesis of Concurrent Programs Based on SC 22

cf
d

ddcb

a
2

c

t
5t4t

2t

9t8t7t6

t

t

3

1

Figure 13: Examples of synchronization and action transitions. t1 is a synchronization transition
since it has an input arc of weight 2. t3, t5, and t9 are also synchronization transitions. t6, t7, and
t8 are action transitions.

is made. After a RequestToFire call, the process has to wait until permission is granted. Now, the
call RequestToFire(t) addresses the case when the process selects only one transition t. However,
it may be that a process could continue by firing any of n transitions t1, t2, . . . , tn. An example
in which this possibility might arise is when a process may have to complete n operations and the
order in which it performs them is not important. Then, each of the operations might be associated
with a place reached by firing one of t1, t2, . . . , tn. Thus, the RequestToFire function can be called
with more than one parameter:

RequestToFire(t1, t2, ..., tn)

In a call involving more than one parameter, the transition that is fired is selected by the supervisor
process. Typically, the supervisor will select the first transition in the list that is enabled or, if all
transitions are disabled, the first transition that gets enabled. Note that the order of the parameters
indicates the order of preference of the transitions. Just as in the case with only one parameter,
the process calling RequestToFire will have to wait until the supervisor gives permission to fire
one of the transitions. A nonblocking version of RequestToFire could be

Try(t)

This function would obtain permission to fire t if t is enabled or else report that t is disabled.
While this function would provide additional flexibility for code that is manually written, the
RequestToFire function is sufficient for automatically generated code. By using a call of the form
RequestToFire(t1, t2, ..., tn, t) in which the last transition t is always enabled, the call will
not get blocked. An example of a transition t that is always enabled is a transition implementing
a self-loop.

A nondeterministic place is a place p in which the next transition is selected by means of a call
RequestToFire(t1, t2, ..., tn) in which all output transitions of p are present. Note that a
nondeterministic place is a place in which the process lets the supervisor make the selection of the
next transition. The ability to control the selection of the next transition is important for liveness
enforcing supervisors.

A description of the code structure of an application process is given in Algorithm 7.2. A description
of the coordinator is given in the Algorithm 7.3. For simplicity, all coordination functions are
assigned to the supervisor process. Thus, the supervisor process and the coordinator process are
the same. For simplicity, implementation details have been omitted from the algorithm descriptions.
Various steps of the algorithms could be done more efficiently.

Synthesis of Concurrent Programs Based on SC 23

Algorithm 7.2 Structure of the Application Process

Input: p – the place where the token is located initially.

- Go to stage p. /* There are p1, p2, . . . , pm stages, one for each place of the underlying
state machine. */

...

/* The code for stage pi. */

1. Initialize trans list = pi•. /* pi• is the set of output transitions of pi. This step is
necessary only if the transitions of pi• do not have conditions. */

2. Run the code associated with place pi. /* In the LLS, this code is defined with the
pi.code command. */

3. Select the next transition. /* This operation determines trans list. The operation is
performed only when the transitions of pi• have conditions. */

4. Let t be the first transition of trans list.

5. If t ∈ Tc ∪ Tsync /* Tc, Tsync: the sets of controlled and synchronization transitions. */

6. t = RequestToF ire(trans list); /* Requests and waits for permission to fire. The
function returns the transition in the list that may be fired. */

7. Else if t ∈ To ∪ Tact /* To, Tact: the sets of observed and action transitions. */

8. Notify coordinator that the transition t is fired.

9. If t• == ∅ /* t• is the set of output places of t. */

10. Exit. /* The process terminates. */

11. Go to the stage p′ = t•. /* In a state machine t• has at most one element. */

...

The following remarks could be made about the algorithms.

• A process type represents the structure of a process. This includes the PN structure, the code
associated with each place, and the conditions associated with the transitions. Note that a
process type does not define the labels of the PN structure.

• For any process, the PN representing its structure has distinct labels. However, two different
processes may share common labels. Moreover, the PN associated with a process is a state
machine, that is, a transition may have at most one input place and at most one output place.

• The algorithms take in account that the PNs representing processes are state machines and
have distinct labels. An exception is Algorithm 7.6 which supports also PNs that do not have
distinct labels.

Synthesis of Concurrent Programs Based on SC 24

Algorithm 7.3 The Supervisor (Coordinator) Process

Input: The n processes to be controlled, each being described by a PN Ni =
(Pi, Ti,D

+
i ,D−

i , ρi) of initial marking µ0,i, for i = 1 . . . n; the supervisor PN Ns =
(Ps, Ts,D

+
s ,D−

s , ρs) and its initial marking µ0,s.

1. For all PN components Ni

2. For all p ∈ Pi

3. If µ0,i(p) 6= 0 /* µ0,i is the initial marking of Ni. */

4. Start µ0,i(p) processes of type i in stage p.

5. While terminate == FALSE {

6. For all new messages requiring permission to fire a transition

7. Place request in the queue;

8. For all new messages notifying the firing of a transition t {

9. If t ∈ To /* To is the set of observed transitions. */

10. UpdateSupervisorMarking(t); /* Algorithm 7.5. */

11. If t ∈ Tact /* Tact is the set of action transitions. */

12. PerformAction(t); /* Algorithm 7.4. */

13. }

14. For all queue entries q {

15. EntryList = IsPermissible(q); /* Algorithm 7.6; identifies processes that are
granted permission to fire. */

16. If EntryList 6= NULL {

17. Grant permission to fire to the processes in EntryList.

18. Remove from queue the entries in EntryList.

19. Let t = q.fireable. /* This is the transition that is fired. */

20. UpdateSupervisorMarking(t); /* Algorithm 7.5. */

21. PerformAction(t); /* Algorithm 7.4. */

22. }

23. }

24. }

25. Terminate application processes.

Synthesis of Concurrent Programs Based on SC 25

Algorithm 7.4 The PerformAction Method of the Supervisor Process

PerformAction(t) {

1. For all PN components Ni

2. For all transitions t′ with the same label as t

3. If t′• 6= 0 and •t′ == 0 {

4. Let w be the weight of the output arc of t′.

5. Start w processes of type i in the stage p = t′•.

6. }

7. }

Algorithm 7.5 The UpdateSupervisorMarking Method of the Supervisor Process

UpdateSupervisorMarking(t) {

1. For all transitions ts ∈ Ts /* Ts is the set of supervisor transitions. */

2. If ts and t have the same label

3. If ts is enabled {

4. Fire ts.

5. Break. /* Exit loop. */

6. }

7. flag = 1;

8. While flag == 1 {

9. flag = 0;

10. For all ts ∈ Ts

11. If ts is unlabeled and enabled {

/* A supervisor transition is labeled if and only if it is to be synchronized
with one or more plant transitions. */

12. Fire ts.

13. flag = 1;

14. }

15. }

16. }

Synthesis of Concurrent Programs Based on SC 26

Algorithm 7.6 The IsPermissible Method of the Supervisor Process

IsPermissible(q) {

1. For all transitions t listed in the queue entry q

2. If t is supervisor enabled {

3. /* t is supervisor enabled if either no supervisor transition has the same label
as t or a supervisor transition with the same label as t is enabled. */

4. permissible = 1;

5. q.fireable = t; /* which transition to fire if permission is granted */

6. QueueEntryList = {q};

7. For all process types {

8. For all transitions t′ with the same label as t {

9. count = 0;

10. If t′ 6= t and t′ and t belong to the same process type

11. continue; /* go to the next iteration of the loop */

12. If t′ == t {

13. If W (t) == 1 /* W (t) is the weight of the input arc of t */

14. break; /* exit loop */

15. count = 1;

16. }

17. QL = SearchQueue(t′, count,QueueEntryList); /* Algorithm 7.7 */

18. If QL 6= ∅ {

19. QueueEntryList = QL;

20. permissible = 1;

21. break; /* exit loop */

22. }

23. permissible = 0; /* the line is reached if QL = ∅ */

24. }

25. If permissible == 0

26. break; /* exit loop: no process of this process type allows firing t */

27. }

28. If permissible == 1

29. Return QueueEntryList;

30. }

31. Return NULL; /* that is, request not permissible. */

32. }

Synthesis of Concurrent Programs Based on SC 27

Algorithm 7.7 The SearchQueue Procedure of IsPermissible

SearchQueue(t′, count, QueueEntryList) {

1. If •t′ 6= ∅ {

2. QL = QueueEntryList;

3. For all queue entries q′ /∈ QueueEntryList

4. If t′ listed in q′ {

5. q′.f ireable = t′;

6. QL = {q′} ∪ QL.

7. count = count + 1;

8. If count ≥ W (t′) /* W (t′) is the weight of the input arc of t′ */

9. Return QL;

10. }

11. Return NULL;

12. }

13. Return QueueEntryList;

14. }

Synthesis of Concurrent Programs Based on SC 28

8 Conclusion

Notoriously difficult [22], the development of concurrent programs could be simplified by using
tools that generate automatically part of the required code. This paper proposes the application
of supervisory control (SC) for the automatic synthesis of concurrent programs. SC is of interest
because various high level requirements can be seen as supervisory control (SC) specifications. Thus,
SC methods or similar methods from related areas of research have to be applied in order to achieve
a high degree of automation of the programming process. The SC problem, in its general form,
is of considerable difficulty. Nonetheless, significant progress has been made and powerful results
are already available. The project described in this paper aims to develop software for program
synthesis that exploits available SC methods. In this project, based on a specification written in
a high level specification language (HLL), an SC problem is formulated and then solved using SC
methods. The result of the SC step is then converted to low level code. The project involves
work on the HLL, the translation of HLL specifications to SC specifications, the translation of
supervisory policies to low level code, and the SC methods.

Three of the novel features of this project are as follows. First, we propose to apply SC results
developed for Petri net (PN) models to program synthesis. Note that by using PN models it is
possible to resort also to automata results. Second, the translation of a high level programming
specification into a SC specification is also a new topic. Third, for the SC we propose a framework
in which multiple methods can be used, based on the context, in an effort to exploit the strengths
of each method.

9 Acknowledgments

The support of the National Science Foundation (NSF CNS-0834057) is gratefully acknowledged.
A number of students have done programming work for this project. Bion Oren has written the
translator for LLS specifications. Drew Crawford and Kristopher Eggert have worked on the code
generation tool. Stephen Camp has implemented in C the toolbox [57].

Synthesis of Concurrent Programs Based on SC A-29

A Appendix A: Basic Petri Net Concepts

A Petri net structure is a tuple N = (P, T, F,W) where P is the set of places, T the set of

transitions, F ⊆ (P ×T)∪ (T ×P) is the set of transition arcs and W : F → N\{0} is a weight

function. Note that N is the set of nonnegative integers. A marking µ of the Petri net structure
is a map µ : P → N. A Petri net structure N with initial marking µ0 is called a Petri net, and
will be denoted by (N , µ0). Often, a Petri net structure is also called a Petri net. Further, there
are many classes of nets generically called Petri nets. In fact, in the general context of Petri nets,
the nets defined above are known as P/T nets [91]. However, since their definition is sufficient to
represent the most common varieties of Petri nets, following the survey paper of Murata [81], we
simply call them Petri nets.

The marking represents the state of a Petri net. The marking is often represented as a vector
[µ(p1), µ(p2), . . . µ(pn)]T , where p1, p2, . . . pn are the places of the net enumerated in a chosen (but
fixed) order. The same symbol µ is used to denote this vector.

Petri nets have a convenient graphical representation, useful for tutorial purposes. This repre-
sentation is illustrated in Figure 14. Places are represented by circles, transitions by thick lines
and transition arcs by arrows. Arc weights greater than one are indicated close to the arcs. For
instance, in Figure 14(c) W (p3, t1) = 2 and W (t2, p2) = 4. The figures also show a marking for
each Petri net. The marking of each place consists of the number of tokens inside the circle. (A
token is represented by a small dark filled circle.) For instance, the marking vector in Figure 14(c)
is [0, 1, 1]T .

22

33

(c)(b)(a) (d)

3t

4t

4p3p

p21

2p

p3

t 1

t 2

t 3
p1p3p

p
p

1

2

2

3

4

p1 2p

p5

p3 p4

t 2t 3

t 1

5p

p21

t

3 2t 1
t 2t

4

t

Figure 14: Petri net examples.

The preset of a transition t is the set of input places of t: •t = {p ∈ P : (p, t) ∈ F}. The postset

of a transition t is the set of output places of t: t• = {p ∈ P : (t, p) ∈ F}. Note that •p and p• are
similarly defined. For instance, in Figure 14(c): •t2 = {p1, p3}, t3• = {p3}, and •p2 = {t2}.

The marking µ enables the transition t if ∀p ∈ •t: µ(p) ≥ W (p, t). When µ enables t and t fires,

the marking is changed. Let µ′ be the next reached marking; we formally express this by µ
t

−→ µ′.
The marking µ′ satisfies:

µ′(p) =

µ(p) if p /∈ •t ∪ t•
µ(p) + W (t, p) if p ∈ t • \ • t
µ(p) − W (p, t) if p ∈ •t \ t•
µ(p) − W (p, t) + W (t, p) if p ∈ •t ∩ t•

Synthesis of Concurrent Programs Based on SC A-30

For instance, firing t1 in Figure 14(a) produces the marking shown in Figure 14(b). A sequence of

transitions σ = t1t2 . . . tk is enabled at the marking µ if µ enables t1 and µ
t1−→ µ1, µ1 enables t2

and µ1

t2−→ µ2, and so on. The marking µ′ is reachable from µ if there is a sequence of markings

µ1, . . . µk, µk = µ′, and a sequence of transitions σ = ti1, . . . tik such that µ
ti1−→ µ1 . . .

tik−→ µ′. This

is also written as µ
σ

−→ µ′. The set of reachable markings of a Petri net (N , µ0) is the set
of markings reachable from the initial marking µ0. It is denoted by R(N , µ0). The reachability

graph of a Petri net is obtained by associating a node with each marking µ ∈ R(N , µ0); there
is an arc from the node of µ1 to the node of µ2, if µ2 is reached from µ1 by firing a transition t:

µ1

t
−→ µ2.

In a Petri net N = (P, T, F,W) with m places and n transitions, the incidence matrix is an
m × n matrix defined by D = D+ − D−, where the elements d+

ij and d−ij of D+ and D− are

d+
ij = W (tj, pi) if (tj , pi) ∈ F and d+

ij = 0 otherwise;

d−ij = W (pi, tj) if (pi, tj) ∈ F and d−ij = 0 otherwise.

The matrices D+ and D− are called the input matrix and the output matrix, respectively.

The incidence matrix allows an algebraic description of the marking change of a Petri net:

µk = µk−1 + Dqk (13)

where qk is called firing vector, and its elements are all zero excepting qk,i = 1, where i corresponds
to the transition ti that fired. Note that when multiple transitions are allowed to fire at the same
time, qk is an integer vector in which for all i, qk,i indicates how many times the transition ti fires
at the instant k. Further, qk is enabled (may be fired) when

µk−1 ≥ D−qk (14)

We will also denote by Parikh vector a vector v associated with a sequence of transitions that
have fired, whose entries record how many times each transition appears in the sequence. If v is
the Parikh vector of the transition sequence that led the Petri net from the marking vector µ0 to
µk:

µk = µ0 + Dv (15)

A Petri net is a state machine if all transitions t have at most one input place and at most one
output place (that is, ∀t ∈ T : | • t| ≤ 1 and |t • | ≤ 1). Just as automata can have transitions
labeled by events, the transitions of Petri nets can also be labeled by events. A labeled Petri net

is a Petri net enhanced with a labeling function ρ : T → 2Σ ∪ {λ}, where Σ is the set of events, ρ
the labeling function, and λ the null event. There are several ways in which Petri net languages
can be defined [88]. The P-type languages of labeled Petri nets are of special interest in the context
of the structural methods of supervision. The P-type language of a labeled Petri net (N , ρ, µ0)
consists of all sequences of events w = ρ(σ) generated by the firing sequences σ enabled at µ0. Note
that for σ = t1t2t3 . . ., ρ(σ) denotes the sequence ρ(t1)ρ(t2)ρ(t3)

Note that the labeling function can also be defined as ρ : T → Σ ∪ {λ}, since a transition with
n labels can be replaced by n identical transition, each labeled with one of the n labels. We will
use this definition of the labeling function in order to introduce the parallel composition of two
labeled Petri nets. Let Ni = (Pi, Ti, Fi,Wi, ρi), i = 1, 2, be two Petri nets, where ρi : Ti → Σi ∪{λ}

Synthesis of Concurrent Programs Based on SC A-31

a d

a b

c d

a b

c d

1

p1

2

t 1 t 3

p3

3
p

t 1

t 3

p

p1

2p

3

t

t

Figure 15: Parallel composition example. The letters a, b, c, and d, denote the labels.

and Σi is defined such that for all e ∈ Σi there is a transition t ∈ Ti labeled by e. The parallel

composition of N1 and N2 is a Petri net N = (P, T, F,W, ρ) obtained as follows.

1. P = P1 ∪ P2.

2. For all t1 ∈ T1 and t2 ∈ T2 such that ρ1(t1) = ρ2(t2) 6= {λ}, create a transition t1,2 such that
ρ(t1,2) = ρ1(t1), •t1,2 = •t1 ∪ •t2, and t1,2• = t1 • ∪t2•.

3. For all t ∈ T1 with ρ1(t) ∈ (Σ1 \Σ2)∪ {λ}, create a transition t′ of N such that ρ(t′) = ρ1(t),
t′• = t•, and •t′ = •t.

4. For all t ∈ T2 with ρ2(t) ∈ (Σ2 \Σ1)∪ {λ}, create a transition t′ of N such that ρ(t′) = ρ2(t),
t′• = t•, and •t′ = •t.

Note that when the parallel composition is performed, each transition of one Petri net is synchro-
nized with each transition of the other Petri net that has the same label. The remaining transitions
are copied without change. Two examples are shown in Figures 15 and 16.

B Appendix B: A Specification Written in the Low Level Specifi-

cation Language

The following is a description of the manufacturing example presented in this report.

// Manufacturing example

// 1. PROCESS-TYPE DECLARATIONS

process CONVEYOR;

build: {make -f conveyor.mak};

include: {#include "conveyor.h"};

process MANFLINE_A;

Synthesis of Concurrent Programs Based on SC A-32

bbbb

d

aa

c

bb

aa

c

a
c

c

b b

d

t

p9
p7

p6p8

2

t

1p

4t
3

2t1
1t 1p

6t5t 5p4p 3pp2

3t

6t5t 5p4p 3

p8

p9

p6

p7

t 1 t 2

t 3t 4
t 2t1

pp

2
4 t 4

3 t 4
4

t 1
2 3

Figure 16: Parallel composition example. The letters a, b, c, and d, denote the labels.

build: {make -f manfline_A.mak};

include: {

#include "manfline.h"

};

process MANFLINE_B;

build: {make -f manfline_B.mak};

include: {

#include "manfline.h"

};

process FETCH_A;

build: {make -f fetch_a.mak};

include: {

#include "fetch_a.h"

};

Synthesis of Concurrent Programs Based on SC A-33

process FETCH_B;

build: {make -f fetch_b.mak};

include: {

#include "fetch_b.h"

};

// 2. DEFINITIONS

CONVEYOR.PN:

places: p1 p2 p3 p4;

transitions: t1 t2 t3 t4;

p1.code: { wait_run_command(); };

p2.code: { start_conv();

wait_until_conv_ready();

};

p3.code: { wait_stop_command(); };

p4.code: { stop_conv();

wait_until_stopped();

};

(p1, t1, p2);

(p2, t2, p3);

(p3, t3, p4);

(p4, t4, p1);

MANFLINE_A.PN:

places: p5 p6 p9 p10;

transitions: t5 t6 t9 t10 t11;

p6.code: { begin_assemble1();};

p9.code: { end_assemble(); };

Synthesis of Concurrent Programs Based on SC A-34

p10.code: { request_move();

wait_until_removed();

};

(t5, p5);

(p5, t6, p6);

(p6, t9, p9);

(p9, t10, p10);

(p10, t11);

MANFLINE_B.PN:

places: p7 p8;

transitions: t7 t8 t9;

p8.code: { begin_assemble2();};

(t7, p7);

(p7, t8, p8);

(p8, t9);

FETCH_A.PN:

places: p_a;

transitions: t_a;

p_a.code: { fetch_part_A(); };

(p_a, t_a, p_a);

FETCH_B.PN:

places: p_b;

transitions: t_b;

p_b.code: {fetch_part_B(); };

(p_b, t_b, p_b);

Synthesis of Concurrent Programs Based on SC A-35

// 3. PROCESS DECLARATIONS

FETCH_A fpa(p_a:1); // initial marking = 1

FETCH_B fpb(p_b:1); // initial marking = 1

MANFLINE_A manf1; // initial marking = [0 0 ... 0]

MANFLINE_B manf2; // initial marking = [0 0 ... 0]

CONVEYOR conv(p1:1);// initial marking = [1 0 0 0]

// DEPENDENCIES

sync fpa.t_a manf1.t5;

sync fpb.t_b manf2.t7;

sync manf1.t9 manf2.t9;

// 4. INSTRUCTIONS ON THE DESIGN OF THE SUPERVISOR

conv.constraints:

uncontrollable: t2 t4;

manf1.constraints:

uncontrollable: t6 t10 t11;

live: t11;

manf2.constraints:

uncontrollable: t8;

global.constraints:

manf1.p6 + manf1.p10 + manf1.p9 <= 1;

manf1.p6 + manf1.p9 + conv.p2 + conv.p3 + conv.p4 <= 1;

manf2.p8 + manf1.p9 + manf1.p10 <= 1;

manf2.p8 + manf1.p9 + conv.p2 + conv.p3 + conv.p4 <= 1;

Synthesis of Concurrent Programs Based on SC R-36

References

[1] A Concurrency Tool Suite. http://www.letu.edu/people/marianiordache/acts.

[2] PEP homepage. http://parsys.informatik.uni-oldenburg.de/∼pep.

[3] PNetLab homepage. http://www.prisma.unina.it/automation/frame.htm.

[4] Spectool homepage. http://www.engr.uky.edu/∼holloway/spectool.

[5] Supremica homepage. http://www.supremica.org.

[6] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, Massachusetts, 1986.

[7] K. Altisen, G. Gosler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine. A framework for
scheduler synthesis. In 20th IEEE Real-Time Systems Symposium (RTSS’99), pages 154–
163. IEEE Computer Society, 1999.

[8] J. Ashley and L.E. Holloway. Automated control, observation, and diagnosis of multi-layer
condition systems. Studies in Informatics and Control, 16(1), 2007.

[9] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-Software
Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic Publishers, 1997.

[10] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli, E. Sentovich, and K. Suzuki. Synthesis of software programs for embedded
control applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(6):834–849, 1999.

[11] Z. Banaszak and B. Krogh. Deadlock avoidance in flexible manufacturing systems with con-
currently competing process flows. IEEE Transactions on Robotics and Automation, 6(6):724–
734, 1990.

[12] M. Barbeau, M. Frappier, F. Kabaza, and R. St.-Denis. A supervisory control synthesis
case study: The antenna control system. In Proceedings of 1997 Allerton Conference on
Communication, Control, and Computing, pages 533–542, 1997.

[13] K. Barkaoui and J.-F. Pradat-Peyre. Verification in concurrent programming with Petri nets
structural techniques. In High-Assurance Systems Engineering Symposium, pages 124–133,
1998.

[14] E. Best, R. Devillers, and M. Koutny. Petri nets, process algebras and concurrent program-
ming languages. In Reisig, W. and Rozenberg, G., editors, Lectures on Petri Nets II: Ap-
plications, volume 1492 of Lecture Notes in Computer Science, pages 1–84. Springer-Verlag,
1998.

[15] E. Best, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz. M-nets: an algebra of high-level
petri nets, with an application to the semantics of concurrent programming languages. Acta
Informatica, 35(10):813–857, 1998.

Synthesis of Concurrent Programs Based on SC R-37

[16] E. Best and R. Hopkins. B(PN)2 - a basic Petri net programming notation. In Bode, A.,
Reeve, M., and Wolf, G., editors, PARLE, volume 694 of Lecture Notes in Computer Science,
pages 379–390. Springer-Verlag, 1993.

[17] E. Best and C. Palamidessi. Linear constraint systems as high-level nets. In Montanary,
U. and Sassone, V., editors, CONCUR, volume 1119 of Lecture Notes in Computer Science,
pages 498–513. Springer-Verlag, 1996.

[18] J. Billington. Protocol specification using P-graphs, a technique based on coloured Petri nets.
In Reisig, W. and Rozenberg, G., editors, Lectures on Petri Nets II: Applications, volume
1492 of Lecture Notes in Computer Science, pages 293–330. Springer-Verlag, 1998.

[19] R. K. Boel, L. Ben-Naoum, and V. Van Breusegem. On forbidden state problems for a class
of controlled Petri nets. IEEE Transactions on Automatic Control, 40(1):1717–1731, 1995.

[20] A. Burns, A. J. Wellings, F. Burns, A. M. Koelmans, M. Koutny, A. Romanovsky, and
A. Yakovlev. Towards modelling and verification of concurrent Ada programs using Petri
nets. In Pezz, M. and Shatz, M., editors, Workshop Proceedings Software Engineering and
Petri Nets, pages 115–134, June 2000.

[21] U. A. Buy and R. H. Sloan. Automatic real-time analysis of reactive systems with the PARTS
toolset. Automated Software Engineering, 23(4):227–273, 2001.

[22] D. Callahan. Design considerations for parallel programming. MSDN Magazine, October
2008.

[23] V. Chandra, Z. Huang, and R. Kumar. Automated control syntesis for and assembly line using
discrete event system control theory. IEEE Transactions on Systems, Man, and Cybernetics:
Part C, 33(2):284–289, 2003.

[24] F. Charbonnier, H. Alla, and R. David. The supervised control of discrete-event dynamic
systems. IEEE Transactions on Control Systems Technology, 7:175–187, 2003.

[25] H. Chen. Net structure and control logic synthesis of controlled Petri nets. IEEE Transactions
on Automatic Control, 43(10):1446–1450, 1998.

[26] H. Chen. Control synthesis of Petri nets based on s-decreases. Discrete Event Dynamic
Systems: Theory and Applications, 10(3):233–250, 2000.

[27] H. Chen and H.-M. Hanish. Control synthesis of timed discrete event systems based on
predicate invariance. IEEE Transactions on Systems Man and Cybernetics, 30(5):713–724,
2000.

[28] H. Chen and B. Hu. Monitor-based control of a class of controlled Petri nets. In Proceedings
of the 3rd International Conference on Automation, Robotics and Computer Vision, 1994.

[29] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli. A
formal specification model for hardware/software codesign. In Proceedings of the International
Workshop on Hardware-Software Codesign, 1993.

[30] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

Synthesis of Concurrent Programs Based on SC R-38

[31] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral, C. Passerone, Y. Watanabe,
and A. Sangiovanni-Vincentelli. Task generation and compile-time scheduling for mixed data-
control embedded software. In Proceedings of the Design Automation Conference, pages 489–
494, 2000.

[32] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watanabe. Quasi-static
scheduling of independent tasks for reactive systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2005.

[33] J. Cortadella, A. Kondratyev, L. Lavagno, and Y. Watanabe. Quasi-static scheduling for
concurrent architectures. In Third International Conference on Application of Concurrency
to System Design (ACSD 2003), pages 29–40. IEEE Computer Society, June 2003.

[34] J.-P. Courtiat, J. M. Ayache, and B. Algayres. Petri nets are good for protocols. In ACM,
SIGCOMM’84 Tutorials and Symposium, Communications Architectures and Protocols, pages
66–74, 1984.

[35] P. Darondeau and X. Xie. Linear control of live marked graphs. Automatica, 39(3):429–440,
2003.

[36] G. de Jong and B. Lin. A communicating Petri net model for the design of concurrent
asynchronous modules. In Proceedings of the 31st Annual Conference on Design Automation
(DAC ’94), pages 49–55. ACM Press, 1994.

[37] J. Ezpeleta, J. M. Colom, and J. Mart́ınez. A Petri net based deadlock prevention policy for
flexible manufacturing systems. IEEE Transactions on Robotics and Automation, 11(2):173–
184, 1995.

[38] M. Fabian and A. Hellgren. PLC-based implementation of supervisory control for discrete
event systems. In Proceedings of the 37th IEEE Conference on Decision and Control, pages
3305–3310, 1998.

[39] H. Fleischhack and B. Grahlmann. A compositional Petri net semantics for sdl. In Desel J.
and Silva M., editors, Application and Theory of Petri Nets, volume 1420 of Lecture Notes in
Computer Science, pages 144–164. Springer-Verlag, 1998.

[40] J. Flochova, F. Auxt, M. Radakovic, and O. Jombik. PNDesigner–a tool designed for model
based diagnosis and supervisory control of DES. In Proceedings of the 8th International
Workshop on Discrete Event Systems, pages 471–472, 2006.

[41] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool for analyzing time Petri
nets. In Proceedings of the 17th International Conference on Computer Aided Verification,
volume 3576 of Lecture Notes in Computer Science, pages 418–423, 2005.

[42] G. Gardey, O. F. Roux, and O. H. Roux. Safety control synthesis of time Petri nets. In
Proceedings of the 8th International Workshop on Discrete Event Systems, pages 222–228,
2006.

[43] A. Ghaffari, N. Rezg, and X. Xie. Feedback control logic for forbidden-state problems of
marked graphs: application to a real manufacturing system. IEEE Transactions on Automatic
Control, 48(1):2–17, 2003.

Synthesis of Concurrent Programs Based on SC R-39

[44] H. Goldstein. Cure for the multicore blues. IEEE Spectrum, 44(1):41–43, 2007.

[45] B. Grahlmann. The PEP tool. In Grumberg, O., editor, Computer Aided Verification, volume
1254 of Lecture Notes in Computer Science, pages 440–443. Springer-Verlag, 1997.

[46] B. Grahlmann, M. Moeller, and U. Anhalt. A new interface for the PEP tool - parallel finite
automata. In Desel, J. and Fleischhack, H. and Oberweis, A. and Sonnenschein, M., editor,
Workshop Algorithmen und Werkzeuge für Petrinetze, volume 22 of AIS, pages 21–26. 1995.

[47] A. Gromyko, M. Pistore, and P. Traverso. A tool for controller synthesis via symbolic model
checking. In Proceedings of the 8th International Workshop on Discrete Event Systems, pages
475–476, 2006.

[48] X. Guan and L.E. Holloway. Supervisory control of contradictions in hierarchical task con-
trollers. In Proceedings of the 37th Annual Allerton Conference on Communication, Control,
and Computing, Urbana-Champaign, 1999.

[49] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic, 1993.

[50] K.X. He and M.D. Lemmon. On the transformation of maximally permissive marking-based
supervisors into monitor supervisors. In Proceedings of the IEEE Conference on Decision and
Control, pages 2657–2662, December 2000.

[51] L. E. Holloway, X. Guan, and R. Sundaravadivelu. Automated synthesis and composition of
taskblocks for control of manufacturing systems. IEEE Transactions on Systems, Man, and
Cybernetics: Part B, 30(5):696–712, 2000.

[52] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of Petri net methods for controlled
discrete event systems. Discrete Event Dynamic Systems, 7(2):151–190, 1997.

[53] L.E. Holloway, X. Guan, and L. Zhang. A generalization of state avoidance policies for
controlled Petri nets. IEEE Transactions on Automatic Control, 41(6):804–816, 1996.

[54] L.E. Holloway and B.H. Krogh. Synthesis of feedback control logic for a class of controlled
Petri nets. IEEE Transactions on Automatic Control, 35(5):514–523, 1990.

[55] P.-A. Hsiung. Formal synthesis and code generation of embedded real-time software. In
CODES ’01: Proceedings of the 9th International Symposium on Hardware/Software Code-
sign, pages 208–213. ACM Press, 2001.

[56] J. Huang and R. Kumar. Nonblocking directed control of discrete event systems. In Proceeding
of the 2005 IEEE Conference on Decision and Control, 2005.

[57] M. V. Iordache and P. J. Antsaklis. Software tools for the supervisory control of Petri nets
based on place invariants. Technical report isis-2002-003, University of Notre Dame, April
2002.

[58] M. V. Iordache and P. J. Antsaklis. Design of T-liveness enforcing supervisors in Petri nets.
IEEE Transactions on Automatic Control, 48(11):1962–1974, 2003.

[59] M. V. Iordache and P. J. Antsaklis. Synthesis of supervisors enforcing general linear vector
constraints in Petri nets. IEEE Transactions on Automatic Control, 48(11):2036–2039, 2003.

Synthesis of Concurrent Programs Based on SC R-40

[60] M. V. Iordache and P. J. Antsaklis. Decentralized supervision of Petri nets. IEEE Transac-
tions on Automatic Control, 51(2):376–381, 2006.

[61] M. V. Iordache and P. J. Antsaklis. Supervision based on place invariants: A survey. Discrete
Event Dynamic Systems, 16:451–492, 2006.

[62] M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent Systems: A Petri Net
Structural Approach. Birkhäuser, 2006.

[63] M. V. Iordache and P. J. Antsaklis. Petri net supervisors for disjunctive constraints. In
Proceedings of the 2007 American Control Conference, pages 4951–4956, 2007.

[64] M. V. Iordache and P. J. Antsaklis. Petri nets and programming: A survey. In Proceedings
of the 2009 American Control Conference, pages 4994–4999, 2009.

[65] K. Åkesson, M. Fabian, H. Flordal, and R. Malik. Supremica – an integrated environment
for verification, synthesis and simulation of discrete event systems. In Proceedings of the 8th
International Workshop on Discrete Event Systems, pages 384–385, 2006.

[66] S. R. Kosaraju. Limitations of Dijkstra’s semaphore primitives and Petri nets. Operating
Systems Review, 7(4):122–126, 1973.

[67] B.H. Krogh and L.E. Holloway. Synthesis of feedback control logic for manufacturing systems.
Automatica, 27(4):641–651, 1991.

[68] O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In Proceed-
ings of the 18th International Conference on Computer Aided Verification, Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[69] O. Kupferman and M. Vardi. Church’s problem revisited. The Bulletin of Symbolic Logic,
5(2):245–263, 1999.

[70] S. Lafortune. Umdes-lib software library. http://www.eecs.umich.edu/umdes/toolboxes.html.

[71] K. Lautenbach and P. S. Thiagarajan. Analysis of a resource allocation problem using Petri
nets. In Proceedings of the 1st European Conference on Parallel and Distributed Processing,
pages 260–266. Cepadues Editions, 1979.

[72] E. A. Lee. Cyber-physical systems – are computing foundations adequate? In NSF Workshop
On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, Austin, TX,
October 2006.

[73] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Transactions on Computers, 36(1):24–35, 1987.

[74] M. Lemmon and K. He. Supervisory plug-ins for distributed software. In Pezze, M. and
Shatz, M., editors, Proceedings of the Workshop on Software Engineering and Petri Nets,
pages 155–172. University of Aarhus, Department of Computer Science, 2000.

[75] M. Lemmon, K. He, and S. Shatz. Dynamic reconfiguration of software objects using Petri
nets and network unfolding. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 3069–3074, 2000.

Synthesis of Concurrent Programs Based on SC R-41

[76] J. R. Levine, T. Mason, and D. Brown. Lex and Yacc. O’Reilly & Associates, second edition,
1992.

[77] B. Lin. Software synthesis of process-based concurrent programs. In DAC ’98: Proceedings
of the 35th annual conference on Design automation, pages 502–505. ACM Press, 1998.

[78] C. Liu, A. Kondratyev, Y. Watanabe, J. Desel, and A. Sangiovanni-Vincentelli. Schedulability
analysis of Petri nets based on structural properties. In IEEE International Conference on
Application of Concurrency to System Design, 2006.

[79] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event Systems Using Petri
Nets. Kluwer Academic Publishers, 1998.

[80] J. O. Moody and P. J. Antsaklis. Petri net supervisors for DES with uncontrollable and
unobservable transitions. IEEE Transactions on Automatic Control, 45(3):462–476, 2000.

[81] T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE,
pages 541–580, April 1989.

[82] T. Murata, B. Shenker, and S. M. Shatz. Detection of Ada static deadlocks using Petri net
invariants. IEEE Transactions on Software Engineering, 15(3):314–326, 1989.

[83] M. Notomi and T. Murata. Hierarchical reachability graph of bounded petri nets for
concurrent-software analysis. IEEE Transactions on Software Engineering, 20(5):325–336,
1994.

[84] G. Nutt. Operating Systems. Addison Wesley, 2003.

[85] J. Park and S. Reveliotis. Deadlock avoidance in sequential resource allocation systems with
multiple resource acquisitions and flexible routings. IEEE Transactions on Automatic Control,
46(10):1572–1583, 2001.

[86] J. Park and S. Reveliotis. Liveness-enforcing supervision for resource allocation systems with
uncontrollable behavior and forbidden states. IEEE Transactions on Robotics and Automa-
tion, 18(2):234–240, 2002.

[87] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using boolean manipu-
lation. In Application and Theory of Petri Nets ’94, volume 815 of Lecture Notes in Computer
Science, pages 416–435. Springer-Verlag, 1994.

[88] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood
Cliffs, NJ, 1981.

[89] J. L. Peterson and A. Silberschatz. Operating Systems Concepts. Addison-Wesley, 1985.

[90] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the ACM
Symposium on Principles of Programming Languages, pages 179–190, 1989.

[91] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.

[92] S. Reveliotis. Real-Time Management of Resource Allocation Systems: A Discrete Event
Systems Approach. Springer-Verlag, 2005.

Synthesis of Concurrent Programs Based on SC R-42

[93] A. Sathaye. Synthesis of real-time supervisors for controlled time Petri nets. In Proceedings
of the 32nd International Conference on Decision and Control, pages 235–236, 1993.

[94] A. Sathaye and B. Krogh. Logical analysis and control of time Petri nets. In Proceedings of
the 31st International Conference on Decision and Control, pages 1198–1203, 1992.

[95] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Quasi-static schedul-
ing of embedded software using equal conflict nets. In Donatelli, Susanna and Kleijn,
Jetty, editors, 20th International Conference on Application and Theory of Petri Nets 1999
(ICATPN’99), volume 1630 of Lecture Notes in Computer Science, pages 208–227. Springer-
Verlag, 1999.

[96] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli. Synthesis of embedded
software using free-choice Petri nets. In Proceedings of the 36th Design Automation Confer-
ence (DAC-99), pages 805–810, 1999.

[97] S. Shatz, K. Mai, D. Moorthi, and J. Woodward. A toolkit for automated support of Ada-
tasking analysis. In Proceedings of the 9th International Conference on Distributed Computing
Systems, pages 595–602, 1989.

[98] D. Shewa, J. Ashley, and L. Holloway. Spectool 2.4 beta: A research tool for modular model-
ing, analysis, and synthesis of discrete event systems. In Proceedings of the 8th International
Workshop on Discrete Event Systems, pages 477–478, 2006.

[99] C. Stehno. Real-time systems design with PEP. In Katoen, J.-P. and Stevens P., editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 2280 of Lecture
Notes in Computer Science, pages 476–480. Springer-Verlag, 2002.

[100] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich. Scheduling hardware/software sys-
tems using symbolic techniques. In International Workshop on Hardware/Software Codesign,
pages 173–177, 1999.

[101] G. Stremersch. Supervision of Petri Nets. Kluwer Academic Publishers, 2001.

[102] G. Stremersch and R. K. Boel. Structuring acyclic Petri nets for reachability analysis and
control. Discrete Event Dynamic Systems, 12(1):7–41, 2002.

[103] F.-S. Su and P.-A. Hsiung. Extended quasi-static scheduling for formal synthesis and code
generation of embedded software. In CODES ’02: Proceedings of the tenth international
symposium on Hardware/software codesign, pages 211–216. ACM Press, 2002.

[104] Z. Suraj. Resource allocation problem. In Proc. of the 3rd Symp. on Math. Foundations of
Comput. Science, Zaborow 1980, ICS PAS Reports, pages 83–86, 1980.

[105] T. Suzuki, S. M. Shatz, and T. Murata. A protocol modeling and verification approach based
on a specification language and Petri nets. IEEE Transactions on Software Engineering,
16(5):523–536, 1990.

[106] A. Tarafdar and V. K. Garg. Predicate control: synchronization in distributed computations
with look-ahead. Journal of Parallel and Distributed Computing, pages 219–237, 2004.

Synthesis of Concurrent Programs Based on SC R-43

[107] F. Tricas, F. Garcia-Valles, J. M. Colom, and J. Ezpeleta. New methods for deadlock pre-
vention and avoidance in concurrent systems. Actas de las Jornadas de Concurrencia 2000,
pages 97–110, June 2000.

[108] S. Tu, S. Shatz, and T. Murata. Applying Petri nets reduction to support Ada-tasking
deadlock detection. In Proceedings of the 10th IEEE International Conference on Distributed
Computing Systems, pages 96–102, 1990.

[109] S. Vercauteren, D. Verkest, G. de Jong, and B. Lin. Derivation of formal representations
from process-based specification and implementation models. In Proceedings of the 10th
International Symposium on System Synthesis (ISSS ’97), pages 16–23, 1997.

[110] Y. Wang, T. Kelly, M. Kudlur, S. Mahlke, and S. Lafortune. The application of supervisory
control to deadlock avoidance in concurrent software. In Proceedings of the 9th International
Workshop on Discrete Event Systems, pages 287–292, 2008.

[111] W. M. Wonham. Supervisory control of discrete event systems and design soft-
ware. Department of Electrical and Computer Engineering, University of Toronto,
http://www.control.toronto.edu/DES.

[112] K. Xing, B. Hu, and H. Chen. Deadlock avoidance policy for Petri net modeling of flexible
manufacturing systems with shared resources. IEEE Transactions on Automatic Control,
41(2):289–295, February 1996.

[113] M. Zhou and M. P. Fanti. Deadlock Resolution in Computer-Integrated Systems. Marcel
Dekker, Inc., 2005.

[114] X. Zhu and B. Lin. Compositional software synthesis of communication processes. In Pro-
ceedings of the International Conference on Computer Design, pages 646–651, 1999.

[115] W. M. Zuberek. Petri net models of process synchronization mechanisms. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, pages 841–847, 1999.

