
1

Control Design for Switched Systems Using

Passivity Indices
Michael J. McCourt and Panos J. Antsaklis.

Abstract—This paper presents a framework for control design
of interconnected nonlinear switched systems using passivity
and passivity indices. Background material is presented on the
concept of passivity indices for continuously-varying systems. The
passivity indices are then generalized to apply to switched systems
to measure the level of passivity in a system. The main result of
the paper shows how the indices can be compared between two
systems in feedback to verify stability. It is explained how this
theorem can be used as a control design tool for general nonlinear
switched systems. An example is provided to demonstrate this
design method. The connection between passivity indices and
conic systems theory is summarized in the appendix.

I. INTRODUCTION

Passivity is a characterization of system behavior based on

a generalized notion of energy. A passive system is one that

stores and dissipates energy without generating its own. This

analysis is intuitive for physical systems but general enough

to be applied to any system with an input-output mapping. As

a property of state space systems, passivity was defined by

Willems [1],[2] and furthered by Hill and Moylan [3].

Passivity has been applied to many systems using a tradi-

tional notion of energy. Simple examples include electrical

circuits and mass-spring-dampers. More complex physical

systems include robotics [4], distributed systems [5], and

chemical processes [6]. More generally, passivity can be ap-

plied even when there isn’t a well defined notion of energy, but

rather a generalized energy. For example, it has been applied

to networked control systems where systems interconnected

over a delayed channel can be stabilized using a wave variable

transformation [7].

Passive systems are ones that are necessarily Lyapunov

stable, minimum phase, and of relative degree one or zero.

For the stability analysis of a single system, passivity is

more restrictive than Lyapunov stability. However, passivity

is preserved when systems are combined in parallel or in

feedback, while stability is not preserved in general. This leads

to powerful results using passivity for interconnected systems

on many scales.

The benefits of the passive systems framework have been

extended to include system that aren’t passive by using the

concept of passivity indices. These indices the extent to

which a system is passive whether it is “nearly” passive
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or “excessively” passive. The concept, derived from conic

systems theory [8], was introduced by Safonov, et al. [9] and

further expanded by Wen [10]. A thorough coverage of the

passivity index literature may be found in [6]. The indices

have been applied to continuously-varying systems to expand

the applicability of the passivity theorem and for a measure

of input-output robustness. Using passivity indices provides

key information for designing controllers for stable feedback

interconnections even when the systems of interest aren’t

passive.

The applicability of passivity has been extended when

defined for switched systems. Definitions of passivity for

switched systems have been proposed in [11],[12],[13]. In

[13], passivity for switched systems is defined and used to

show stability results. Specifically, it was shown that passive

systems are Lyapunov stable, that negative feedback induces

asymptotic stability, and that output strictly passive systems

are asymptotically stable. Additionally, it was shown that the

negative feedback interconnection of two passive switched

systems is still passive.

This paper is concerned with the design of switched systems

using passivity indices. Section II covers background material

on the concept of passivity indices and introduces a novel

proof of stability. Section III provides a simplified definition

of passivity for switched systems. In Section IV, the main

result of the paper will be presented that governs the use of

the passivity indices for switched systems. An example of

the design methodology will be provided in Section V. The

paper is summarized in Section IV. An appendix is provided

to summarize the connection between passivity indices and

conic systems theory.

II. PASSIVITY THEORY BACKGROUND

A. Traditional Passivity Theory

A system is typically shown to be passive by finding an

energy storage function V (x). This function must satisfy

V (x) > 0,∀x 6= 0 and V (0) = 0. When a storage function

exists and the energy stored in a system can be bounded above

by the energy supplied to the system, the system is passive:
∫ t2

t1

uT (t)y(t)dt ≥ V (x(t2)) − V (x(t1)),∀t1, t2 : t1 ≤ t2.

(1)

It can be seen that passive systems are stable with Lyapunov

function V when the input u(t) = 0. As has been mentioned,
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passive systems are also minimum phase and of low relative

degree (relative degree 0 or 1). These are familiar concepts for

linear systems, and they have also been defined for nonlinear

systems [14].

The strength of passivity is that, when two passive systems

are connected in feedback (Fig. 1), the interconnected system

remains passive and Lyapunov stable. The passivity theorem

itself is the statement that the feedback of two passive systems

is stable [14].

Fig. 1. The negative feedback interconnection of two systems.

In many cases, when a system in the feedback interconnec-

tion is not passive, the passivity indices can be used to design

a feedback system that is still stable.

B. Passivity Index Concept

The two passivity indices are a measure of the level of

passivity of a given system. The two are defined so that a

positive value for an index corresponds to an excess of that

particular form of passivity. Likewise a negative value for that

index is considered a shortage. Passive systems have a positive

or zero value for both indices. The main advantage of using

passivity indices is to design stable feedback interconnections

when the systems in the loop aren’t passive.

Definition 1. A system has output feedback passivity index

(OFP) ρ if the following dissipative inequality holds ∀t,
∫ T

0

uT ydt ≥ V (x(T )) − V (x(0)) + ρ

∫ T

0

yT ydt. (2)

Fig. 2. This block diagram demonstrates the physical significance of the
OFP index. The feedback gain ρ compensates for an excess or shortage of
stability in a given system to yield an overall passive system.

The output feedback passivity index (OFP) is a measure of

the level of stability of a system. Its physical significance is

that it is the largest gain that can be placed in positive feedback

with a system such that the interconnected system is passive

(Fig. 2). When it is positive, it is a measure of the L2 gain γ

of a system (γ = 1

ρ
) [6].

Definition 2. A system has input feed-forward passivity index

(IFP) ν if the following dissipative inequality holds ∀t,
∫ T

0

uT ydt ≥ V (x(T ))−V (x(0))+ν

∫ T

0

uT udt. (3)

Fig. 3. This block diagram demonstrates the physical significance of the
IFP index. The feed-forward gain ν compensates for an excess or shortage
of the minimum phase property in a given system to yield an overall passive
system.

The input feed-forward passivity index (IFP) is a measure

of the extent that the minimum phase property is present

in a system. It is the largest gain that can be put in a

negative parallel interconnection with a system such that the

interconnected system is passive (Fig. 3). We will denote the

system index (ρ, ν).
The two indices are independent in the sense that knowing

one index does not provide any information about the other

except that the other index must exist. Both indices are

necessary to characterize the level of passivity in a system.

When both indices are used (Fig. 4), a system is said to have

index (ρ, ν). A system has these indices if and only if the

following dissipative inequality holds:
∫ T

0

[

(1+ρν)uT y−ρyT y−νuT u
]

dt ≥ V (x(T ))−V (x(0)).

(4)

Fig. 4. This block diagram represents the physical significance of the two
indices. By definition the mapping ũ → ỹ is passive.

It should be noted that it isn’t always possible to passivate a

system using these two loop transformations. When a system
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lacks OFP it is unstable and can be made passive with

negative feedback if the system is of low relative degree and is

minimum phase. Likewise, when a system lacks IFP it is non-

minimum phase and can be made passive with positive feed-

forward if the system is stable. This means that, in general, a

system that is both unstable and non-minimum phase cannot

be made passive with any combination of feedback and feed-

forward gains. In this case, neither index exists.

C. Stability Analysis

Using the passivity indices provides more information about

a system beyond the binary characterization of passive or

not passive. In the analysis of an existing interconnection,

typically the full system model is used to assess stability. The

indices are more often used as a control design tool to create

stable feedback loops even when the systems in the loop aren’t

passive. They allow the feedback loop to be designed without

the condition that both systems in the loop are passive. A

prerequisite for using this method is that the indices exist for

both systems.

The following result serves as a design guideline for using

passivity indices. It is very general in that it can be applied to

nonlinear systems that may or may not be passive. A similar

result was first proved in [8] by showing stability for a series

of cases. However, the proof given here is different and uses

methods from nonlinear control [14] to show L2 stability in a

single case.

Theorem 1. Consider the interconnection (Fig. 1) of two

systems where each has the following dynamics, for i ∈ {1, 2},

ẋ = fi(x, u)
y = hi(x, u).

(5)

Assume that G1 has indices (ρ1, ν1) and G2 has indices

(ρ2, ν2). If the following matrix is positive definite,

A =

[

(ρ1 + ν2)I
1

2
(ρ2ν2 − ρ1ν1)I

1

2
(ρ2ν2 − ρ1ν1)I (ρ2 + ν1)I

]

> 0, (6)

the interconnection is L2 stable.

Proof. The existence of ρi and νi for each system implies

that the following inequalities hold:

(1 + ρ1ν1)u
T
1 y1 ≥ V̇1(x1) + ρ1y

T
1 y1 + ν1u

T
1 u1 and

(1 + ρ2ν2)u
T
2 y2 ≥ V̇2(x2) + ρ2y

T
2 y2 + ν2u

T
2 u2.

A new energy storage function is defined as the sum of the

two individual storage functions, V (x) = V1(x1) + V2(x2).
Summing the two dissipative inequalities gives

(1 + ρ1ν1)u
T
1 y1 + (1 + ρ2ν2)u

T
2 y2 ≥ V̇1(x1) + V̇2(x2)+

ρ1y
T
1 y1 + ρ2y

T
2 y2 + ν1u

T
1 u1 + ν2u

T
2 u2.

Applying the loop relationships from Fig. 1,

u1 = r1 − y2

u2 = r2 + y1,

leads to a bound on V (x),

V̇ (x) ≤(1 + ρ1ν1)r
T
1 y1 − ρ1ν1y

T
1 y2 + ρ2ν2y

T
2 y1+

(1 + ρ2ν2)r
T
2 y2 + (ρ1 + ν2)y

T
1 y1 + (ρ2 + ν1)y

T
2 y2+

ν1r
T
1 r1 − 2ν1r

T
1 y2 + 2ν2r

T
2 y1 + ν2r

T
2 r2.

This inequality can be written compactly,

V̇ (x) ≤ −yT Ay + rT By + rT Cr,

where r = [rT
1 rT

2 ]T and y = [yT
1 yT

2 ]T and the matrices are

defined as follows,

A =

[

(ρ1 + ν2)I
1

2
(ρ2ν2 − ρ1ν1)I

1

2
(ρ2ν2 − ρ1ν1)I (ρ2 + ν1)I

]

,

B =

[

I 2ν1I

−2ν2I I

]

, and C =

[

−ν1I 0
0 −ν2I

]

.

Let A be positive definite as in (6). This allows for the

following constants to be found to bound this expression:

a =
√

λmin(AT A), b = ||B||
2
, and c = ||C||

2
,

where ||·||
2

denotes the largest singular value of a matrix and

a is the smallest singular value of A. Now, a simplified upper

bound can be found:

V̇ (x) ≤ −a ||y||2
2

+ b ||r||
2
||y||

2
+ c ||r||2

2

= − 1

2a
(a ||y||

2
− b ||r||

2
)2 +

k2

2a
||r||2

2
− a

2
||y||2

2

≤ k2

2a
||r||2

2
− a

2
||y||2

2
,

where k2 = b2 + 2ac. The remaining steps are to integrate

from time zero to arbitrary time T and to use the identity
√

α2 + β2 ≤ |α| + |β|. Note that the truncation of a signal

r(t) to the time interval 0 ≤ t < T is denoted by rT (t).

V (x(T )) − V (x(0)) ≤ k2

2a
||rT ||2L2

− a

2
||yT ||2L2

||yT ||L2
≤ k

a
||rT ||L2

+

√

2

a
V (x(0)).

This shows that the loop interconnection is L2 stable with gain

less than or equal to k
a

.

This result can be readily applied if one of the systems is a

given plant and the other is a controller to be designed. If the

indices of the plant exist, they can be used to determine lower

bounds on the indices for the controller. The controller can

be designed to have at least the required indices to guarantee

stability of the loop.

III. PASSIVE SWITCHED SYSTEMS

As stated previously, there have been a few definitions of

passivity proposed for switched systems. The starting point

for each of these definitions has been to require that the

active system is always passive. They all require an additional

condition to guarantee that the switching sequence only adds
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a bounded amount of energy to the system. These conditions

are sufficient to show expected stability results from traditional

passivity theory.

In this paper, rather than using one of these definitions,

we are going to start with a simplified definition. It should

be noted that the definition used in this paper doesn’t induce

stability without additional constraints. This will be addressed

in Theorem 2.

The switched systems of interest have the following state

dynamics,

ẋ = fσ(x, u)
y = hσ(x, u).

(7)

The switching signal σ is a function of time that takes on the

value of the index of the subsystem σ ∈ Σ = {1, ...,m} that is

active at each time instant. Consider the kth time switching to

the ith subsystem. The switching signal has the value i from

time tik
up to time tik+1. The next time system i becomes

active is at time tik+1
. For the remainder of this paper, assume

that a given system switches a finite number of times on any

finite time interval. This background on the switching signal

sets up the definition of passive switched systems used in this

paper.

Definition 3. Consider a given switched system (7). If there

exists storage functions Vi(x) (i = 1, ...,m) such that each

subsystem is passive while active, i.e. for tik
≤ t1 ≤ t2 ≤

tik+1 ,

∫ t2

t1

uT (t)y(t)dt ≥ Vi(x(t2)) − Vi(x(t1)),∀i,∀k, (8)

then the system is passive.

This definition will be used in the following section to define

the passivity indices for switched systems.

IV. PASSIVITY INDICES FOR SWITCHED SYSTEMS

Although passivity indices have been defined and used

for continuously-varying systems [6], they haven’t previously

been applied to switched systems. The generalization pre-

sented in this paper makes the assumption that the switching

signal is known, is a measurable discrete signal, or is a

function of the measurable continuous state. If the switching

signal is unknown and not measurable, more restrictive indices

must be used that are constant and equal to the smallest indices

across all time. For more information about this formulation

see [15].

With any of these three assumptions on the switching signal,

the indices are much less conservative by allowing them to

be time-varying. These time-varying indices are piecewise

constant. The values of the two indices at a given time are

simply the values of the constant passivity indices for the

active subsystem. The proposed definition of the time-varying

indices is given below.

Definition 4. Consider a switched system (7) with a known

or measurable switching signal. Assume that both indices (ρi

and νi) exist for each subsystem i ∈ Σ. The ith subsystem is

active for the kth time over the interval [tik
, tik+1). During

this time interval, the values of the indices are the constant

values of the indices for that particular active switched system.

The overall switched system has OFP index ρ(t) and IFP index

ν(t), where

ρ(t) = ρi and

ν(t) = νi
(9)

for tik
≤ t < tik+1, ∀i, k.

It should be noted that this definition places restrictions on

the switched systems that can be considered. For example,

if any one of the subsystems is unstable and non-minimum

phase, the indices don’t exist for that subsystem and likewise

for the overall switched system.

Consider a switched system with both indices existing

across all time. If the time-varying indices are applied as gains

as in Fig. 4, the overall system meets the notion of passivity

given in Definition 3. This fact can be used to determine the

indices of a system. These indices can be used as an analysis

tool to assess stability of an interconnection or as a control tool

for designing stable feedback loops. The following theorem is

an extension of passivity index theory for continuously-varying

systems.

Theorem 2. Consider two switched systems, G1 and G2,

each of the form (7), with passivity indices existing across all

subsystems (9). When these are connected in feedback (Fig.

1), the resulting interconnected system can also be written in

the form (7). If each subsystem of the interconnected switched

system satisfies the condition of the Theorem 1 (i.e. each

subsystem i is L2 stable with storage function Vi) and the

accumulated energy at switching instants is bounded,

V0(x(t0)) +

∞
∑

ik=1

[Vik
(x(tik

)) − Vik−1(x(tik
))] ≤ β2,

then the overall switched system is L2 stable.

Proof. By the assumption that the subsystems satisfy the

conditions of Theorem 1, each subsystem is L2 stable with

gain γi = ki

ai

. This guarantees the existence of a storage

function Vi for each subsystem. Consider the times t1 and

t2 such that tik
≤ t1 ≤ t2 ≤ tik+1. The following inequality

holds ∀i,

∫ t2

t1

yT ydt ≤ γ

∫ t2

t1

rT rdt + Vik
(x(t1)) − Vik

(x(t2)), (10)

where γ = max{γi}.

To verify that the system is L2 stable, the system output

must be analyzed from the initial time t0 to arbitrary time T .
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Note that t0 ≤ t1 ≤ ... ≤ tk ≤ T .

∫ T

t0

yT ydt =

K
∑

ik=1

∫ tik

tik−1

yT ydt +

∫ T

tK

yT ydt

≤
K

∑

ik=0

[

γ2

∫ tik+1

tik

rT rdt+Vik
(x(tik

))−Vik
(x(tik+1))

]

+

γ2

∫ T

tK

rT rdt + ViK
(x(tK)) − ViK

(x(T ))

≤ γ2

∫ T

t0

rT rdt + V0(x(t0))+

K
∑

ik=0

[Vik+1(x(tik+1)) − Vik
(x(tik+1)]

≤ γ2

∫ T

0

rT rdt + β2

||yT ||2 ≤ γ ||rT ||2 + β

The above holds with γ and β is defined previously. Again,

this proof uses the facts that Vik
≥ 0,∀i and for values a and

b,
√

a2 + b2 ≤ |a| + |b|.
It should be noted that this theorem applies to a switched

system with m subsystems. Each subsystem i has a matrix

Ai that satisfies Theorem 1. When all of these are positive

definite, Theorem 2 can be applied to show stability of the

overall system.

V. DESIGN EXAMPLE

To apply this result, consider the feedback of two systems

that may have switched nonlinear dynamics. Assume that

either system is a given plant that has both passivity indices

existing across all time. The dynamics of the other system can

be designed to have at least the required indices to guarantee

stability of the loop.

If the switching sequence is known or measurable in real

time, it is possible for the controller to switch with the plant.

Then a unique controller can be designed for each subsystem

of the plant. If this is not possible, more restrictive indices

must be taken which restricts the indices allowed for the sub-

systems of the controller. The following example illustrates the

design methodology when the switching sequence is known or

measurable. This example was chosen to be simple to follow

so it is a LTI system.

Example 1. Consider the negative feedback interconnection

of two systems (Fig. 1). G1 is a given dynamic system with

two switching subsystems (7). The first subsystem is unstable

with indices, ρ1 = −6 and ν1 = 0.

f1P (x, u) =

[

0 1
6 1

]

x +

[

0
1

]

u

h1P (x, u) =
[

1 1
]

x

The second subsystem is non-minimum phase with indices,

ρ2 = 0 and ν2 = − 1

2
.

f2P (x, u) =

[

0 1
−2 −2

]

x +

[

0
1

]

u

h2P (x, u) =
[

−1 1
]

x

Controllers can be designed for the two subsystems indepen-

dently. A controller for the first subsystem must have an IFP

index greater than 6 and a positive OFP to satisfy Theorem

3. A controller can be designed with a proportional gain of at

least 6 and a single pole that is in the open left-half plane.

f1c(x, u) = −px + u

h1c(x, u) = x + KP

The values chosen for this example are KP = 8 and p = 1

10
.

The resulting controller has OFP index 1

18
and IFP index 8.

Using the indices, the following matrix is found for the first

subsystem of the interconnection. This matrix being positive

definite guarantees that the first subsystem is L2 stable.

A1 =
1

18

[

36 4
4 1

]

> 0 (11)

For the second subsystem, a phase lead controller was de-

signed with a gain K. The pole must be less than − 1

2
. For

this example, the pole location was chosen to be −1 (p = 1)

and the zero and gain were chosen so that z = 1

2
and K = 1.

f2c(x, u) = −px + u

h2c(x, u) = K(z − p)x + K

The second controller has OFP index 1 and IFP index 1

2
. This

results in the following A matrix for the second interconnected

system.

A2 =
1

4

[

2 1
1 2

]

> 0 (12)

At this point, the control system is a switched system

containing two stable subsystems. Of course the switching

signal must be analyzed to verify that the switching behavior

preserves stability. In this case, Theorem 2 is satisfied with

arbitrary switching. This is because the two systems are linear

and their matrix pencil is always Hurwitz. This is the typical

case for linear systems that satisfy this theorem.

For this example, the switching was made to be exponen-

tially distributed (with average switching time 0.1 seconds) to

represent that switching was equally likely at any time. This

example was simulated with a zero input (r = 0) to show

asymptotic stability. The figure below shows the response of

the two plant states and one controller state.

This example shows how Theorem 2 can be used to design

stable control systems. Although the example is a simple LTI

system, the theorem is valid for general nonlinear switched

systems.
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Fig. 5. The convergence of the state in the given example.

VI. CONCLUSION

This paper presented a control synthesis framework for

interconnected switched systems. This is based on a gener-

alization of passivity theory to switched systems. A definition

of passivity indices for switched systems was covered with a

general stability result. An example was provided to demon-

strate the application of this result as a control design tool.

Future work in this area could be to consider the case when

the two switched systems are interconnected over a network.

This introduces delays and lost data in the signal, but also it

can’t be assumed that the controller can switch immediately

with the plant. These added issues make this extension non-

trivial.
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APPENDIX

COMPARISON TO CONIC SYSTEMS

The concept of passivity indices comes from earlier work

in conic systems [8]. Conic systems theory is an analysis

tool, based on operator theory, that assesses the input-output

behavior of system. A conic system is one whose inner product

of input and output is constrained to a cone of the U × Y

product space. This conic region was originally defined simply

by an upper bound and a lower bound of the cone. In this

definition, the only distinction between the two bounds is that

the upper bound must be greater than the lower bound.

Although the passivity indices correspond to the boundaries

of the conic region, it isn’t always one index that corresponds

to the upper bound and one to the lower bound. This is because

the indices have a physical significance by their feedback

or feed-forward definition, while the conic definition only

enforces that the upper bound greater than the lower bound.

The indices also have an intuitive base since each is a measure

of the extent of a necessary condition of passivity present in

a system.

Both the passivity index framework and the conic system

framework can be used for analysis and synthesis of stable

interconnected systems. It is straightforward to show that

both frameworks contain the passivity theorem and the small

gain theorem as special cases. For example, the passivity

index theorem presented previously simplifies to the passivity

theorem when all indices are positive or zero. The passivity

index theorem also reduces to the small gain theorem when

the two systems each have finite gain, γi (i = 1, 2), where

γ1γ2 < 1. This can be done when both systems have positive

OFP index and the gains can be calculated from the indices,

γi = max{ 1

ρi

,−νi}.

For more details on the connection between passivity index

theory and conic systems theory refer to [16].
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